JPH0673506A - Coil spring excellent in fatigue resistance and its production - Google Patents

Coil spring excellent in fatigue resistance and its production

Info

Publication number
JPH0673506A
JPH0673506A JP25220992A JP25220992A JPH0673506A JP H0673506 A JPH0673506 A JP H0673506A JP 25220992 A JP25220992 A JP 25220992A JP 25220992 A JP25220992 A JP 25220992A JP H0673506 A JPH0673506 A JP H0673506A
Authority
JP
Japan
Prior art keywords
spring
martensitic transformation
treatment
coil spring
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25220992A
Other languages
Japanese (ja)
Inventor
Norito Yamao
憲人 山尾
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25220992A priority Critical patent/JPH0673506A/en
Publication of JPH0673506A publication Critical patent/JPH0673506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a coil spring having superior fatigue resistance and high hardness by subjecting a steel wire having a specific composition consisting of C, Ni, Si, Mn, V, Mo, Cr, and Fe to spring forming at room temp. and then allowing martensitic transformation to occur. CONSTITUTION:This spring is a cold forming coil spring which has a composition consisting of, by weight, 0.5-1.5% C, 5-25% Ni, 1.0-3.0% Si, 0.5-3.0% Mn, further one or more kinds among <=1.0% V, <=3.0% Mo, and 3.0% Cr, and the balance Fe with inevitable impurities and satisfying inequality 77<=K<=273 (where K=823-361C-17Ni-11Si-39Mn-35V-5Mo-20Cr) and also has >=HMV620 hardness. This spring has excellent fatigue resistance. This spring can be obtained by subjecting a steel wire with this composition, where martensitic transformation is initiated at <=0 deg.C, to spring forming at room temp. and then allowing martensitic transformation to occur by means of cooling down to a temp. not higher than the martensitic transformation initiating temp. Moreover, if necessary, nitriding treatment is done before the cooling treatment, and after that, shot peening treatment is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車エンジンの弁ば
ねをはじめとする厳しい耐疲労特性を要求されるコイル
ばねとその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil spring, such as a valve spring of an automobile engine, which is required to have strict fatigue resistance, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】自動車エンジンの弁ばねをはじめとする
厳しい耐疲労性を要求されるコイルばねは、現在、線材
を線引きしてからオーステナイト化するまで加熱し、水
又は油中に焼入れすることによってマルテンサイト変態
を起こさせた後、加工性を確保するために、焼戻しを行
った鋼線、即ちオイルテンパー線を用い、これをばね成
形することによって製作している。そして、必要に応じ
て、窒化処理やショットピーニングといった処理も施し
ている。
2. Description of the Related Art Coil springs, such as valve springs for automobile engines, which are required to have severe fatigue resistance, are currently heated by drawing a wire rod until it becomes austenitic and then quenching it in water or oil. After inducing martensitic transformation, a tempered steel wire, that is, an oil tempered wire is used to secure workability, and this is spring-formed to manufacture. Then, if necessary, a treatment such as nitriding treatment or shot peening is also performed.

【0003】又、この他の耐疲労性コイルばねとして
は、例えば実開平1−78157 号公報に示されるように、
線材を線引き,ばね成形後、加熱,オーステナイト化を
行い、、マルテンサイト変態開始温度直上300℃ぐら
いに冷却保持してから、水又は湯の中に焼入れしてマル
テンサイト変態を起こさせ、さらに焼戻しを行う方法
(マルクエンチ法)がある。
As another fatigue resistant coil spring, for example, as shown in Japanese Utility Model Laid-Open No. 1-78157,
After drawing and spring forming the wire, heating and austenitizing, cooling and holding at about 300 ° C just above the martensite transformation start temperature, quenching in water or hot water to cause martensite transformation, and further tempering There is a method of performing (Marquench method).

【0004】さらに、ステンレス鋼に関して、金属(ア
グネ社)1984年3月号P74〜75に示されるように、ステ
ンレス線材をサブゼロ温度域で線引きすることによっ
て、加工誘起のマルテンサイト量を増加させることによ
って強度を高め、これをばね成形することで耐疲労性を
向上させた例がある。又、サブゼロ処理により強度が上
がる材料として、コイルばねでの適用例はないが、例え
ば特開平1−149942号公報に示されるような深冷硬化型
Fe−Ni合金がある。
Further, regarding stainless steel, as described in Metal (Agne Co.) March 1984, P74-75, the amount of martensite induced by working is increased by drawing a stainless wire in a subzero temperature range. There is an example in which the strength is increased by, and the fatigue resistance is improved by spring forming this. Further, as a material whose strength is increased by the sub-zero treatment, there is no application example of a coil spring, but there is, for example, a deep-chill hardening type Fe-Ni alloy as disclosed in JP-A-1-149942.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のオイル
テンパー線を用いたばねの場合、ばね成形時の加工性を
確保するため、オイルテンパー線作成時に焼戻し温度を
高く設定しなければならず、強度が低下する。又、ばね
成形後に歪み取りの目的でテンパーを行う必要があり、
このとき、マルテンサイトが分解してさらに強度が低下
する。
However, in the case of a spring using a conventional oil tempered wire, the tempering temperature must be set high at the time of making the oil tempered wire in order to secure workability during spring forming, and Is reduced. Also, it is necessary to perform tempering for the purpose of strain relief after spring molding,
At this time, martensite is decomposed and the strength is further reduced.

【0006】一方、マルクエンチ法による場合は、ばね
成形後、オーステナイト化のために800℃以上に加熱
する必要があり、この際材料強度が極端に低くなって成
形されたばねが変形してしまうといった問題点がある。
On the other hand, in the case of the marquenching method, after the spring is formed, it is necessary to heat it to 800 ° C. or higher for austenitizing, and at this time, the material strength becomes extremely low and the formed spring is deformed. There is a point.

【0007】又、サブゼロ温度で加工し、マルテンサイ
ト量を増やして強度を向上させたステンレス鋼線の場
合、強度が高いため、加工性に乏しく、ばね成形時に形
状が安定しないという問題点がある。
[0007] Further, in the case of a stainless steel wire processed at a sub-zero temperature and increased in the amount of martensite to improve the strength, there is a problem that the workability is poor because the strength is high and the shape is not stable during spring forming. .

【0008】更に、深冷処理硬化型Fe−Ni合金の場
合、サブゼロ温度での処理後における引張強度は175
0MPa程度であり、弁ばね用等の厳しい耐疲労性を要
求されるコイルばねに用いるには決して充分な強度とは
いえない。
Further, in the case of a deep-chill treatment hardening Fe-Ni alloy, the tensile strength after treatment at a subzero temperature is 175.
Since it is about 0 MPa, it cannot be said that the strength is enough to be used for a coil spring such as a valve spring which requires severe fatigue resistance.

【0009】[0009]

【課題を解決するための手段】本発明コイルばねは、上
記の課題を解決するためになされたものであって、その
特徴は、重量%で、C:0.5〜1.5%、Ni:5〜
25%、Si:1.0〜3.0%、Mn:0.5〜3.
0%を含み、さらに1.0%以下のV、3.0%以下の
Mo、3.0%以下のCrの1種又は2種以上を含有
し、残部がFe及び不可避的不純物からなり、下記の式
を満たすと共に、HMV620以上の硬度を有すること
にある。 77≦K≦273 但し、K=823−361×[C%]−17[Ni%]
−11×[Si%]−39×[Mn%]−35×[V
%]−5×[Mo%]−20×[Cr%]この場合、表
面の圧縮残留応力が400MPa以上であることが好ま
しい。
The coil spring of the present invention has been made to solve the above-mentioned problems, and its characteristic feature is that C: 0.5 to 1.5% by weight, Ni: : 5
25%, Si: 1.0 to 3.0%, Mn: 0.5 to 3.
0%, further contains 1.0% or less of V, 3.0% or less of Mo, 3.0% or less of one or more kinds of Cr, the balance Fe and unavoidable impurities, In addition to satisfying the following formula, it has a hardness of HMV 620 or higher. 77 ≦ K ≦ 273 where K = 823-361 × [C%] − 17 [Ni%]
-11x [Si%]-39x [Mn%]-35x [V
%] − 5 × [Mo%] − 20 × [Cr%] In this case, it is preferable that the compressive residual stress on the surface is 400 MPa or more.

【0010】そして、このようなコイルばねを製造する
方法は、マルテンサイト変態を起こす成分系で、マルテ
ンサイト変態開始温度(Ms点)を0℃以下に調整した
鋼線又は合金線を用い、強度が低く加工性に優れたオー
ステナイト相の状態で室温にてばね成形後、マルテンサ
イト変態開始温度以下に冷却し、高い強度を有するマル
テンサイト相に変態させることを特徴とする。ここで、
必要に応じて低温で焼戻しを行うことにより耐疲労性を
向上させるとができ、さらに、窒化処理やショットピー
ニング処理を併用することで、一層耐疲労性を向上させ
ることができる。
The method for producing such a coil spring is a component system that causes martensitic transformation and uses a steel wire or an alloy wire whose martensitic transformation start temperature (Ms point) is adjusted to 0 ° C. or less. Of the austenite phase, which is low in workability and excellent in workability, is spring-formed at room temperature, then cooled to a temperature below the martensite transformation start temperature to transform into a martensite phase having high strength. here,
Fatigue resistance can be improved by performing tempering at a low temperature as needed, and further, fatigue resistance can be further improved by using nitriding treatment and shot peening treatment together.

【0011】本発明において、マルテンサイト変態を起
こす成分系で、マルテンサイト変態開始温度(Ms点)
を0℃以下に調整した鋼線又は合金線を用いるのは、室
温において、強度が低く加工性に優れたオーステナイト
状態にてばね成形し、その後マルテンサイト変態開始温
度以下に冷却して強度が高く耐疲労性に優れたマルテン
サイト相を得るためである。
In the present invention, a martensitic transformation start temperature (Ms point) is a component system that causes martensitic transformation.
The steel wire or alloy wire whose temperature is adjusted to 0 ° C. or lower is formed by spring forming in an austenite state with low strength and excellent workability at room temperature, and then cooled to a temperature below the martensitic transformation start temperature to increase the strength. This is to obtain a martensite phase having excellent fatigue resistance.

【0012】次に、各構成元素量の限定理由を説明す
る。Cは強度の高いマルテンサイト相を得るために不可
欠の元素であり、その量が0.5%未満であれば十分な
強度を有するマルテンサイト相を得ることができず、逆
に1.5%超では溶体化処理のときにCが完全に溶け込
むことができないため靱性が劣化するからである。
Next, the reasons for limiting the amount of each constituent element will be described. C is an essential element for obtaining a high-strength martensite phase, and if its amount is less than 0.5%, a martensite phase having sufficient strength cannot be obtained, and conversely 1.5%. This is because if the content exceeds C, the toughness deteriorates because C cannot be completely melted during the solution treatment.

【0013】Niは室温でオーステナイト相を安定させ
るのに不可欠の元素であるが、多すぎるとマルテンサイ
ト相の強度が低くなるという問題があり、その最適値が
5〜25%である。
Ni is an essential element for stabilizing the austenite phase at room temperature, but if it is too much, the strength of the martensite phase will be low, and its optimum value is 5 to 25%.

【0014】Si,Mnは固溶強化型の元素としてマル
テンサイト相の強化に寄与する。しかしながら、その添
加量が多すぎると材料の靱性が低下していまうという問
題点があり、最適値はそれぞれ1〜3.0%,0.5〜
3.0%である。
Si and Mn contribute to strengthening the martensite phase as solid solution strengthening elements. However, if the added amount is too large, there is a problem that the toughness of the material decreases, and the optimum values are 1 to 3.0% and 0.5 to respectively.
It is 3.0%.

【0015】V,Cr,MoはそれぞれCと結合し、微
細な炭化物を形成する析出強化型の元素であり、材料強
度の向上に寄与する。しかし、添加量が多すぎると析出
する炭化物が粗大になり、材料の靱性が低下するという
問題点がある。最適値はそれぞれ1.0%以下,3.0
%以下,3.0%以下である。
V, Cr, and Mo are precipitation-strengthening elements that combine with C to form fine carbides and contribute to the improvement of material strength. However, if the amount of addition is too large, the precipitated carbides become coarse and the toughness of the material decreases. The optimum values are 1.0% or less and 3.0, respectively.
% Or less and 3.0% or less.

【0016】このような成分条件を満たすことによって
硬度がHMV620以上の高強度を得ることができる。
この条件に加え、室温にてオーステナイト相で安価な液
体窒素によるサブゼロ処理を行い、マルテンサイト変態
を起こすためには、マルテンサイト変態開始温度(Ms
点)が0〜−196℃の範囲になければならない。その
ためには、次の式を満たさなければならない。 77≦K≦273 但し、K=823−361×[C%]−17[Ni%]
−11×[Si%]−39×[Mn%]−35×[V
%]−5×[Mo%]−20×[Cr%]
By satisfying such a component condition, it is possible to obtain high strength having a hardness of HMV 620 or more.
In addition to this condition, in order to cause martensitic transformation by performing subzero treatment with inexpensive liquid nitrogen in an austenite phase at room temperature, the martensitic transformation start temperature (Ms
Point) must be in the range of 0 to -196 ° C. For that, the following formula must be satisfied. 77 ≦ K ≦ 273 where K = 823-361 × [C%] − 17 [Ni%]
-11x [Si%]-39x [Mn%]-35x [V
%]-5 x [Mo%]-20 x [Cr%]

【0017】又、窒化処理及び/又はショットピーニン
グ処理を行うことで表面に圧縮の残留応力を付与するこ
とができる。この圧縮残留応力の大きさが400MPa
以上であれば耐疲労性が一層向上する。
Further, by performing nitriding treatment and / or shot peening treatment, a compressive residual stress can be applied to the surface. The magnitude of this compressive residual stress is 400 MPa
If it is above, fatigue resistance will improve further.

【0018】特に、ばね成形後、窒化処理を行ってから
冷却してマルテンサイト変態を起こさせ、その後ショッ
トピーニング処理を行えば、マルテンサイト変態を起こ
させる前にショットピーニング処理を行う場合に比べて
圧縮在留応力の値が高くなり、効果的に耐疲労性の向上
を図ることができる。
Particularly, after the spring forming, nitriding treatment is performed, then cooling is performed to cause martensite transformation, and then shot peening treatment is performed, as compared with the case where shot peening treatment is performed before martensite transformation is performed. The value of compressive residual stress becomes high, and the fatigue resistance can be effectively improved.

【0019】[0019]

【実施例】以下、本発明実施例について説明する。 (試験例1)表1に示す成分及びK値の各サンプルを用
い、これを溶解,鍛造後、4.0φのワイヤーに加工
し、溶体化処理及び時効処理を行って供試鋼とした。そ
して、これら供試鋼にサブゼロ処理を施し、処理前後に
おける引張強度,絞り,硬度を調べてみた。サブゼロ処
理前の引張強度と絞り値及びサブゼロ処理後の引張強度
と硬度を表2に示す。
EXAMPLES Examples of the present invention will be described below. (Test Example 1) Each sample having the components and K values shown in Table 1 was melted, forged, processed into a wire of 4.0φ, and subjected to solution treatment and aging treatment to obtain a test steel. Then, these sample steels were subjected to sub-zero treatment, and the tensile strength, drawing, and hardness before and after the treatment were examined. Table 2 shows the tensile strength and drawing value before the sub-zero treatment and the tensile strength and hardness after the sub-zero treatment.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】以上の結果において、先ず比較例のB1で
は、Cの量が少なくNiの量が多くなっており、サブゼ
ロ処理後に十分な引張強度と硬度を得ることができなか
った。次に、同B2は、C量が多くNi量が少なくなっ
ており、サブゼロ処理前の絞り値が極めて低く、加工性
に問題のあることがわかる。又、B3はは極端にK値が
低いもので、サブゼロ処理を行ってもマルテンサイト変
態が起こらず引張強度及び硬度がほとんど変化しない。
更に、B4ではMoの量が、B5ではSiの量がそれぞ
れ多くなっておりこれらの鋼でもサブゼロ処理前の絞り
値が極端に低く、加工性に乏しいことがわかる。
From the above results, first, in B1 of the comparative example, the amount of C was small and the amount of Ni was large, and it was not possible to obtain sufficient tensile strength and hardness after the subzero treatment. Next, it is found that B2 has a large amount of C and a small amount of Ni, has a very low aperture value before the sub-zero treatment, and has a problem in workability. Further, B3 has an extremely low K value, and even if the subzero treatment is performed, martensitic transformation does not occur and tensile strength and hardness hardly change.
Further, the amount of Mo in B4 and the amount of Si in B5 are respectively large, and it can be seen that even in these steels, the drawing value before sub-zero treatment is extremely low and the workability is poor.

【0023】これに対して、実施例は全てサブゼロ処理
前での絞り値が30%以上有り、十分な加工性を有して
いることがわかる。又、サブゼロ処理後で、引張強度が
2000MPa以上、硬度620以上と十分な値を示し
ていることが確認された。
On the other hand, in all the examples, the drawing value before the sub-zero treatment is 30% or more, and it is understood that the examples have sufficient workability. It was also confirmed that after the sub-zero treatment, the tensile strength was 2000 MPa or more and the hardness was 620 or more, which were sufficient values.

【0024】(試験例2)次に、重量%で、C:0.8
1%,Ni:15.4%,Si:1.82%,Mn:
0.61%,V:0.12%,Mo:0.64%,残部
Feからなる金属組成の線材を4.0mmφに線引き
後、1150℃に加熱して水中に浸漬し急冷後、時効処
理することによって素線を得た。先ず、この素線のマル
テンサイト変態開始温度(Ms点)を電気抵抗測定(直
流四端子法)で求めた結果を図1に示す。同図のグラフ
より、Ms点は約−55℃であることがわかる。
(Test Example 2) Next, in% by weight, C: 0.8
1%, Ni: 15.4%, Si: 1.82%, Mn:
A wire having a metal composition of 0.61%, V: 0.12%, Mo: 0.64%, and the balance of Fe is drawn to 4.0 mmφ, heated to 1150 ° C., immersed in water, and rapidly cooled, followed by aging treatment. The wire was obtained by doing. First, the result of obtaining the martensite transformation start temperature (Ms point) of this wire by electric resistance measurement (DC four-terminal method) is shown in FIG. From the graph of the figure, it can be seen that the Ms point is about −55 ° C.

【0025】次に、この素線について、引張強さと硬度
(HMV)を測定した。条件は、素線そのままのも
の、素線を液体窒素中に浸漬し、サブゼロ冷却処理
(−196℃)を施したもの、素線に前記サブゼロ処
理を施し、さらに低温焼戻し(230℃×20分)を行
ったものの3つである。その結果を表3に示す。
Next, the tensile strength and hardness (HMV) of this strand were measured. The condition is that the wire is as it is, the wire is immersed in liquid nitrogen and subjected to subzero cooling treatment (−196 ° C.), the wire is subjected to the subzero treatment, and further low temperature tempering (230 ° C. × 20 minutes). ) Was done. The results are shown in Table 3.

【0026】[0026]

【表3】 [Table 3]

【0027】表3から明らかなように、サブゼロ処理を
行いマルテンサイト変態を起こさせることによって、引
張強さは700MPa以上、硬度は200以上向上し、
低温焼戻しを行った上記でも引張強さ,硬度は殆ど低
下していないことが確認された。
As is apparent from Table 3, the tensile strength is increased by 700 MPa or more and the hardness is increased by 200 or more by performing the martensitic transformation by performing the subzero treatment.
It was confirmed that the tensile strength and hardness did not decrease even after the above low temperature tempering.

【0028】次に、この素線及び比較例であるSi−C
r鋼オイルテンパー線(JIS SWOSC-V )を用いて、以下
に示す製造工程により表4に示す諸元ばねを作製した。 実施例1:素線→コイリング→テンパー(400℃×3
0分)→サブゼロ冷却(液体窒素中)→焼戻し(230
℃×20分) 比較例1:SWOSC-V →コイリング→テンパー(400℃
×30分) 実施例2−1:素線→コイリング→テンパー(400℃
×30分)→ショットピーニング→サブゼロ冷却(液体
窒素中)→焼戻し(230℃×20分) 実施例2−2:素線→コイリング→テンパー(400℃
×30分)→サブゼロ冷却(液体窒素中)→ショットピ
ーニング→焼戻し(230℃×20分) 比較例2:SWOSC-V →コイリング→テンパー(400℃
×30分)→ショットピーニング→歪み取り焼鈍(23
0℃×20分) 実施例3−1:素線→コイリング→窒化処理(450℃
×2時間)→ショットピーニング→サブゼロ冷却(液体
窒素中)→焼戻し(230℃×20分) 実施例3−2:素線→コイリング→窒化処理(450℃
×2時間)→サブゼロ冷却(液体窒素中)→ショットピ
ーニング→焼戻し(230℃×20分) 比較例3:SWOSC-V →コイリング→窒化処理(450℃
×2時間)→ショットピーニング→歪み取り焼鈍(23
0℃×20分)
Next, this strand and Si-C, which is a comparative example, are used.
Using the r-steel oil tempered wire (JIS SWOSC-V), the specifications springs shown in Table 4 were manufactured by the following manufacturing process. Example 1: Wire strand → coiling → temper (400 ° C x 3
0 minutes) → sub-zero cooling (in liquid nitrogen) → tempering (230
℃ × 20 minutes) Comparative Example 1: SWOSC-V → coiling → temper (400 ℃
X 30 minutes) Example 2-1: Element wire → coiling → temper (400 ° C)
X 30 minutes)-> shot peening-> sub-zero cooling (in liquid nitrogen)-> tempering (230 ° C x 20 minutes) Example 2-2: strands->coiling-> temper (400 ° C).
* 30 minutes)-> Sub-zero cooling (in liquid nitrogen)-> Shot peening-> Tempering (230 ° C * 20 minutes) Comparative example 2: SWOSC-V->Coiling-> Temper (400 ° C)
× 30 minutes) → Shot peening → Strain relief annealing (23
0 ° C. × 20 minutes) Example 3-1: Element wire → coiling → nitriding treatment (450 ° C.)
X 2 hours)-> shot peening-> sub-zero cooling (in liquid nitrogen)-> tempering (230 ° C x 20 minutes) Example 3-2: strands->coiling-> nitriding (450 ° C).
× 2 hours) → Sub-zero cooling (in liquid nitrogen) → Shot peening → Tempering (230 ° C × 20 minutes) Comparative Example 3: SWOSC-V → Coiling → Nitriding treatment (450 ° C)
× 2 hours) → Shot peening → Strain relief annealing (23
0 ℃ x 20 minutes)

【0029】[0029]

【表4】 [Table 4]

【0030】得られたコイルばねについて、残留圧縮応
力と疲労特性を調べてみた。疲労特性は、平均応力65
0MPaのとき、5×107 回でも破壊が起こらない場
合の振幅応力を測定した。その結果を表5に示す。
The residual compressive stress and fatigue characteristics of the obtained coil spring were examined. Fatigue characteristics have an average stress of 65
When the pressure was 0 MPa, the amplitude stress was measured when the fracture did not occur even after 5 × 10 7 times. The results are shown in Table 5.

【0031】[0031]

【表5】 [Table 5]

【0032】表5の結果から明らかなように、各実施例
は、窒化処理及び/又はショットピーニング処理を施し
たものはもちろん、これら処理を施さなかったいずれも
疲労限度は比較例に比べて80〜110MPa上回って
おり、極めて優れた疲労特性を示している。又、実施例
2−1と同2−2、或は実施例3−1と同3−2を比較
すると、窒化処理の有無にかかわらず、ショットピーニ
ング処理をサブゼロ冷却の後に行ったものは、同冷却の
前に行ったものに比べ残留圧縮応力の値が高くなってお
り、これに伴い疲労限度も10〜20MPa高くなって
いる。
As is clear from the results shown in Table 5, in each of the examples, the fatigue limit was 80 in comparison with that of the comparative example, not to mention that it was subjected to the nitriding treatment and / or the shot peening treatment. It exceeds 110 MPa, and shows extremely excellent fatigue characteristics. Also, comparing Example 2-1 and Example 2-2 or Example 3-1 and Example 3-2, those obtained by performing shot peening treatment after sub-zero cooling regardless of the presence or absence of nitriding treatment are as follows. The value of residual compressive stress is higher than that performed before the cooling, and the fatigue limit is also increased by 10 to 20 MPa accordingly.

【0033】[0033]

【発明の効果】以上説明したように、本発明コイルばね
は極めて耐疲労性に優れているため、自動車エンジン用
弁ばねをはじめとする高い信頼性を要求される用途に最
適である。特に、製造工程において窒化処理,ショット
ピーニング処理を併用することで一層疲労特性を向上さ
せることができる。
As described above, since the coil spring of the present invention has extremely excellent fatigue resistance, it is optimal for applications requiring high reliability such as valve springs for automobile engines. Particularly, the fatigue characteristics can be further improved by using the nitriding treatment and the shot peening treatment together in the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明コイルばねに用いた素線のマルテンサイ
ト変態開始温度を電気抵抗測定(直流四端子法)により
求めた結果を示すグラフである。
FIG. 1 is a graph showing the results of determining the martensite transformation start temperature of a wire used for a coil spring of the present invention by measuring electric resistance (DC four-terminal method).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.5〜1.5%、N
i:5〜25%、Si:1.0〜3.0%、Mn:0.
5〜3.0%を含み、さらに1.0%以下のV、3.0
%以下のMo、3.0%以下のCrの1種又は2種以上
を含有し、残部がFe及び不可避的不純物からなり、下
記の式を満たすと共に硬度がHMV620以上であるこ
とを特徴とする冷間成形コイルばね。 77≦K≦273 但し、K=823−361×[C%]−17[Ni%]
−11×[Si%]−39×[Mn%]−35×[V
%]−5×[Mo%]−20×[Cr%]
1. By weight%, C: 0.5-1.5%, N
i: 5 to 25%, Si: 1.0 to 3.0%, Mn: 0.
5 to 3.0% inclusive, 1.0% or less V, 3.0
% Or less of Mo and 3.0% or less of Cr, and the balance consists of Fe and unavoidable impurities. The following formula is satisfied and the hardness is HMV 620 or more. Cold forming coil spring. 77 ≦ K ≦ 273 where K = 823-361 × [C%] − 17 [Ni%]
-11x [Si%]-39x [Mn%]-35x [V
%]-5 x [Mo%]-20 x [Cr%]
【請求項2】 表面の在留圧縮応力が、400MPa以
上であることを特徴とする請求項1記載のコイルばね。
2. The coil spring according to claim 1, wherein the residual compressive stress on the surface is 400 MPa or more.
【請求項3】 マルテンサイト変態を起こす成分系で、
マルテンサイト変態開始温度を0℃以下に調整した鋼線
又は合金線を用い、室温でばね成形後、マルテンサイト
変態開始温度以下に冷却し、マルテンサイト変態を起こ
させることを特徴とするコイルばねの製造方法。
3. A component system that causes martensitic transformation,
Using a steel wire or alloy wire whose martensitic transformation starting temperature is adjusted to 0 ° C. or lower, after spring forming at room temperature, cooling to below the martensitic transformation starting temperature to cause martensitic transformation Production method.
【請求項4】 重量%で、C:0.5〜1.5%、N
i:5〜25%、Si:1.0〜3.0%、Mn:0.
5〜3.0%を含み、さらに1.0%以下のV、3.0
%以下のMo、3.0%以下のCrの1種又は2種以上
を含有し、残部がFe及び不可避的不純物からなり、下
記の式を満たす鋼線又は合金線を用い、室温でばね成形
後、マルテンサイト変態開始温度以下に冷却し、マルテ
ンサイト変態を起こさせることを特徴とするコイルばね
の製造方法。 77≦K≦273 但し、K=823−361×[C%]−17[Ni%]
−11×[Si%]−39×[Mn%]−35×[V
%]−5×[Mo%]−20×[Cr%]
4. C: 0.5-1.5%, N by weight%
i: 5 to 25%, Si: 1.0 to 3.0%, Mn: 0.
5 to 3.0% inclusive, 1.0% or less V, 3.0
% Or less of Mo, 3.0% or less of one or more kinds of Cr, the balance consisting of Fe and unavoidable impurities, using a steel wire or alloy wire satisfying the following formula, spring forming at room temperature Then, the method for producing a coil spring is characterized by cooling to a martensitic transformation start temperature or lower to cause martensitic transformation. 77 ≦ K ≦ 273 where K = 823-361 × [C%] − 17 [Ni%]
-11x [Si%]-39x [Mn%]-35x [V
%]-5 x [Mo%]-20 x [Cr%]
【請求項5】 ばね成形後のいずれかの工程にて、窒化
処理及び/又はショットピーニング処理を施すことを特
徴とする請求項4記載のコイルばねの製造方法。
5. The method for manufacturing a coil spring according to claim 4, wherein nitriding treatment and / or shot peening treatment is performed in any step after the spring molding.
【請求項6】 ばね成形後、窒化処理を行ってからマル
テンサイト変態開始温度以下に冷却し、マルテンサイト
変態を起こさせた後、ショットピーニング処理を施すこ
とを特徴とする請求項4記載のコイルばねの製造方法。
6. The coil according to claim 4, wherein after the spring is formed, a nitriding treatment is performed and then the martensite transformation start temperature is cooled to a temperature below the martensite transformation start temperature to cause a shot peening treatment. Spring manufacturing method.
JP25220992A 1992-08-26 1992-08-26 Coil spring excellent in fatigue resistance and its production Pending JPH0673506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25220992A JPH0673506A (en) 1992-08-26 1992-08-26 Coil spring excellent in fatigue resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25220992A JPH0673506A (en) 1992-08-26 1992-08-26 Coil spring excellent in fatigue resistance and its production

Publications (1)

Publication Number Publication Date
JPH0673506A true JPH0673506A (en) 1994-03-15

Family

ID=17234023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25220992A Pending JPH0673506A (en) 1992-08-26 1992-08-26 Coil spring excellent in fatigue resistance and its production

Country Status (1)

Country Link
JP (1) JPH0673506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249559A (en) * 2005-03-14 2006-09-21 Nisshin Steel Co Ltd Surface supporting plate made from stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249559A (en) * 2005-03-14 2006-09-21 Nisshin Steel Co Ltd Surface supporting plate made from stainless steel

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP2012077367A (en) Coil spring and method of manufacturing the same
US20040099354A1 (en) Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring
WO2002050328A1 (en) Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JPH11246941A (en) High strength valve spring and its manufacture
JPH10204592A (en) Stainless steel wire and its production
US4563222A (en) High strength bolt and method of producing same
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
US20160160306A1 (en) Coil spring, and method for manufacturing same
JPH08269615A (en) Hot rolled steel sheet for rapid heating and hardening excellent in stretch-flanging property, its use and production
JPH05148581A (en) Steel for high strength spring and production thereof
JP3940264B2 (en) Steel wire for hard pulling spring, wire drawing material for hard pulling spring, hard pulling spring and manufacturing method of hard pulling spring
JPH05331597A (en) Coil spring with high fatigue strength
JPH0673506A (en) Coil spring excellent in fatigue resistance and its production
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
JPH08311616A (en) Coil spring excellent in fatigue strength and its production
JPH09202921A (en) Production of wire for cold forging
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring
JPS644578B2 (en)
JPH11246943A (en) High strength valve spring and its manufacture
JP2790303B2 (en) Method of manufacturing high fatigue strength spring and steel wire used for the method
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability