JPH0673555A - Production of grain oriented electric steel sheet excellent in magnetic property and surface characteristic - Google Patents
Production of grain oriented electric steel sheet excellent in magnetic property and surface characteristicInfo
- Publication number
- JPH0673555A JPH0673555A JP5062039A JP6203993A JPH0673555A JP H0673555 A JPH0673555 A JP H0673555A JP 5062039 A JP5062039 A JP 5062039A JP 6203993 A JP6203993 A JP 6203993A JP H0673555 A JPH0673555 A JP H0673555A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- colloidal silica
- grain
- concentration
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/24—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
- C23C22/33—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、磁気特性と表面性状
の優れた方向性電磁鋼板の製造方法に関し、とくに方向
性電磁鋼板表面にフォルステライト被膜を形成した後に
施される上塗り絶縁被膜の被膜特性の改善を図ろうとす
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, and in particular, a top coat insulation coating formed after forming a forsterite coating on the grain-oriented electrical steel sheet surface. This is intended to improve the characteristics.
【0002】[0002]
【従来の技術】一般に、方向性電磁鋼板においては、絶
縁性、加工性及び防錆性等を付与するために表面に被膜
を施す。かかる表面被膜は、最終仕上げ焼鈍時に形成さ
れるフォルステライト被膜とその上に被成されるりん酸
塩系の上塗り被膜からなる。またこれらの被膜は、高温
で成膜され、しかも低い熱膨張率を持つことから、低温
まで下がったときの鋼板とコーティングの熱膨張率の違
いにより鋼板に張力を付与し、鉄損を低減させる効果が
あるので、できるだけ高い張力を鋼板に付与することが
望まれている。2. Description of the Related Art Generally, a grain-oriented electrical steel sheet is coated on its surface in order to impart insulation, workability and rust prevention. Such a surface coating consists of a forsterite coating formed during final finish annealing and a phosphate-based topcoat coating applied thereon. Also, since these coatings are formed at high temperature and have a low coefficient of thermal expansion, tension is applied to the steel sheet due to the difference in the coefficient of thermal expansion between the steel sheet and the coating when the temperature drops to a low temperature, and iron loss is reduced. Since it is effective, it is desired to apply as much tension as possible to the steel sheet.
【0003】一方、最終製品となった鋼板は、メジャー
リングロールと呼ばれる長さ測定用のロールを通過した
後にシャーで一定長さに切断されるが、鋼板表面に被膜
の剥離粉が付着していると、この剥離粉がメジャーリン
グロールに付着してロールの径が見掛け上変化し、測定
長さに狂いが生じることがある。またかような発粉によ
って作業環境も悪くなる。かかる発粉は、表面の凹凸に
起因するものと考えられるが、これは占積率の低下を招
くという弊害もあり、それ故、表面が平滑でしかも発粉
しない被膜を被覆することが良好なトランスを作る上で
特に重要である。On the other hand, the steel sheet as the final product is cut into a certain length by a shear after passing through a length measuring roll called a measuring roll, but peeling powder of the film adheres to the surface of the steel sheet. If so, the peeling powder adheres to the measuring roll, and the diameter of the roll apparently changes, which may cause a deviation in the measurement length. In addition, such dusting also deteriorates the working environment. Such dusting is considered to be caused by unevenness of the surface, but this also has a harmful effect of lowering the space factor, and therefore it is preferable to coat a film having a smooth surface and not dusting. This is especially important in making a transformer.
【0004】上述したような諸特性を満たすために、従
来から、種々のコーティング被膜が提案されている。例
えば特公昭56-52117号公報には、コロイド状シリカとり
ん酸マグネシウムを82/20のモル比で添加したコーティ
ング液を塗布することによって、鉄損及び磁気歪の応力
特性を改善する方法が、また特公昭53-28375号公報に
は、コロイド状シリカ、りん酸アルミニウム、クロム酸
を添加したコーティング液を塗布することによって、表
面性状に併せ、鉄損及び磁気歪特性を改善する方法が、
それぞれ提案されている。In order to satisfy the above-mentioned various characteristics, various coating films have been conventionally proposed. For example, Japanese Patent Publication No. 56-52117 discloses a method of improving the stress characteristics of iron loss and magnetostriction by applying a coating solution containing colloidal silica and magnesium phosphate added at a molar ratio of 82/20. Further, JP-B-53-28375 discloses a method of improving iron loss and magnetostriction characteristics by applying a coating solution containing colloidal silica, aluminum phosphate, and chromic acid, together with the surface properties.
Each has been proposed.
【0005】上記の方法により、方向性電磁鋼板の鉄
損、磁気歪み、絶縁特性及び被膜の表面性状の改善に関
し、それなりの効果は認められた。しかしながら、エネ
ルギー需要の増大や騒音に対するユーザーのニーズの高
まりに伴い、より一層の鉄損の低減や磁気歪み特性の改
善が強く求められている。また、トランス等を製造する
メーカーにおいては、鉄心に加工する際の加工成型機の
自動化や高速化が進み、上記したような改良された絶縁
被膜以上に表面性状に優れた絶縁被膜の開発が望まれて
いるのが実情である。It has been confirmed that the above-mentioned method has some effect on improving the iron loss, magnetostriction, insulating properties and surface properties of the coating of the grain-oriented electrical steel sheet. However, with the increase in energy demand and user's need for noise, further reduction of iron loss and improvement of magnetostriction characteristics are strongly demanded. In addition, manufacturers of transformers, etc., are increasing the automation and speed of processing machines when processing iron cores, and it is desirable to develop insulating coatings with better surface properties than the improved insulating coatings described above. The reality is that it is rare.
【0006】[0006]
【発明が解決しようとする課題】この発明は、方向性電
磁鋼板の絶縁被膜の張力強化により鉄損改善効果に優れ
るのはいうまでもなく、被膜表面が従来以上に平滑でか
つ発粉のない優れた被膜性状を有する方向性電磁鋼板の
有利な製造方法を提案することを目的とする。It is needless to say that the present invention is excellent in iron loss improving effect by strengthening the tension of the insulating coating of the grain-oriented electrical steel sheet, and the coating surface is smoother than before and is free from dusting. It is an object of the present invention to propose an advantageous method for producing a grain-oriented electrical steel sheet having excellent coating properties.
【0007】[0007]
【課題を解決するための手段】この発明の要旨構成は次
のとおりである。 1.最終仕上げ焼鈍済みの方向性電磁鋼板の表面に張力
コーティングを施すに当たり、コーティング剤として、
成分組成が乾固固形物比率で、コロイド状シリカ:30〜
60wt%(以下単に%で示す)、Al, Mg, Ca, Fe, Mn及び
Srの第1りん酸塩のうちから選んだ一種又は二種以上:
30〜60%、並びに無水クロム酸及びMg, Ca, Srの重クロ
ム酸塩のうちから選んだ一種又は二種以上:5〜20%の
組成になり、かつコロイド状シリカ中の微量不純物であ
るNa2Oのコロイド液中における濃度が 0.8%以下のもの
を用いることを特徴とする磁気特性と表面性状の優れた
方向性電磁鋼板の製造方法(第1発明)。The gist of the present invention is as follows. 1. As a coating agent for applying tension coating to the surface of grain-oriented electrical steel sheet that has been final annealed,
Ingredient composition is dry solids ratio, colloidal silica: 30 ~
60wt% (simply shown as% below), Al, Mg, Ca, Fe, Mn and
One or more selected from Sr primary phosphates:
30-60%, and one or more selected from chromic anhydride and dichromates of Mg, Ca, Sr: 5-20% composition and trace impurities in colloidal silica A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, which comprises using Na 2 O having a concentration of 0.8% or less in a colloidal solution (first invention).
【0008】2.最終仕上げ焼鈍済みの方向性電磁鋼板
の表面に張力コーティングを施すに当たり、コーティン
グ剤として、成分組成が乾固固形物比率で、コロイド状
シリカ:30〜60%、Al, Mg, Ca, Fe, Mn及びSrの第1り
ん酸塩のうちから選んだ一種又は二種以上:30〜60%、
並びに無水クロム酸及びMg, Ca, Srの重クロム酸塩のう
ちから選んだ一種又は二種以上:5〜20%の組成にな
り、かつコロイド状シリカ中の微量不純物であるNa2Oの
コロイド液中における濃度が0.8 %以下、 SO4濃度が
0.3%以下のものを用いることを特徴とする磁気特性と
表面性状に優れた方向性電磁鋼板の製造方法(第2発
明)。2. When applying tension coating to the surface of grain-oriented electrical steel sheet that has undergone final finish annealing, the composition of the composition is dry solids ratio, colloidal silica: 30-60%, Al, Mg, Ca, Fe, Mn And one or more selected from Sr primary phosphates: 30 to 60%,
And one or more selected from chromic anhydride and dichromate of Mg, Ca, Sr: a colloid of Na 2 O, which is a trace impurity in colloidal silica and has a composition of 5 to 20% If the concentration in the liquid is 0.8% or less and the SO 4 concentration is
A method for producing a grain-oriented electrical steel sheet excellent in magnetic characteristics and surface properties, characterized by using 0.3% or less (second invention).
【0009】上記の各発明において、コロイド状シリカ
としては、形状が球形でかつ、粒径が5〜50nmのものが
とりわけ有利に適合する。In each of the above inventions, colloidal silica having a spherical shape and a particle size of 5 to 50 nm is particularly advantageously suited.
【0010】以下、この発明を由来するに至った実験結
果について説明する。実験には、公知の方法で製造した
板厚:0.23mmの方向性珪素鋼板の最終コイルからサンプ
ルを切出し、N2 中で 800℃, 2時間の歪取焼鈍を施し
てコイルセットを除去したものを、出発材料として用い
た。この素材の磁束密度はB8 で1.92(T)、鉄損はW
17/50 で0.89(W/kg)である。この鋼板の表面に、りん
酸マグネシウム:50%、コロイド状シリカ中の不純物で
あるNa2Oのコイロド液中における濃度が種々に異なる
( SO4濃度は 0.5%及び0.3 %の2種)コロイド状シリ
カ:40%、無水クロム酸:10%の配合割合になるコーテ
ィング剤を、10 g/mm2(両面当たり)塗布したのち、N
2 雰囲気中で 800℃,2分間焼き付けた。なおコロイダ
ルシリカとしては、球形で粒径が15nmのものを用いた。The experimental results that led to the invention will be described below. In the experiment, a sample was cut out from the final coil of grain-oriented silicon steel sheet having a plate thickness of 0.23 mm manufactured by a known method and subjected to stress relief annealing in N 2 at 800 ° C. for 2 hours to remove the coil set. Was used as the starting material. The magnetic flux density of this material is 1.92 (T) at B 8 , and the iron loss is W.
It is 0.89 (W / kg) at 17/50 . On the surface of this steel sheet, magnesium phosphate: 50%, the concentration of Na 2 O, which is an impurity in colloidal silica, in the Koirod solution varied (SO 4 concentration was 0.5% and 0.3%, two types) Colloidal Silica: 40%, chromic anhydride: 10% A coating agent with a compounding ratio of 10% / mm 2 (on both sides) was applied, and then N
It was baked at 800 ℃ for 2 minutes in 2 atmospheres. The colloidal silica used was spherical and had a particle size of 15 nm.
【0011】図1及び図2にそれぞれ、コーティング焼
付け前後における鉄損特性と表面粗さについて調べた結
果を、コロイド状シリカ中のNa2O量(図1は SO4濃度
0.5%, 図2は SO4濃度 0.3%)と成膜後の鉄損改善代
(ΔW17/50 )及び中心線平均粗さ(Ra)との関係で
示す。同図から明らかなように、ΔW17/50は、コロイド
状シリカ中のNa2O量によって大きく変化し、Na2Oの濃度
が 0.8%以下であれば、ΔW17/50 が0.05(W/kg)以上
の従来にない大きい改善代が得られることが判明した。
また、表面粗さについては、 SO4濃度が 0.5%程度であ
ってもそれなりの平滑表面が得られたけれども、 SO4濃
度を 0.3%以下にすれば一層良好な平滑表面が得られる
ことが判明した。このようにコロイド状シリカ中のNa2O
量、さらには SO4量を規制することによって、鉄損改善
代や表面状態が改善されるという事実は、この発明で初
めて見出した新規知見である。FIG. 1 and FIG. 2 show the results of examining the iron loss characteristics and the surface roughness before and after baking the coating, and show the amount of Na 2 O in the colloidal silica (FIG. 1 shows the SO 4 concentration).
0.5%, Fig. 2 shows the relationship between the SO 4 concentration of 0.3%), the iron loss improvement amount (ΔW 17/50 ) after film formation, and the center line average roughness (Ra). As apparent from the figure, [Delta] W 17/50 is largely changed by the Na 2 O content in the colloidal silica, not more than 0.8% concentration of Na 2 O, [Delta] W 17/50 is 0.05 (W / It has been found that a large improvement margin over the previous kg) can be obtained.
Regarding the surface roughness, although a smooth surface was obtained even when the SO 4 concentration was about 0.5%, it was found that a better smooth surface could be obtained if the SO 4 concentration was 0.3% or less. did. Thus, Na 2 O in colloidal silica
The fact that the iron loss improvement margin and the surface condition are improved by regulating the amount of SO 4 , and further the amount of SO 4 is a new finding discovered for the first time in the present invention.
【0012】次に、コロイド状シリカの好適な粒径、形
状について検討した。実験には上記と同じ最終仕上げ焼
鈍済みの方向性珪素鋼板を用い、これに、りん酸マグネ
シウム:50%、Na2Oの濃度が 0.1%、 SO4濃度が0.05%
で粒径と形状が種々に異なるコロイド状シリカ:40%、
無水クロム酸:10%の配合割合になるコーティング液
を、被膜量が10g/m2(両面当たり)になるように塗布し
たのち、N2 雰囲気中で 800℃,2分間焼き付けた。か
くして得られた電磁鋼板の焼付け前後における鉄損値を
測定し、その差を求めた。また同時に表面粗さと発粉性
についても調査した。Next, the suitable particle size and shape of the colloidal silica were examined. The same final finish annealed grain oriented silicon steel sheet as above was used for the experiment. Magnesium phosphate: 50%, Na 2 O concentration 0.1%, SO 4 concentration 0.05%
Colloidal silica with various particle sizes and shapes: 40%,
Chromic anhydride: A coating liquid having a compounding ratio of 10% was applied so that the coating amount was 10 g / m 2 (on each side), and then baked at 800 ° C. for 2 minutes in an N 2 atmosphere. The iron loss value of the thus-obtained electromagnetic steel sheet before and after baking was measured, and the difference was determined. At the same time, the surface roughness and dusting property were also investigated.
【0013】表1に、用いたコロイド状シリカの粒径、
形状とコーティング前後における鉄損改善代ΔW17/50
との関係を示す。同表から明らかなように、粒径が5〜
50nmで、しかも形状が球状のコロイド状シリカを用いた
場合に、とくに安定して鉄損が改善されている。Table 1 shows the particle size of the colloidal silica used,
Shape and iron loss improvement before and after coating ΔW 17/50
Shows the relationship with. As is clear from the table, the particle size is 5
The iron loss is improved particularly stably when colloidal silica having a shape of 50 nm and a spherical shape is used.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【作用】この発明に従い、コロイド状シリカ中の微量不
純物であるNa2O、さらには SO4のコロイド液中における
濃度を低減することによって、鉄損特性や表面性状が改
善される理由は、まだ明確に解明されたわけではない
が、次のとおりと考えられる。すなわち、コロイド状シ
リカにおいて、Na2OはSiO2をコロイド粒子として均一に
分散させるために必要な添加物であるが、この分野で用
いられるようなりん酸−シリカ系ガラスでは、NaやLi,
Kのようなアルカリ金属酸化物はSi−O結合やP−O結
合を切断して架橋酸素を減少させ、ガラス溶融時の粘度
を小さくする。その結果、ガラス成膜性が劣化してガラ
スの基本的性質である熱膨張率が高くなり、ガラス軟化
温度も低くなる。またガラス成膜性が劣化することか
ら、コーティングの一部は結晶化が進み、この点からも
熱膨張率が大きくなる。従って、このようなNa2Oをでき
るだけ含有しないコロイド状シリカを用いることによっ
て、ガラス転移点が上昇し、しかも熱膨張率の低い被膜
が形成されることから、鉄損低減効果が向上するものと
考えられる。According to the present invention, the reason why iron loss characteristics and surface properties are improved by reducing the concentration of trace impurities such as Na 2 O in colloidal silica and further SO 4 in the colloidal liquid is not yet explained. Although not clearly clarified, it is considered as follows. That is, in colloidal silica, Na 2 O is an additive necessary to uniformly disperse SiO 2 as colloidal particles, but in phosphoric acid-silica glass used in this field, Na or Li,
An alkali metal oxide such as K cuts Si—O bonds and P—O bonds to reduce cross-linking oxygen and reduces the viscosity during glass melting. As a result, the glass film-forming property deteriorates, the coefficient of thermal expansion, which is a basic property of glass, increases, and the glass softening temperature also decreases. In addition, since the glass film-forming property is deteriorated, part of the coating is crystallized, and the thermal expansion coefficient is increased also from this point. Therefore, by using such colloidal silica containing as little Na 2 O as possible, the glass transition point is increased and a coating having a low coefficient of thermal expansion is formed, so that the iron loss reduction effect is improved. Conceivable.
【0016】またコロイド状シリカは、そのpH値によ
つて酸性タイプとアルカリ性タイプの2系統に分類され
るが、酸性タイプで SO4濃度の高いコロイド状シリカで
は表面粗さが大きくなる。すなわち、りん酸マグネシウ
ム−コロイダルシリカを用いたガラス被膜の造膜温度は
約 600℃であることが知られている。このようなりん酸
−シリカ系の処理液を鋼板に塗布した場合、コーティン
グ液は焼付過程において脱水縮合反応が進み造膜が進行
するわけであるが、この過程で SO4の一部はガス化す
る。そのため、被膜表面はミクロ的な穴が発生したりフ
クレとなって表面平滑度を劣化させ、発粉し易い表面と
なる。この点、 SO4濃度を低減すれば、上記の問題は解
消し、良好な表面性状を得ることができるわけである。The colloidal silica is classified into two systems, an acidic type and an alkaline type, depending on the pH value. The acidic type colloidal silica having a high SO 4 concentration has a large surface roughness. That is, it is known that the film-forming temperature of the glass film using magnesium phosphate-colloidal silica is about 600 ° C. When such a phosphoric acid-silica-based treatment liquid is applied to a steel sheet, the coating liquid undergoes a dehydration condensation reaction in the baking process to form a film, but in this process part of SO 4 is gasified. To do. As a result, microscopic holes are formed on the surface of the coating film, or blisters occur, which deteriorates the surface smoothness and makes the surface easy to generate dust. In this respect, if the SO 4 concentration is reduced, the above problems can be solved and good surface properties can be obtained.
【0017】さらに、粒径については一般に、細かい程
りん酸塩との反応性がよくなり、良好なガラス被膜が得
られると考えられているが、粒径を適度に大きくするこ
とによって反応速度を遅らせ、より高温で成膜させるす
なわち反応温度を高めることによって一層張力の向上を
図ることができると考えられる。従って粒径を大きく
し、より高温で焼き付けを行えば張力の向上が期待でき
るわけであるが、通常コーティングの焼き付けは平坦化
焼鈍と同時に行うため、あまり高温で焼き付けると鋼板
が伸びてしまい磁気特性に悪影響を与える。従って粒径
には好適範囲があってその範囲内においてのみ優れた鉄
損低減効果が得られるのである。なおコロイド状粒子の
形状に関しては、球状のものは糸状のものやいびつな形
状のものに比べてコーティング処理液中での分散性が良
く、反応速度の制御が容易になり、一定の温度領域で反
応が十分に進行するため、優れた鉄損低減効果が得られ
るものと考えられる。Regarding the particle size, it is generally considered that the finer the particle size, the better the reactivity with the phosphate and the better the glass coating can be obtained. However, the reaction rate can be improved by appropriately increasing the particle size. It is considered that the tension can be further improved by delaying and forming the film at a higher temperature, that is, by increasing the reaction temperature. Therefore, it is expected that the tension will be improved by increasing the grain size and baking at a higher temperature.However, since baking of the coating is usually performed at the same time as flattening annealing, if the baking is performed at an excessively high temperature, the steel sheet will stretch and the magnetic properties will increase. Adversely affect. Therefore, the particle size has a suitable range, and only within this range, an excellent iron loss reducing effect can be obtained. Regarding the shape of the colloidal particles, spherical ones have better dispersibility in the coating liquid than filamentous ones and distorted ones, which makes it easier to control the reaction rate and keeps them within a certain temperature range. Since the reaction proceeds sufficiently, it is considered that an excellent iron loss reducing effect can be obtained.
【0018】ところで、コロイド状シリカの種類を変更
する技術としては、特公昭62-53589号公報には、8 nm
以下の超微粒のコロイド状シリカを配合することによっ
て、張力付加性及び滑り性を改善する技術が開示されて
いる。これはコロイド状シリカを微粒にすることによ
り、りん酸塩との反応性を向上させるという意味である
が、この点、この発明では好ましくは球状のものを用
い、粒径はある程度大きくしてコーティング反応を積極
的に制御することにより、張力付加性の向上を図るもの
である。また、特開平3−207868号公報及び特開平3-3
9484号公報には、コロイド状シリカとして、微粒と粗粒
の2種類を混ぜ合わせたものを用いることにより、滑り
性及び張力付与性を改善する技術が開示されているが、
この方法ではコロイド状シリカを混ぜ合わせることによ
ってコロイドの安定性が通常の場合よりも劣化し、コロ
イド状シリカの凝集が起こり、目的が達成されない場合
がしばしば発生した。この点、この発明では、新規な知
見に基づき、コロイド状シリカのNa2O濃度と SO4濃度を
低減し、さらには粒子径を規制することにより、上記の
如き技術を用いなくとも優れた張力付加性及び表面性状
を得ることができるのである。By the way, as a technique for changing the type of colloidal silica, Japanese Patent Publication No. 62-53589 discloses a technique of 8 nm.
The following techniques have been disclosed for improving the tension-applying property and the slipperiness by blending the following ultrafine particles of colloidal silica. This means that by making the colloidal silica fine particles, the reactivity with the phosphate is improved, but in this respect, the spherical particles are preferably used in the present invention, and the particle size is increased to some extent. By positively controlling the reaction, the tension-adding property is improved. Further, JP-A-3-207868 and JP-A-3-3868.
Japanese Patent No. 9484 discloses a technique of improving slipperiness and tension imparting property by using a mixture of two kinds of fine particles and coarse particles as colloidal silica.
In this method, the stability of the colloid was deteriorated by mixing the colloidal silica as compared with the usual case, the agglomeration of the colloidal silica was caused, and the object was often not achieved. In this respect, according to the present invention, based on a novel finding, the Na 2 O concentration and the SO 4 concentration of the colloidal silica are reduced, and the particle size is regulated, so that excellent tension can be obtained without using the above technique. It is possible to obtain additivity and surface texture.
【0019】次に、この発明の限定理由について述べ
る。この発明で対象とする電磁鋼板は、常法に従い、熱
延、冷延、脱炭焼鈍、最終仕上げ焼鈍を施して得たもの
であり、方向性珪素鋼板をはじめとして従来公知のもの
いずれもが適合する。Next, the reasons for limitation of the present invention will be described. The electromagnetic steel sheet targeted by the present invention is obtained by performing hot rolling, cold rolling, decarburizing annealing, and final finishing annealing according to a conventional method. Fits.
【0020】コーティング剤としては、その成分組成が
乾固固形物比率で、コロイド状シリカ:30〜60%、Al,
Mg, Ca, Fe, Mn及びSrの第1りん酸塩のうちから選んだ
一種又は二種以上:30〜60%、無水クロム酸及びMg, C
a, Srの重クロム酸塩のうちから選んだ一種又は二種以
上:5〜20%のものを用いる。というのは、コロイド状
シリカが30%に満たなかったり、第1りん酸マグネシウ
ムが60%より多くなると張力効果が期待できない。また
コロイド状シリカが60%を超えたり、第1りん酸マグネ
シウムが30%より少なくなると均質な被膜ができず、密
着性が悪くなるからである。ここに第1りん酸塩は、A
l, Mg, Ca, Fe,Mn及びSr以外では張力効果が小さいの
で、この発明では上記の6種に限定した。また無水クロ
ム酸やMg, Ca, Srの重クロム酸塩は、耐吸湿性及び耐熱
性の向上のために添加するが、5%に満たないと効果が
なく、一方20%を超えると鉄心加工性が劣化するので、
5〜20%の範囲に限定した。なお、その他にも、シリカ
粉末やアルミナ粉末を用いることができる。これらはい
ずれも耐スティッキング性改善のために有用な成分であ
り、添加量は 0.1〜4%程度が望ましい。As a coating agent, its composition is a dry solid content ratio, colloidal silica: 30 to 60%, Al,
One or more selected from the primary phosphates of Mg, Ca, Fe, Mn and Sr: 30-60%, chromic anhydride and Mg, C
One or more selected from a and Sr dichromates: 5 to 20% is used. The tension effect cannot be expected when the content of colloidal silica is less than 30% or the content of monobasic magnesium phosphate is more than 60%. Further, if the content of colloidal silica exceeds 60% or the content of primary magnesium phosphate is less than 30%, a uniform coating cannot be formed and the adhesion becomes poor. The primary phosphate here is A
Since the effect of tension is small except for l, Mg, Ca, Fe, Mn and Sr, the present invention is limited to the above 6 types. Chromic anhydride and dichromate of Mg, Ca, Sr are added to improve the moisture absorption resistance and heat resistance, but if it is less than 5%, it has no effect. Since the property deteriorates,
The range is limited to 5 to 20%. In addition to these, silica powder and alumina powder can be used. All of these are useful components for improving the sticking resistance, and the addition amount is preferably about 0.1 to 4%.
【0021】次に、コロイド状シリカとしては、Na2O濃
度が 0.8%以下のものを用いる。というのは、Na2O濃度
が 0.8%を超えると、前掲図1に示したように、満足い
くほど十分な鉄損低減効果や平滑な表面が得られないか
らである。さらに、一層優れた表面平滑性を得るには S
O4濃度を 0.3%以下とすることが有利である。Next, colloidal silica having a Na 2 O concentration of 0.8% or less is used. This is because when the Na 2 O concentration exceeds 0.8%, the iron loss reduction effect and the smooth surface cannot be sufficiently satisfactory as shown in FIG. 1 above. Furthermore, to obtain even better surface smoothness, S
It is advantageous to set the O 4 concentration to 0.3% or less.
【0022】またコロイド状シリカとしては、球状で粒
径が5〜50nmのものがとりわけ有利に適合し、かかる形
状・大きさのシリカ粒子を用いることによって、さらに
磁気特性及び表面性状の向上を図ることができる。な
お、被膜量は、両面で4〜15 g/m2 程度とするのが好ま
しい。というのは、4g/m2より少ないと絶縁性に問題が
残り、一方15g/m2より多くなると占積率が低下するから
である。さらに焼付け処理については、 700〜950 ℃程
度の温度範囲で5〜120 秒間程度とするのが好ましい。As the colloidal silica, spherical ones having a particle diameter of 5 to 50 nm are particularly suitable, and by using silica particles having such a shape and size, the magnetic properties and surface properties are further improved. be able to. The coating amount is preferably about 4 to 15 g / m 2 on both sides. This is because if it is less than 4 g / m 2 , the insulation problem remains, while if it is more than 15 g / m 2 , the space factor decreases. Further, the baking treatment is preferably carried out at a temperature range of about 700 to 950 ° C. for about 5 to 120 seconds.
【0023】[0023]
実施例1 板厚:0.23mmの最終仕上げ焼鈍済みの方向性珪素鋼板に
ついて、その表面に付着した未反応分離剤を除去後、歪
取り焼鈍ついでりん酸酸洗処理を施したのち、成分組成
が乾固固形物比率で、コロイド状シリカ:50%、りん酸
マグネシウム:40%、無水クロム酸:10%になるコーテ
ィングを施した。なおこのとき、コロイド状シリカとし
ては、表2に示すように、形状、粒径並びにNa2O濃度及
び SO4濃度が種々に異なるものを用いた。かくして得ら
れた被膜付き珪素鋼板の諸特性について調べた結果を表
2に併記する。Example 1 With respect to grain-oriented silicon steel sheet having a plate thickness of 0.23 mm and having been subjected to final finish annealing, after removing unreacted separating agent adhering to the surface thereof, strain relief annealing and phosphoric acid pickling treatment were performed, and thereafter, the composition of components was changed. The dry solids ratio was 50% for colloidal silica, 40% for magnesium phosphate and 10% for chromic anhydride. At this time, as the colloidal silica, as shown in Table 2, those having various shapes, particle sizes, and Na 2 O and SO 4 concentrations were used. Table 2 also shows the results of examining various characteristics of the coated silicon steel sheet thus obtained.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 *2 SEMによる表面観察で評価。 ◎…表面の凹凸が殆どない ○…わずかに表面に凹凸
が発生している △…表面の凹凸が激しい *3 コーティング塗布前後における鉄損値の改善代。
なお最終仕上げ焼鈍板の磁束密度B8 は 1.92 Tのもの
を使用。 *4 50×50mm試験片10枚を、乾窒素雰囲気中にて2kg
/mm2の圧縮荷重付与下で800℃, 2hの焼鈍後、500 g
の分銅を落下させ、試験片がすべて剥離したときの落下
高さにより評価。 ◎…20cm ○…40cm △…60cm ×…80cm *5 λp-p が4×10-4となる圧縮応力値(kg/mm2) 。 *6 非剥離最小曲げ径(mm)。 *7 JIS 2550の方法による。 *8 温度:50℃、露点:50℃の空気中に50h保持後、
表面を観察。 ○…錆が殆ど発生しない △…若干錆が発生する ×…
激しく錆が発生する[Table 3] * 2 Evaluation by surface observation by SEM. A: Almost no irregularities on the surface O: Slight irregularities on the surface B: Severe irregularities on the surface * 3 Improvement in iron loss before and after coating.
The magnetic flux density B 8 of the final finish annealed plate is 1.92 T. * 4 10 pieces of 50 x 50 mm test piece are 2 kg in dry nitrogen atmosphere.
500g after annealing at 800 ℃ for 2h under compressive load of / mm 2
The weight was dropped and all test pieces were peeled off. ◎… 20 cm ○… 40 cm △… 60 cm ×… 80 cm * 5 Compressive stress value (kg / mm 2 ) at which λ pp is 4 × 10 −4 . * 6 Non-peel minimum bending diameter (mm). * 7 According to JIS 2550 method. * 8 Temperature: 50 ° C, dew point: 50 ° C
Observe the surface. ○: Almost no rust occurred △: Some rust occurred ×…
Severe rust
【0026】表2より明らかなように、Na2O濃度が0.80
%以下の場合にとりわけ良好な磁気特性が得られ、しか
も併せて SO4濃度を0.30以下にした場合には表面性状も
とりわけ良好であった。As is clear from Table 2, the Na 2 O concentration was 0.80.
%, The magnetic properties were particularly good, and when the SO 4 concentration was 0.30 or less, the surface properties were also particularly good.
【0027】実施例2 板厚:0.23mmの最終仕上げ焼鈍済みの方向性珪素鋼板に
ついて、その表面に付着した未反応分離剤を除去後、歪
取り焼鈍ついでりん酸酸洗処理を施したのち、表4に示
すような種々のコロイド状シリカ及び第1りん酸塩を用
い、成分組成が乾固固形物比率で、コロイド状シリカ:
50%、第1りん酸塩:40%、さらには無水クロム酸:10
%になるコーティングを施した。かくして得られた被膜
付き珪素鋼板の諸特性について調べた結果を表4に併記
する。Example 2 With respect to grain-oriented silicon steel sheet having a plate thickness of 0.23 mm and having been subjected to final finish annealing, after removing unreacted separating agent adhering to the surface thereof, strain relief annealing followed by phosphoric acid pickling treatment was carried out, Various colloidal silicas and primary phosphates as shown in Table 4 were used, and the composition of the components was a dry solids ratio.
50%, primary phosphate: 40%, and chromic anhydride: 10
% Coating was applied. Table 4 also shows the results of examining various characteristics of the coated silicon steel sheet thus obtained.
【0028】[0028]
【表4】 [Table 4]
【0029】同表より明らかなように、この発明で特定
した第1りん酸塩であれば、いずれであっても優れた磁
気特性と表面性状が得られている。As is clear from the table, any of the primary phosphates specified in the present invention has excellent magnetic properties and surface properties.
【0030】実施例3 種々の板厚の最終仕上げ焼鈍済み方向性珪素鋼板につい
て、その表面に付着した未反応分離剤を除去後、歪取り
焼鈍ついでりん酸酸洗を施したのち、表4に示すような
コロイド状シリカを、乾固固形物比率で50%、同じく第
1りん酸マグネシウム:40%、無水クロム酸:10%にな
るコーティングを施した。かくして得られた被膜付き珪
素鋼板の諸特性について調べた結果を表5に併記する。Example 3 With respect to grain-finished grain-finished grain oriented silicon steel sheets having various thicknesses, the unreacted separating agent adhering to the surface thereof was removed, strain-relief annealing was performed, and then phosphoric acid pickling was performed. The colloidal silica as shown was coated to a dry solids ratio of 50%, the same monobasic magnesium phosphate: 40% and chromic anhydride: 10%. Table 5 also shows the results of examining various properties of the coated silicon steel sheet thus obtained.
【0031】[0031]
【表5】 [Table 5]
【0032】同表より明らかなように、板厚が薄い場合
に、特に張力効果が大きく作用してとりわけ良好な磁気
特性が得られている。As is clear from the table, particularly when the plate thickness is thin, the tension effect is particularly large and particularly good magnetic characteristics are obtained.
【0033】実施例4 板厚:0.23mmの最終仕上げ焼鈍済み方向性珪素鋼板につ
いて、その表面に付着した未反応分離剤を除去後、歪取
り焼鈍ついでりん酸酸洗を施したのち、コロイド状シリ
カ、無水クロム酸又は重クロム酸塩として、表6に示し
たような種々のものを用い、成分組成が乾固固形物比率
で、コロイド状シリカ:50%、第1りん酸マグネシウ
ム:40%、無水クロム酸又は重クロム酸化合物:10%に
なるコーティングを施した。かくして得られた被膜付き
珪素鋼板の諸特性について調べた結果を表6に併記す
る。Example 4 With respect to a grain-finished 0.23 mm thick grain-finished grain-oriented silicon steel sheet, the unreacted separating agent adhering to the surface thereof was removed, strain-relief annealing was carried out, and then phosphoric acid pickling was carried out. As silica, chromic anhydride or dichromate, various compounds as shown in Table 6 are used, and the component composition is a dry solid content ratio, colloidal silica: 50%, primary magnesium phosphate: 40%. Chromic anhydride or dichromic acid compound: 10% coating was applied. Table 6 also shows the results of examining various properties of the coated silicon steel sheet thus obtained.
【0034】[0034]
【表6】 [Table 6]
【0035】同表より明らかなように、この発明で特定
した重クロム酸塩又は無水クロム酸であれば、いずれを
用いた場合であっても優れた磁気特性と表面性状が得ら
れている。As is clear from the table, excellent magnetic properties and surface properties are obtained regardless of which dichromate or chromic anhydride specified in the present invention is used.
【0036】[0036]
【発明の効果】かくしてこの発明によれば、磁気特性が
優れ、しかも表面性状が平滑で耐発粉性が良好な方向性
電磁鋼板を安定して得ることができる。As described above, according to the present invention, it is possible to stably obtain a grain-oriented electrical steel sheet having excellent magnetic properties, smooth surface properties, and good dusting resistance.
【図1】コロイド状シリカ中のNa2O濃度( SO4濃度は
0.5%)とコーティング塗布前後における鉄損の改善代
及び表面の平均粗さとの関係を示したグラフである。Fig. 1 Na 2 O concentration in colloidal silica (SO 4 concentration is
FIG. 5 is a graph showing the relationship between (0.5%), the amount of improvement in iron loss before and after coating, and the average roughness of the surface.
【図2】コロイド状シリカ中のNa2O濃度( SO4濃度は
0.3%)とコーティング塗布前後における鉄損の改善代
及び表面の平均粗さとの関係を示したグラフである。Fig. 2 Na 2 O concentration in colloidal silica (SO 4 concentration is
(0.3%) and the improvement margin of iron loss before and after coating and the average roughness of the surface.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 岩本 勝生 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 西池 氏裕 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Komatsubara 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Corporation (72) Inventor Katsuo Iwamoto 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters (72) Inventor Mr. Hiroshi Nishiike 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters
Claims (3)
表面に張力コーティングを施すに当たり、コーティング
剤として、成分組成が乾固固形物比率で、コロイド状シ
リカ:30〜60wt%、Al, Mg, Ca, Fe, Mn及びSrの第1り
ん酸塩のうちから選んだ一種又は二種以上:30〜60wt
%、並びに無水クロム酸及びMg, Ca, Srの重クロム酸塩
のうちから選んだ一種又は二種以上:5〜20wt%の組成
になり、かつコロイド状シリカ中の微量不純物であるNa
2Oのコロイド液中における濃度が0.8 wt%以下のものを
用いることを特徴とする磁気特性と表面性状の優れた方
向性電磁鋼板の製造方法。1. When applying a tension coating to the surface of a grain-oriented electrical steel sheet that has undergone final finish annealing, as a coating agent, the composition of components is a dry solid content ratio, colloidal silica: 30-60 wt%, Al, Mg, One or more selected from primary phosphates of Ca, Fe, Mn and Sr: 30-60wt
%, And one or more selected from chromic anhydride and dichromates of Mg, Ca, Sr: 5 to 20 wt% in composition, and Na which is a trace impurity in colloidal silica.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, characterized in that the concentration of 2 O in a colloidal solution is 0.8 wt% or less.
表面に張力コーティングを施すに当たり、コーティング
剤として、成分組成が乾固固形物比率で、コロイド状シ
リカ:30〜60wt%、Al, Mg, Ca, Fe, Mn及びSrの第1り
ん酸塩のうちから選んだ一種又は二種以上:30〜60wt
%、並びに無水クロム酸及びMg, Ca, Srの重クロム酸塩
のうちから選んだ一種又は二種以上:5〜20wt%の組成
になり、かつコロイド状シリカ中の微量不純物であるNa
2Oのコロイド液中における濃度が0.8 wt%以下、 SO4濃
度が 0.3wt%以下のものを用いることを特徴とする磁気
特性と表面性状に優れた方向性電磁鋼板の製造方法。2. When applying a tension coating to the surface of the grain-oriented electrical steel sheet that has been subjected to final finish annealing, as a coating agent, the component composition is a dry solid content ratio, colloidal silica: 30-60 wt%, Al, Mg, One or more selected from primary phosphates of Ca, Fe, Mn and Sr: 30-60wt
%, And one or more selected from chromic anhydride and dichromates of Mg, Ca, Sr: 5 to 20 wt% in composition, and Na which is a trace impurity in colloidal silica.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, characterized in that the concentration of 2 O in a colloidal solution is 0.8 wt% or less and the SO 4 concentration is 0.3 wt% or less.
かつ粒径が5〜50nmのものを用いることを特徴とする請
求項1又は2記載の方向性電磁鋼板の製造方法。3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the colloidal silica has a spherical shape and a particle size of 5 to 50 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5062039A JP2698526B2 (en) | 1992-06-30 | 1993-03-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-172504 | 1992-06-30 | ||
JP17250492 | 1992-06-30 | ||
JP5062039A JP2698526B2 (en) | 1992-06-30 | 1993-03-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0673555A true JPH0673555A (en) | 1994-03-15 |
JP2698526B2 JP2698526B2 (en) | 1998-01-19 |
Family
ID=26403107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5062039A Expired - Lifetime JP2698526B2 (en) | 1992-06-30 | 1993-03-22 | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2698526B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171683A (en) * | 1997-08-28 | 1999-03-16 | Nippon Steel Corp | Grain oriented silicon steel sheet having high-tension insulating coating film and its treatment |
US20100096114A1 (en) * | 2007-01-18 | 2010-04-22 | Mitsubishi Electric Corporation | Coating composition, and its production, heat exchanger and air conditioner |
US20180251899A1 (en) * | 2015-09-02 | 2018-09-06 | Jfe Steel Corporation | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
JP2019501278A (en) * | 2015-10-20 | 2019-01-17 | ポスコPosco | Composition for forming insulating coating on grain-oriented electrical steel sheet, method for forming insulating coating using the same, and grain-oriented electrical steel sheet on which the insulating coating is formed |
JP2019507242A (en) * | 2015-12-22 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL SHEET |
WO2024210186A1 (en) * | 2023-04-05 | 2024-10-10 | 日本製鉄株式会社 | Insulating film treatment liquid for grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet |
WO2024210187A1 (en) * | 2023-04-05 | 2024-10-10 | 日本製鉄株式会社 | Insulation coating treatment liquid for grain-oriented electromagnetic steel sheet, method for producing same, and method for producing grain-oriented electromagnetic steel sheet |
-
1993
- 1993-03-22 JP JP5062039A patent/JP2698526B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171683A (en) * | 1997-08-28 | 1999-03-16 | Nippon Steel Corp | Grain oriented silicon steel sheet having high-tension insulating coating film and its treatment |
US20100096114A1 (en) * | 2007-01-18 | 2010-04-22 | Mitsubishi Electric Corporation | Coating composition, and its production, heat exchanger and air conditioner |
US8801850B2 (en) * | 2007-01-18 | 2014-08-12 | Mitsubishi Electric Corporation | Coating composition, and its production, heat exchanger and air conditioner |
US20180251899A1 (en) * | 2015-09-02 | 2018-09-06 | Jfe Steel Corporation | Insulative coating processing liquid and method for manufacturing metal having insulative coating |
JP2019501278A (en) * | 2015-10-20 | 2019-01-17 | ポスコPosco | Composition for forming insulating coating on grain-oriented electrical steel sheet, method for forming insulating coating using the same, and grain-oriented electrical steel sheet on which the insulating coating is formed |
EP3366810B1 (en) * | 2015-10-20 | 2022-02-09 | Posco | Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein |
US11667985B2 (en) | 2015-10-20 | 2023-06-06 | Posco Co., Ltd | Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein |
JP2019507242A (en) * | 2015-12-22 | 2019-03-14 | ポスコPosco | INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL SHEET |
US11335475B2 (en) | 2015-12-22 | 2022-05-17 | Posco | Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet |
US11848122B2 (en) | 2015-12-22 | 2023-12-19 | Posco Co., Ltd | Insulation film composition for grain-oriented electrical steel sheet, method for forming insulation film for grain-oriented electrical steel sheet using same, and grain-oriented electrical steel sheet |
WO2024210186A1 (en) * | 2023-04-05 | 2024-10-10 | 日本製鉄株式会社 | Insulating film treatment liquid for grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet |
WO2024210187A1 (en) * | 2023-04-05 | 2024-10-10 | 日本製鉄株式会社 | Insulation coating treatment liquid for grain-oriented electromagnetic steel sheet, method for producing same, and method for producing grain-oriented electromagnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2698526B2 (en) | 1998-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406833B1 (en) | Production of grain-oriented silicon steel sheets having an insulating film formed thereon | |
JP2791812B2 (en) | Method for forming insulating film of grain-oriented electrical steel sheet with excellent core workability, heat resistance and tension imparting property, and grain-oriented electrical steel sheet | |
JP2698526B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties and surface properties | |
JPS6253589B2 (en) | ||
JP2654861B2 (en) | Method of forming insulation film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core | |
JPH1171683A (en) | Grain oriented silicon steel sheet having high-tension insulating coating film and its treatment | |
EP0163388B1 (en) | Insulative coating composition for electrical steels | |
JP2986240B2 (en) | Method of forming insulating coating on grain-oriented electrical steel sheet containing no P and Cr compounds | |
JP2709515B2 (en) | Method for forming insulating film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core | |
JPH101779A (en) | High tensile strength insulating coating film forming agent, its formation and grain oriented silicon steel sheet having high tensile strength insulating coating film | |
WO2021084951A1 (en) | Coating forming method and manufacturing method for electromagnetic steel plate equipped with insulating coating | |
JPH08333640A (en) | Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it | |
JPH04165022A (en) | Formation of insulating film for oriented electromagnetic steel plate excellent in iron core machinablity and anti-dusting performance | |
JPH08239771A (en) | Grain-oriented silicon steel sheet having high tensile strength insulating film and formation of the same insulating film | |
JP3651213B2 (en) | Method for producing grain-oriented electrical steel sheet having low strain sensitivity and excellent magnetic properties, and grain-oriented electrical steel sheet | |
JP4305040B2 (en) | Method for forming chromeless coating for grain-oriented electrical steel sheet | |
JP2603107B2 (en) | Method for forming insulating film on grain-oriented electrical steel sheet with excellent core workability and excellent magnetic properties | |
JP3071663B2 (en) | Method of forming insulating film on grain-oriented electrical steel sheet with excellent wettability | |
JP3300117B2 (en) | Method of forming insulating coating on grain-oriented silicon steel sheet | |
JPH08319514A (en) | Grain oriented silicon steel sheet having primary film extremely excellent in external appearance and its production | |
JP3103941B2 (en) | Low-temperature baking grain-oriented electrical steel sheet with excellent core workability | |
JPH02267276A (en) | Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic | |
JP3065909B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet | |
KR900008907B1 (en) | Insulate coating for excellant grain oriented electrical steel sheets to close adhesion and to endow with tension | |
EP2559775A1 (en) | Method for manufacturing a grain-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070919 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 15 |