JPH0672770A - Sheetlike aluminum nitride compact - Google Patents
Sheetlike aluminum nitride compactInfo
- Publication number
- JPH0672770A JPH0672770A JP4248968A JP24896892A JPH0672770A JP H0672770 A JPH0672770 A JP H0672770A JP 4248968 A JP4248968 A JP 4248968A JP 24896892 A JP24896892 A JP 24896892A JP H0672770 A JPH0672770 A JP H0672770A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- aluminum nitride
- particles
- raw material
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は窒化アルミニウム製シー
ト状成形体に係り、特に厚物を形成する場合において、
割れの発生が少なく高い歩留りで高品質の窒化アルミニ
ウム焼結体を製造することが可能な窒化アルミニウム製
シート状成形体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-shaped molded product made of aluminum nitride, and particularly when forming a thick product,
The present invention relates to an aluminum nitride sheet-shaped compact capable of producing a high-quality aluminum nitride sintered body with little cracking and high yield.
【0002】[0002]
【従来の技術】窒化物、炭化物、ほう化物、けい化物等
の原料粉末を所定形状に成形した後に焼結して調製した
セラミックスは、一般に硬度、絶縁性、耐摩耗性、耐熱
性、耐腐食性等の諸特性が従来の金属材と比較して優れ
ているため、近年広い分野において実用化されている。2. Description of the Related Art Ceramics prepared by molding raw material powders of nitrides, carbides, borides, suicides, etc., into predetermined shapes and then sintering, generally have hardness, insulation, wear resistance, heat resistance and corrosion resistance. Since various properties such as properties are superior to conventional metal materials, they have been put to practical use in a wide field in recent years.
【0003】例えば、半導体、集積回路の絶縁基板材料
としては、従来アルミナ(Al2 O3 )製の焼結体が、
一般に使用されていた。しかしながらアルミナ焼結体製
の基板では、熱伝導率が低く、また熱膨張率がシリコン
と比較して大きいため、大型のシリコンチップの基板に
対する接着性が悪く、シリコンチップが剥離し易い上
に、放熱特性も低いという欠点があった。For example, as an insulating substrate material for semiconductors and integrated circuits, conventionally, a sintered body made of alumina (Al 2 O 3 ) is used.
Was commonly used. However, in the substrate made of an alumina sintered body, the thermal conductivity is low and the thermal expansion coefficient is larger than that of silicon, so that the adhesion of the large silicon chip to the substrate is poor, and the silicon chip is easily peeled off. There was a drawback that the heat dissipation property was also low.
【0004】そこで熱伝導性および電気的絶縁性が格段
に高く、熱膨張率もシリコンに近似している窒化アルミ
ニウム(AlN)焼結体が電子回路基板用材料として有
望視されている。Therefore, an aluminum nitride (AlN) sintered body, which has remarkably high thermal conductivity and electrical insulation and has a thermal expansion coefficient similar to that of silicon, is regarded as a promising material for electronic circuit boards.
【0005】従来、基板等に用いられる平板状のAlN
焼結体は、微細なAlN原料粉末に焼結助剤、分散剤、
バインダー、塑性剤および溶剤を添加して均一なスラリ
ーを調製し、得られたスラリーをロール成形法やドクタ
ーブレード法を使用して所定のシート形状に成形してシ
ート状AlN製成形体とし、さらに得られたシート状A
lN製成形体を1600〜2000℃の温度範囲で加熱
焼結して製造される。Conventionally, flat plate-shaped AlN used for substrates and the like
The sintered body is composed of fine AlN raw material powder, a sintering aid, a dispersant,
A binder, a plasticizer, and a solvent are added to prepare a uniform slurry, and the obtained slurry is molded into a predetermined sheet shape by using a roll molding method or a doctor blade method to obtain a sheet-shaped AlN molded body, Obtained sheet A
It is manufactured by heat-sintering a 1N molded body in a temperature range of 1600 to 2000 ° C.
【0006】ところで、AlN粉末は焼結性が良好でな
いため、可及的に微細な原料粉末を使用するとともに、
酸化イットリウム(Y2 O3 )や酸化カルシウム(Ca
O)やアルカリ土類、金属酸化物等が焼結助剤として添
加される。その結果、常圧下において比較的に緻密で高
強度を有する窒化アルミニウム焼結体が得られる。By the way, since the AlN powder does not have a good sinterability, the finest possible raw material powder is used and
Yttrium oxide (Y 2 O 3 ) and calcium oxide (Ca
O), alkaline earths, metal oxides, etc. are added as sintering aids. As a result, an aluminum nitride sintered body that is relatively dense and has high strength under normal pressure can be obtained.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、焼結性
を高めるべく、微細で粉度分布が一定のAlN原料粉末
を使用すると、シート状成形体の密度を上げることが困
難になる場合があり、このような低密度の成形体では焼
結時における収縮率が大きくなり、高い寸法精度を有す
るAlN基板焼結体を得ることが困難であった。However, if a fine AlN raw material powder having a uniform fineness distribution is used in order to improve the sinterability, it may be difficult to increase the density of the sheet-shaped compact. With such a low-density compact, the shrinkage rate during sintering becomes large, and it is difficult to obtain an AlN substrate sintered compact having high dimensional accuracy.
【0008】一方で粒度分布が広い汎用の原料粉末を使
用してドクターブレード法等のシート成形法により、厚
さが0.6mm以上の厚物のシート状成形体を形成しよう
とすると、原料粒子の沈降滞積を生じ、シート成形体の
上面表層部には、粒径が微細な粒子が凝集して被膜が形
成される一方、下面表層部には粗大な粒子が凝集して該
部の成形密度が低下してしまう問題点がある。On the other hand, when an attempt is made to form a thick sheet-like compact having a thickness of 0.6 mm or more by a sheet forming method such as a doctor blade method using a general-purpose raw material powder having a wide particle size distribution, the raw material particles are Sedimentation and accumulation of fine particles are generated on the upper surface layer of the sheet molded product, and a coating film is formed on the upper surface layer part of the sheet molding. There is a problem that the density decreases.
【0009】特にシート状成形体の上面表層部に形成さ
れた被膜は、成形体全体の乾燥を阻害し、厚さ方向にお
ける乾燥割合の不均一をもたらし、また乾燥時の応力集
中によって表層部に亀裂を発生せしめて製品歩留りを大
幅に低下させるという問題点があった。この傾向はシー
ト状成形体の厚さが上昇するに従って顕著になってお
り、特に厚さが0.6mm以上のシート状成形体を高歩留
りで一体成形することは困難であった。In particular, the coating film formed on the surface layer of the upper surface of the sheet-shaped molded product impedes the drying of the entire molded product, causes a non-uniform drying rate in the thickness direction, and stress concentration during drying causes the surface layer to be concentrated on the surface layer. There is a problem that cracks are generated and the product yield is significantly reduced. This tendency becomes more remarkable as the thickness of the sheet-shaped compact increases, and it has been difficult to integrally form a sheet-shaped compact having a thickness of 0.6 mm or more with a high yield.
【0010】そのため従来の銅板直接接合基板(DBC
基板)等に使用される厚さ1mm程度のシート状成形体を
製造するためには、厚さ0.5mmのシート状成形体を2
枚重ねて積層する方法が採用されていた。しかしなが
ら、積層工程を伴う基板の製造プロセスにおいては、各
シート状成形体の積層剥離、異物巻込みや工数増大等の
問題が起こり易く、特に積層工程は自動化が極めて難し
い点があり、製品歩留りおよび製造効率の低下が顕著に
なる問題点があった。Therefore, the conventional copper plate direct bonding substrate (DBC)
In order to manufacture a sheet-shaped compact having a thickness of about 1 mm used for a substrate, etc., a sheet-shaped compact having a thickness of 0.5 mm is used.
A method of stacking one sheet on another was adopted. However, in a substrate manufacturing process involving a laminating step, problems such as delamination of each sheet-shaped molded body, inclusion of foreign matter, and increase in man-hours are likely to occur, and in particular, the laminating step is extremely difficult to automate, resulting in product yield and There is a problem that the reduction in manufacturing efficiency becomes remarkable.
【0011】本発明は上記の問題点を解決するためにな
されたものであり、粒度分布が広い汎用のAlN原料粉
末を使用し、肉厚であっても割れの発生が少なく一体成
形することが可能な窒化アルミニウム製シート状成形体
を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems, and uses a general-purpose AlN raw material powder having a wide particle size distribution, and it is possible to perform integral molding with little cracking even if it is thick. It is an object of the present invention to provide a sheet-shaped molded product made of aluminum nitride that can be used.
【0012】[0012]
【課題を解決するための手段】本発明者らは、粒度分布
が広いAlN原料粉末を使用して肉厚のシート状成形体
を形成する場合における亀裂の発生原因を鋭意実験によ
り究明し以下のような知見を初めて得た。すなわち、
1.5μm以下の粒径を有する微細な粒子が選択的にシ
ート状成形体の上部表層部に集まると被膜が形成され易
くなり、この被膜が乾燥を阻害するため、多数の亀裂を
生じ製品歩留りを低下せしめる。そして重量平均分子量
が100000以上の直鎖状有機高分子化合物を有機バ
イダとして原料粉末に添加し、微細な原料粉末を凝集せ
しめて所定平均粒子径を有する粗大な二次粒子を形成し
たときに、亀裂の発生が少ない厚物のシート状成形体が
得られた。Means for Solving the Problems The inventors of the present invention have made earnest experiments to find out the cause of cracks in the case of forming a thick sheet-like molded product by using AlN raw material powder having a wide particle size distribution. For the first time, I obtained such knowledge. That is,
When fine particles having a particle size of 1.5 μm or less are selectively gathered on the upper surface layer of the sheet-shaped molded product, a film is easily formed, and this film hinders drying, resulting in many cracks and product yield. Lower. Then, when a linear organic polymer compound having a weight average molecular weight of 100,000 or more is added to the raw material powder as an organic binder, and the fine raw material powder is aggregated to form coarse secondary particles having a predetermined average particle diameter, A thick sheet-like molded product with few cracks was obtained.
【0013】また粒度分布が広いAlN原料粉末を使用
した場合においても、所定割合以上の微細な粒子と、所
定割合以上の粗大な粒子とが混在したAlN原料粉末を
使用することにより、シート状成形体の密度が上昇する
とともに、焼結性が改善され、寸法精度が良好な板状焼
結体が得られるという知見を得た。Even when using an AlN raw material powder having a wide particle size distribution, by using the AlN raw material powder in which fine particles of a predetermined ratio or more and coarse particles of a predetermined ratio or more are mixed, sheet-shaped molding It has been found that the sinterability is improved as the body density is increased, and a plate-shaped sintered body with good dimensional accuracy can be obtained.
【0014】本発明は上記知見に基づいて完成されたも
のである。すなわち、本発明に係る窒化アルミニウム製
シート状成形体は、5μm未満の粒子径を有する粒子が
体積比で全体の70%以上98%未満であり、5μm以
上の粒子径を有する粒子が2%以上30%未満である窒
化アルミニウム原料粉末と、この窒化アルミニウム原料
粉末に対して1重量%以上の割合で添加された重量平均
分子量が100000以上の有機バインダとから成るこ
とを特徴とする。The present invention has been completed based on the above findings. That is, in the aluminum nitride sheet-shaped molded product according to the present invention, particles having a particle size of less than 5 μm account for 70% or more and less than 98% of the total volume ratio, and particles having a particle size of 5 μm or more account for 2% or more. It is characterized by comprising an aluminum nitride raw material powder of less than 30% and an organic binder having a weight average molecular weight of 100,000 or more added to the aluminum nitride raw material powder in a proportion of 1% by weight or more.
【0015】また1.5μm以下の粒子径を有する粒子
が体積比で窒化アルミニウム原料粉末全体の20%以上
を占めるように構成するとよい。It is preferable that particles having a particle diameter of 1.5 μm or less occupy 20% or more of the entire aluminum nitride raw material powder by volume ratio.
【0016】さらに乾燥後における密度が1.7〜2.
1g/cm3 の範囲に設定する。Further, the density after drying is 1.7 to 2.
Set within the range of 1 g / cm 3 .
【0017】また乾燥後における厚さが0.6mm以上の
厚物にも適用できる。Further, it can be applied to a thick product having a thickness after drying of 0.6 mm or more.
【0018】さらに有機バインダが直鎖状高分子化合物
を使用するとよい。Further, it is preferable to use a linear polymer compound as the organic binder.
【0019】また窒化アルミニウム原料粉末に有機バイ
ンダを添加して窒化アルミニウム原料粉末を凝集せしめ
て形成した二次粒子から成る窒化アルミニウム製シート
状成形体において、シート状成形体の一方の表面部の二
次粒子の平均粒子径が3μm以上であり、他方の表面部
の二次粒子の平均粒子径が一方の表面部の二次粒子の平
均粒子径の2倍以下であることを特徴とする。Further, in an aluminum nitride sheet-shaped compact formed from secondary particles formed by adding an organic binder to the aluminum nitride raw powder to agglomerate the aluminum nitride raw powder, one of the surface portions of the sheet-shaped compact is The average particle diameter of the secondary particles is 3 μm or more, and the average particle diameter of the secondary particles on the other surface portion is not more than twice the average particle diameter of the secondary particles on the one surface portion.
【0020】本発明に係る窒化アルミニウム製シート状
成形体は、微細粒子と粗大粒子とが適度に混在し広い粒
径分布を有するAlN原料粉末に所定量の高分子有機バ
インダを添加することによりAlN原料粉末を凝集せし
めて形成した二次粒子から成る。The aluminum nitride sheet-shaped molded product according to the present invention is obtained by adding a predetermined amount of a high molecular weight organic binder to an AlN raw material powder having a wide particle size distribution in which fine particles and coarse particles are appropriately mixed. It consists of secondary particles formed by agglomerating raw material powder.
【0021】微細粒子と粗大粒子との混在割合は成形体
の密度、焼結性および最終製品たる焼結体の寸法精度に
大きな影響を与え、5μm未満の粒子径を有する微細粒
子が体積比で70%未満である場合には粗大粒子の周囲
に凝集する微細粒子の割合が少なく、空隙部が大きく密
度および焼結性が低い成形体となる。一方5μm以上の
粒子径を有する粗大粒子が2%未満となる場合には、微
細な粒子が成形体の上表面部に移行し易くなり、表面部
に緻密な被膜が形成され割れが発生し易い。The mixing ratio of fine particles and coarse particles has a great influence on the density, sinterability of the molded body and the dimensional accuracy of the sintered product as the final product, and the volume ratio of fine particles having a particle diameter of less than 5 μm. If it is less than 70%, the proportion of fine particles agglomerated around the coarse particles is small, resulting in a molded article having large voids and low density and sinterability. On the other hand, if the proportion of coarse particles having a particle size of 5 μm or more is less than 2%, fine particles are likely to migrate to the upper surface portion of the molded product, and a dense coating film may be formed on the surface portion to easily cause cracking. .
【0022】一方5μm以下の粒子径を有する粒子のう
ち、特に粒子径が1.5μm以下の粒子径を有する微細
粒子は、粗大粒子間に形成された空隙を埋め成形体の焼
結性を高める働きをするため、原料粉末全体の20体積
%以上含有される。含有量が20体積%未満の場合は、
空隙の多い成形体となり、AlN焼結体の強度および伝
熱特性が低下する。On the other hand, among particles having a particle size of 5 μm or less, particularly fine particles having a particle size of 1.5 μm or less fill the voids formed between coarse particles and enhance the sinterability of the molded body. In order to function, 20% by volume or more of the entire raw material powder is contained. When the content is less than 20% by volume,
The molded body has many voids, and the strength and heat transfer characteristics of the AlN sintered body deteriorate.
【0023】有機バインダは微細な原料粒子を凝集させ
て粗大な二次粒子を形成し、シート状成形体表面に気孔
を生じ易くして被膜の発生および亀裂の発生を防止する
とともに、原料粉末同士を相互に結合して一定の成形体
形状を保持し、取扱性および形状精度を高くするため
に、AlN原料粉末に対して1重量%以上添加される。The organic binder agglomerates fine raw material particles to form coarse secondary particles, which easily causes pores on the surface of the sheet-shaped molded product to prevent the formation of a coating film and cracks, and the raw material powders 1% by weight or more with respect to the AlN raw material powder in order to maintain a certain shape of the molded body by bonding with each other and to improve the handleability and the shape accuracy.
【0024】有機バインダの添加量が1重量%未満の場
合には上記凝集作用や形状保持性が充分に発揮されない
一方、添加量が25重量%を超える場合には、成形後の
脱脂が不充分となったり、脱脂時間が長期化し、焼結性
およびAlN特有の熱伝導性が低下してしまう。したが
って有機バインダの添加量は1〜25重量%、好ましく
は5〜15重量%の範囲に設定される。When the amount of the organic binder added is less than 1% by weight, the aggregating action and shape retention are not sufficiently exhibited, while when the amount added exceeds 25% by weight, degreasing after molding is insufficient. Or the degreasing time becomes long, and the sinterability and the thermal conductivity peculiar to AlN decrease. Therefore, the addition amount of the organic binder is set in the range of 1 to 25% by weight, preferably 5 to 15% by weight.
【0025】有機バインダの具体例としてはポリアクリ
ル樹脂、ポリビニルブチラール(PVB)、ポリビニル
アルコール(PVA)、ポリビニルアセテート(PVA
c)などの有機高分子化合物がある。Specific examples of the organic binder include polyacrylic resin, polyvinyl butyral (PVB), polyvinyl alcohol (PVA), polyvinyl acetate (PVA).
There are organic polymer compounds such as c).
【0026】ここで有機バインダの重量平均分子量の大
小は、有機溶剤を溶媒としたスラリー系の分散性および
粒子同士の凝集性に大きな影響を及ぼす。すなわち分子
量が100000未満の場合には、粉末粒子相互の絡み
付きが少なく、いわゆる立体障害の形成が少ないため、
粒子の分散性が低下し易い。一方分子量が300000
を超えるような過大な有機高分子バインダを作用させた
場合には、分子端が他の粒子に絡み付き、いわゆる架橋
凝集を引き起こし、シート状成形体の密度が低下し易く
なり、また焼結性および寸法精度が低下する。したがっ
て有機バインダの重量平均分子量は、100000〜3
00000の範囲に設定されるが、より好ましくは15
0000〜250000の範囲である。特により少ない
添加量で粒子の凝集性を発現させるために直鎖状高分子
化合物を有機バインダとして使用することが望ましい。The magnitude of the weight average molecular weight of the organic binder has a great influence on the dispersibility of a slurry system using an organic solvent as a solvent and the cohesiveness of particles. That is, when the molecular weight is less than 100,000, the powder particles are less entangled with each other, and so-called steric hindrance is less formed.
The dispersibility of particles tends to decrease. On the other hand, the molecular weight is 300,000.
When an excessively large organic polymer binder is exceeded, the molecular ends are entangled with other particles, causing so-called cross-linking agglomeration, and the density of the sheet-shaped molded article tends to decrease, and the sinterability and Dimensional accuracy decreases. Therefore, the weight average molecular weight of the organic binder is 100,000 to 3
It is set in the range of 00000, more preferably 15
It is in the range of 0000 to 250,000. In particular, it is desirable to use a linear polymer compound as an organic binder in order to express the cohesiveness of particles with a smaller addition amount.
【0027】上記窒化アルミニウム製シート状成形体
は、例えば調合した原料粉末に溶媒、分散剤、有機バイ
ンダ、可塑剤を適量添加してボールミル等で混合して均
一なスラリーを調製し、得られたスラリーをロール成形
法やドクターブレード法を使用して所定厚さに成形後、
得られた成形体を赤外線加熱や空気乾燥によって乾燥処
理して製造される。The above-mentioned aluminum nitride sheet-like molded product was obtained by adding a proper amount of a solvent, a dispersant, an organic binder and a plasticizer to the prepared raw material powder and mixing them by a ball mill to prepare a uniform slurry. After molding the slurry to a predetermined thickness using the roll molding method or doctor blade method,
It is manufactured by subjecting the obtained molded body to a drying treatment by infrared heating or air drying.
【0028】上記製造工程において、特に重量平均分子
量が100000以上の直鎖状有機高分子化合物をバイ
ンダとして添加することにより、微細なAlN粒子が凝
集して数μm〜数十μmの平均粒子径を有する粗大な二
次粒子が形成され、この粗大な二次粒子がシート状成形
体の厚さ方向の表面部、中央部、裏面部にそれぞれ堆積
される。このとき、シート状成形体の一方の表面部(上
面側)の二次粒子の平均粒子径は3μm以上とするとと
もに、他法の表面部(下面側)の二次粒子の平均粒子径
は上記上面側の平均粒子径の2倍以下に設定される。In the above manufacturing process, particularly by adding a linear organic polymer compound having a weight average molecular weight of 100,000 or more as a binder, fine AlN particles are aggregated to have an average particle diameter of several μm to several tens of μm. Coarse secondary particles are formed, and these coarse secondary particles are deposited on the front surface portion, the central portion, and the rear surface portion in the thickness direction of the sheet-shaped molded body, respectively. At this time, the average particle diameter of the secondary particles on one surface portion (upper surface side) of the sheet-shaped molded product is 3 μm or more, and the average particle diameter of the secondary particles on the surface portion (lower surface side) of the other method is It is set to not more than twice the average particle diameter on the upper surface side.
【0029】このように上記のような粗大な二次粒子に
よってシート状成形体の表面部、中央部、裏面部が形成
されるため、シート状成形体の表面部に気孔が生じ易
く、また緻密な被膜の発生が防止できる。したがって成
形体に亀裂が発生することが少なく、高品質の焼結体を
高い歩留りで生産することができる。As described above, since the surface portion, the central portion and the back surface portion of the sheet-shaped molded product are formed by the coarse secondary particles as described above, pores are easily generated on the surface of the sheet-shaped molded product and the sheet-shaped molded product is dense. It is possible to prevent the formation of various coatings. Therefore, cracks are less likely to occur in the compact, and high-quality sintered compacts can be produced with high yield.
【0030】なおシート状成形体全体を粗大な二次粒子
で形成しているため、乾燥後における成形体密度が1.
7〜2.1g/cm3 程度となり、従来のシート状成形体
の密度(2.0〜2.3g/cm3 )と比較してやや低下
する傾向がある。しかしながら上記のような低密度の成
形体であっても、従来より10℃程度高めた焼結温度に
より焼成することにより、従来と同一の焼結密度を確保
することができる。Since the entire sheet-shaped compact is formed of coarse secondary particles, the density of the compact after drying is 1.
It is about 7 to 2.1 g / cm 3, which tends to be slightly lower than the density (2.0 to 2.3 g / cm 3 ) of the conventional sheet-shaped molded product. However, even with the above-described low-density molded body, it is possible to secure the same sintered density as that of the conventional one by firing at a sintering temperature which is higher by about 10 ° C. than the conventional one.
【0031】上記のような粗大な二次粒子でシート状成
形体全体を構成しているため、厚さが0.6mm以上であ
る厚肉の成形体を一体形成した場合においても、特に表
面部に緻密な被膜が形成されず、割れの発生が少なく、
板状焼結体の製品歩留りを大幅に高めることができる。Since the entire sheet-shaped compact is made up of the coarse secondary particles as described above, even when a thick compact having a thickness of 0.6 mm or more is integrally formed, the surface portion is A dense film is not formed on the
The product yield of the plate-shaped sintered body can be significantly increased.
【0032】[0032]
【作用】上記構成に係る窒化アルミニウム製シート状成
形体によれば、重量平均分子量が10万以上の有機バイ
ンダを添加して微細なAlN原料粒子を凝集させた粗大
な二次粒子で成形体全体を構成しているため、シート状
成形体表面に気孔が生じ易く、従来のような緻密な被膜
が形成されることが少ない。したがって肉厚の成形体で
あっても割れの発生が少ないシート状成形体が得られ、
高品質の板状AlN焼結体を高い歩留りで製造することが
できる。According to the aluminum nitride sheet-shaped molded product having the above-mentioned structure, the entire molded product is composed of coarse secondary particles obtained by adding an organic binder having a weight average molecular weight of 100,000 or more to agglomerate fine AlN raw material particles. As a result, the pores are likely to be formed on the surface of the sheet-shaped molded product, and a dense coating as in the conventional case is rarely formed. Therefore, even if it is a thick molded product, a sheet-shaped molded product with less cracking can be obtained,
High-quality plate-shaped AlN sintered bodies can be manufactured with high yield.
【0033】[0033]
【実施例】次に本発明を以下の実施例に基づいて具体的
に説明する。EXAMPLES The present invention will now be specifically described based on the following examples.
【0034】実施例1〜5 遠心沈降式自動粒度分布測定装置(CAPA−500、
堀場製作所製)を使用して表1左欄に示すように5μm
未満の粒径を有するAlN粉末70〜90vol%と、5μ
m以上の粒径を有するAlN粉末10〜30vol%とから
成るAlN原料粉末に対して溶媒としてのトリエンとエ
タノールを7:3(体積比)の割合で添加し、また界面
活性剤(PE−220A・東邦化学(株)製)を0.5
wt%添加し、Al2 O3 ボールを粉砕メディアとする
ポットローラで60rpmにて3時間回転解砕した。 Examples 1 to 5 Centrifugal sedimentation type automatic particle size distribution analyzer (CAPA-500,
5 μm as shown in the left column of Table 1 using HORIBA, Ltd.)
AlN powder having a particle size of less than 70-90 vol% and 5μ
Triene and ethanol as a solvent were added at a ratio of 7: 3 (volume ratio) to an AlN raw powder consisting of 10 to 30 vol% of AlN powder having a particle size of m or more, and a surfactant (PE-220A).・ 0.5 from Toho Chemical Co., Ltd.
wt% was added, and the mixture was rotationally crushed for 3 hours at 60 rpm with a pot roller using Al 2 O 3 balls as a crushing medium.
【0035】次に各原料混合体に、表1中欄に示すよう
に、有機バインダとしての重量平均分子量18〜21万
のPVBまたはPVAを10〜15重量%の割合で添加
するとともに、可塑剤としてのジブチルフタレート(D
BP)を6重量%の割合で添加した。そして各原料混合
体を上記ポットローラ(回転数:60rpm)で24時
間回転混合し有機バインダを充分に混合溶解せしめて5
種類のスラリー(泥漿)を調製した。各スラリーは真空
脱泡装置にて脱泡し、粘度30Pa・sに調整した。Next, as shown in the middle column of Table 1, PVB or PVA having a weight average molecular weight of 180 to 210,000 as an organic binder is added to each raw material mixture at a ratio of 10 to 15% by weight, and a plasticizer. Dibutyl phthalate (D
BP) was added in a proportion of 6% by weight. Then, each raw material mixture is rotatively mixed for 24 hours by the pot roller (rotation speed: 60 rpm) to sufficiently mix and dissolve the organic binder, and
Different types of slurries were prepared. Each slurry was defoamed with a vacuum defoaming device and adjusted to have a viscosity of 30 Pa · s.
【0036】次に各スラリーを使用し、成形体の乾燥後
における厚みが1mmになるようにドリターブレードのギ
ャップを設定し、搬送ベルトとドクターブレードとの隙
間から脱泡された各スラリーを押し出し、乾燥処理して
実施例1〜5に係る厚さ1mmのシート状AlN製成形体
を製造した。Next, using each slurry, the gap of the dritter blade was set so that the thickness of the molded body after drying was 1 mm, and the defoamed slurry was extruded from the gap between the conveyor belt and the doctor blade. Then, it was dried to produce a sheet-shaped AlN molded body having a thickness of 1 mm according to Examples 1 to 5.
【0037】なお乾燥処理室の低温部の温度は70℃、
高温部の温度は120℃とし、成形スピード(ベルト速
度)は6cm/min とした。また得られたシート状AlN
製成形体を面積7.14cm2 に打ち抜き、各打抜試料の
密度を測定するとともに、30cm毎に切断し、幅方向の
中心部、左端部および右端部の3点についてマイクロメ
ータで厚さを測定し、さらに各試料ロット毎に割れ等の
欠陥発生率を求めた。さらに各厚物成形体の表面および
断面について走査型電子顕微鏡(SEM)で組織状態
(微構造)を観察するとともに、各試料の上面部および
下面部について二次粒子の平均粒子径を測定した。The temperature of the low temperature part of the drying chamber is 70 ° C.
The temperature of the high temperature part was 120 ° C., and the molding speed (belt speed) was 6 cm / min. Also obtained sheet-like AlN
The molded body was punched into an area of 7.14 cm 2 , the density of each punched sample was measured, and the cut samples were cut at intervals of 30 cm, and the thickness was measured with a micrometer at three points in the widthwise center, left end and right end. The measurement was performed, and the rate of occurrence of defects such as cracks was calculated for each sample lot. Further, the texture and microstructure of the surface and cross section of each thick molded article were observed with a scanning electron microscope (SEM), and the average particle diameter of secondary particles was measured for the upper surface and lower surface of each sample.
【0038】比較例1〜3 一方、比較例1として重量平均分子量が5万のポリビニ
ルブチラールを使用した以外は実施例と同様な処理を行
なって同一寸法のシート状AlN製成形体を多数調製
し、成形体の各特性を同様に測定した。 Comparative Examples 1 to 3 On the other hand, as Comparative Example 1, except that polyvinyl butyral having a weight average molecular weight of 50,000 was used, the same treatments as those in Examples were carried out to prepare a large number of sheet-shaped AlN compacts having the same size. Each property of the molded body was measured in the same manner.
【0039】また比較例2として、乾燥後の成形体の厚
さが0.5mmとなるように薄く設定した以外は比較例1
と同一原料を使用して原料混合、ドクターブレード成形
して薄肉のシート状AlN製成形体を多数調製し、各特
性を同様に測定した。As Comparative Example 2, Comparative Example 1 was used except that the thickness of the dried molded body was set to be 0.5 mm.
Using the same raw material as above, raw materials were mixed and doctor blade molding was carried out to prepare a large number of thin sheet-shaped AlN molded bodies, and the respective characteristics were measured in the same manner.
【0040】さらに比較例3として5μm未満の粒径を
有する微細粒子の割合を65vol%、5μm以上の粗大粒
子の割合を35vol%に設定した以外は比較例1と同一条
件で処理して同一寸法のシート状AlN製成形体を多数
調製し、同様に各特性を測定した。Further, as Comparative Example 3, the treatment was performed under the same conditions as Comparative Example 1 except that the proportion of fine particles having a particle size of less than 5 μm was set to 65 vol% and the proportion of coarse particles of 5 μm or more was set to 35 vol%. A large number of sheet-shaped molded articles made of AlN were prepared, and each property was measured in the same manner.
【0041】実施例および比較例における測定結果を下
記表1にまとめて示す。The measurement results in Examples and Comparative Examples are summarized in Table 1 below.
【0042】[0042]
【表1】 [Table 1]
【0043】表1に示す結果から明らかなように、微細
なAlN粒子と粗大なAlN粒子とが混合したAlN原
料粉末に重量平均分子量が10万以上の有機バインダを
添加して原料粒子を凝集せしめた実施例1〜5に係るシ
ート状成形体においては、従来例と比較してやや成形体
密度が低いものの、成形中に亀裂などの欠陥の発生が少
なく、厚肉のシート状成形体を高い歩留りで一体成形す
ることができた。またキャリアフィルムからの剥離性に
ついてもいずれも良好であった。As is clear from the results shown in Table 1, an organic binder having a weight average molecular weight of 100,000 or more was added to the AlN raw material powder in which fine AlN particles and coarse AlN particles were mixed to aggregate the raw material particles. In the sheet-shaped molded products according to Examples 1 to 5, although the molded product density is slightly lower than that of the conventional example, the occurrence of defects such as cracks during molding is small, and a thick sheet-shaped molded product has a high yield. Could be integrally molded with. Moreover, the peelability from the carrier film was good.
【0044】一方、比較例1に示すように低分子量の有
機バインダを使用した従来のシート状成形体の場合に
は、原料粒子の凝集が少なく成形体の上面部と下面部に
おける粒子径の差が2倍以上に及び、特に上面部には緻
密な被膜が形成され乾燥操作が阻害されるため、割れな
どの欠陥発生率が高くなった。On the other hand, as shown in Comparative Example 1, in the case of the conventional sheet-like molded article using the low molecular weight organic binder, the raw material particles are less likely to aggregate and the difference in particle diameter between the upper surface portion and the lower surface portion of the molded article is small. 2 times or more, and in particular, a dense coating film is formed on the upper surface portion and the drying operation is hindered, so that the occurrence rate of defects such as cracks becomes high.
【0045】そのためシート状成形体の厚さを0.5mm
以下に低減すると、比較例2の結果からも明らかなよう
に、亀裂の発生は急減した。したがって従来法によって
健全なシート状成形体を高歩留りで製造する場合の厚さ
の限界値は0.5mmであることが確認できた。Therefore, the thickness of the sheet-shaped molded body is 0.5 mm.
When it was reduced to the following, as apparent from the results of Comparative Example 2, the occurrence of cracks sharply decreased. Therefore, it has been confirmed that the limit value of the thickness is 0.5 mm when a sound sheet-like molded product is produced with a high yield by the conventional method.
【0046】また比較例3のようにAlN原料粉末中に
粗大粒子を比較的に多く含有させたシート状成形体にお
いては、成形体密度が若干低くなるとともに表面部(上
面側)に微細粒子が移行して被膜を作り易く、割れの発
生が比較的に多かった。In the case of a sheet-shaped compact having a relatively large amount of coarse particles contained in the AlN raw material powder as in Comparative Example 3, the compact density is slightly lowered and fine particles are formed on the surface (upper surface side). It was easy to migrate and form a film, and cracks were generated relatively frequently.
【0047】次に実施例1において使用したAlN原料
粉末の粒度分布と、そのAlN原料粉末に有機バインダ
を添加して調製したスラリー中の二次粒子の粒度分布と
を図1に示す。図1に示す結果から明らかなように原料
粉末段階では全て7.5μm以下の粒径を有するAlN
粒子であったものが、高分子有機バインダを添加する
と、微細粒子が相互に凝集して20〜15μm程度の粗
大な二次凝集粒子の割合が増加し粒度分布が大きく拡が
り5μm未満の粒子が減少していることがわかる。Next, the particle size distribution of the AlN raw material powder used in Example 1 and the particle size distribution of the secondary particles in the slurry prepared by adding the organic binder to the AlN raw material powder are shown in FIG. As is clear from the results shown in FIG. 1, AlN having a grain size of 7.5 μm or less is all used in the raw material powder stage.
When the high molecular weight organic binder was added, the fine particles aggregated with each other, but the ratio of coarse secondary aggregated particles of about 20 to 15 μm increased, and the particle size distribution widened and particles less than 5 μm decreased. You can see that
【0048】また実施例1に係るシート状AlN製成形
体の表面および表層部断面の走査型電子顕微鏡(SE
M)写真をそれぞれ図2および図3に示す。すなわち実
施例1の成形体では、図2からも明らかなように成形体
表面には比較的に大口径の気孔(暗黒部)が存在し、微
細粒子による緻密化は進行していないことが確認でき
た。また図3からも明らかなように成形体の表層部も凝
集が進み緻密化は回避されている。その凝集の進行によ
り乾燥時の応力集中も緩和され、成形中に亀裂の発生が
なくなるものと考えられる。Further, the scanning electron microscope (SE) of the surface and the surface layer section of the sheet-shaped AlN molded body according to Example 1 was used.
M) Photos are shown in FIGS. 2 and 3, respectively. That is, in the molded body of Example 1, as is clear from FIG. 2, it was confirmed that the surface of the molded body had relatively large pores (dark areas), and densification by fine particles did not proceed. did it. Further, as is clear from FIG. 3, the surface layer portion of the molded body also agglomerates and densification is avoided. It is considered that the stress concentration during drying is alleviated due to the progress of the agglomeration, and the occurrence of cracks during molding is eliminated.
【0049】一方比較例1に係るシート状成形体の表面
および表層部(上面側)断面の走査型電子顕微鏡写真を
それぞれ図4および図5に示す。すなわち比較例1の成
形体では図4からも明らかなように表面が緻密化してお
り、また図5からも明らかなように表層部断面が緻密に
形成されており、いずれも原料粉末である一次粒子に近
い状態で成形体全体が構成されている様子が明らかであ
った。On the other hand, scanning electron micrographs of the cross section of the surface and the surface layer portion (upper surface side) of the sheet-shaped molded product according to Comparative Example 1 are shown in FIGS. 4 and 5, respectively. That is, in the molded body of Comparative Example 1, the surface is densified as is clear from FIG. 4, and the surface layer cross section is densely formed as is clear from FIG. 5, both of which are the primary powders. It was clear that the entire compact was formed in a state close to the particles.
【0050】また上記実施例および比較例に係るシート
状AlN製成形体をそれぞれ空気中で脱脂した後に、温
度1750〜1770℃の範囲で2時間焼成し、得られ
た焼結体の密度をアルキメデス法にて測定した。実施例
および比較例ともに脱脂性について特記すべき問題はな
く、空気脱脂による脱脂体の損傷はなかった。The sheet-shaped AlN compacts according to the above-mentioned Examples and Comparative Examples were degreased in air and then calcined at a temperature in the range of 1750 to 1770 ° C. for 2 hours, and the density of the resulting sintered body was measured by Archimedes. It was measured by the method. There was no particular problem regarding degreasing property in Examples and Comparative Examples, and the degreased body was not damaged by air degreasing.
【0051】また実施例の成形体の場合は従来の成形体
と比較して成形体密度が若干低下するが、従来の焼結温
度1750℃より10℃高めた温度によって焼結するこ
とにより、各成形体試料の焼結性は良好となり、焼結体
密度も3.31〜3.33g/cm3 と、従来と同程度の
特性が得られた。In the case of the molded body of the embodiment, the density of the molded body is slightly lower than that of the conventional molded body, but by sintering at a temperature 10 ° C. higher than the conventional sintering temperature of 1750 ° C. The sinterability of the molded body sample was good, and the sintered body density was 3.31 to 3.33 g / cm 3, which was about the same level as the conventional one.
【0052】[0052]
【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム製シート状成形体は、重量平均分子量が10万以
上の有機バインダを添加して微細なAlN原料粒子を凝
集させた粗大な二次粒子で成形体全体を構成しているた
め、シート状成形体表面に気孔が生じ易く、従来のよう
な緻密な被膜が形成されることが少ない。したがって肉
厚の成形体であっても割れの発生が少ないシート状成形
体が得られ、高品質の板状AlN焼結体を高い歩留りで
製造することができる。As described above, the aluminum nitride sheet-shaped molded product according to the present invention is a coarse secondary particle obtained by aggregating fine AlN raw material particles by adding an organic binder having a weight average molecular weight of 100,000 or more. Since the entire molded body is constituted by, pores are easily generated on the surface of the sheet-shaped molded body, and a dense coating as in the conventional case is rarely formed. Therefore, a sheet-shaped molded body with less cracking can be obtained even with a thick molded body, and a high-quality plate-shaped AlN sintered body can be manufactured with a high yield.
【図1】実施例1において使用したAlN原料粉末の累
積粒度分布およびスラリー中の二次粒子の累積粒度分布
を示すグラフ。FIG. 1 is a graph showing a cumulative particle size distribution of an AlN raw material powder used in Example 1 and a cumulative particle size distribution of secondary particles in a slurry.
【図2】実施例1に係るシート状成形体の表面の粒子構
造を示す電子顕微鏡写真。2 is an electron micrograph showing the particle structure on the surface of the sheet-shaped molded product according to Example 1. FIG.
【図3】実施例1に係るシート状成形体の表層部断面の
粒子構造を示す電子顕微鏡写真。FIG. 3 is an electron micrograph showing the particle structure of the surface layer section of the sheet-shaped molded product according to Example 1.
【図4】比較例2に係るシート状成形体の表面の粒子構
造を示す電子顕微鏡写真。FIG. 4 is an electron micrograph showing a particle structure on the surface of a sheet-shaped molded body according to Comparative Example 2.
【図5】比較例2に係るシート状成形体の表層部断面の
粒子構造を示す電子顕微鏡写真。5 is an electron micrograph showing a particle structure of a cross section of a surface layer portion of a sheet-shaped molded product according to Comparative Example 2. FIG.
Claims (6)
比で全体の70%以上であり、5μm以上の粒子径を有
する粒子が2%以上である窒化アルミニウム原料粉末
と、この窒化アルミニウム原料粉末に対して1重量%以
上の割合で添加された重量平均分子量が100000以
上の有機バインダとから成ることを特徴とする窒化アル
ミニウム製シート状成形体。1. An aluminum nitride raw material powder having 70% or more by volume of particles having a particle diameter of less than 5 μm and 2% or more of particles having a particle diameter of 5 μm or more, and the aluminum nitride raw material powder. A sheet-shaped molded product made of aluminum nitride, which is composed of an organic binder having a weight average molecular weight of 100,000 or more added in a proportion of 1% by weight or more.
体積比で窒化アルミニウム原料粉末全体の20%以上を
占めることを特徴とする請求項1記載の窒化アルミニウ
ム製シート状成形体。2. A sheet-shaped molded article made of aluminum nitride according to claim 1, wherein particles having a particle diameter of 1.5 μm or less account for 20% or more of the entire aluminum nitride raw material powder in volume ratio.
/cm3 の範囲であることを特徴とする請求項1記載の窒
化アルミニウム製シート状成形体。3. The density after drying is 1.7 to 2.1 g.
The sheet-shaped molded product made of aluminum nitride according to claim 1, wherein the molded product is in the range of / cm 3 .
ることを特徴とする請求項1記載の窒化アルミニウム製
シート状成形体。4. The aluminum nitride sheet-shaped molded product according to claim 1, which has a thickness after drying of 0.6 mm or more.
ることを特徴とする請求項1記載の窒化アルミニウム製
シート状成形体。5. The aluminum nitride sheet-shaped molded product according to claim 1, wherein the organic binder is a linear polymer compound.
ダを添加して窒化アルミニウム原料粉末を凝集せしめて
形成した二次粒子から成る窒化アルミニウム製シート状
成形体において、シート状成形体の一方の表面部の二次
粒子の平均粒子径が3μm以上であり、他方の表面部の
二次粒子の平均粒子径が一方の表面部の二次粒子の平均
粒子径の2倍以下であることを特徴とする窒化アルミニ
ウム製シート状成形体。6. A sheet-shaped molded article made of aluminum nitride, which comprises secondary particles formed by adding an organic binder to the aluminum nitride raw material powder to agglomerate the aluminum nitride raw material powder. Nitriding, characterized in that the average particle size of the secondary particles is 3 μm or more, and the average particle size of the secondary particles on the other surface part is not more than twice the average particle size of the secondary particles on the one surface part. Sheet-shaped molded product made of aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248968A JPH0672770A (en) | 1992-08-26 | 1992-08-26 | Sheetlike aluminum nitride compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248968A JPH0672770A (en) | 1992-08-26 | 1992-08-26 | Sheetlike aluminum nitride compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0672770A true JPH0672770A (en) | 1994-03-15 |
Family
ID=17186071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4248968A Pending JPH0672770A (en) | 1992-08-26 | 1992-08-26 | Sheetlike aluminum nitride compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672770A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002852A1 (en) * | 2014-07-01 | 2016-01-07 | 京セラ株式会社 | Ceramic structure, flow passage body, and electrode internal plate |
-
1992
- 1992-08-26 JP JP4248968A patent/JPH0672770A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002852A1 (en) * | 2014-07-01 | 2016-01-07 | 京セラ株式会社 | Ceramic structure, flow passage body, and electrode internal plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8178455B2 (en) | Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member | |
JP2007063122A (en) | Substrate for semiconductor device | |
JP5189712B2 (en) | AlN substrate and manufacturing method thereof | |
JP5369444B2 (en) | GZO sintered body manufacturing method | |
JPH0859367A (en) | Preparation of porous ceramic or porous ceramic laminated body by using hollow spherical polymeric precursor | |
JPH0672770A (en) | Sheetlike aluminum nitride compact | |
KR102139189B1 (en) | Memufacturing method of conductivity AlN subtrate having thermal conductivity of 180 W/mk to 230 W/mk | |
KR101559243B1 (en) | Ceramic composition, ceramic sinter and manufacturing method thereof | |
JP3088049B2 (en) | Green sheet manufacturing method and alumina substrate | |
JP3771950B2 (en) | Aluminum nitride green sheet | |
JP3340171B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP3707866B2 (en) | Method for producing aluminum nitride green body | |
JP7318835B2 (en) | silicon nitride substrate | |
KR940006429B1 (en) | Process for the preparation of ainplate | |
JP6412886B2 (en) | AlN substrate | |
JPH0987040A (en) | Ceramic green body | |
JP4868641B2 (en) | Method for manufacturing aluminum nitride substrate | |
JPH04214068A (en) | Green compact of aluminum nitride powder, binder used for the green compact, and production of sintered body of aluminum nitride | |
JP4050798B2 (en) | Aluminum nitride press body | |
KR100609307B1 (en) | Aluminum nitride materials and members for use in the production of semiconductors | |
JP4789293B2 (en) | SiC sintered body | |
JP2022094464A (en) | Green sheet of silicon nitride and production method thereof | |
JPH02289460A (en) | Production of ceramic substrate | |
JP2022145475A (en) | silicon nitride substrate | |
JPH10297971A (en) | Production of sheet-like silicon carbide sintered compact |