JPH0672613B2 - Electromagnetic bearing device - Google Patents

Electromagnetic bearing device

Info

Publication number
JPH0672613B2
JPH0672613B2 JP63218355A JP21835588A JPH0672613B2 JP H0672613 B2 JPH0672613 B2 JP H0672613B2 JP 63218355 A JP63218355 A JP 63218355A JP 21835588 A JP21835588 A JP 21835588A JP H0672613 B2 JPH0672613 B2 JP H0672613B2
Authority
JP
Japan
Prior art keywords
bearing
protective
protective bearing
electromagnetic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63218355A
Other languages
Japanese (ja)
Other versions
JPH0272217A (en
Inventor
亨之 高木
修己 松下
光穂 米山
郁浩 斎藤
知昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63218355A priority Critical patent/JPH0672613B2/en
Publication of JPH0272217A publication Critical patent/JPH0272217A/en
Publication of JPH0672613B2 publication Critical patent/JPH0672613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁軸受装置に係り、特に電磁軸受で支持さ
れた回転機械について、回転体および保護用軸受の損傷
を低減させ、安全化と長寿命化を図るのに好適な電磁軸
受装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic bearing device, and more particularly to a rotary machine supported by an electromagnetic bearing, which reduces damage to a rotating body and a protective bearing to improve safety. The present invention relates to an electromagnetic bearing device suitable for extending the life.

[従来の技術] 従来の、例えばターボ分子ポンプなど電磁軸受を用いた
磁気浮上の回転体を有する回転機械においては、停電等
の電源喪失(電源切れ)の場合、あるいは制御回路の故
障発生の場合、回転体の破壊を防止するため、保護軸受
が数ヶ所設けられている。通常は、保護軸受のギヤツプ
は電磁軸受のギヤツプの1/2程度に設定され0.1〜0.5mm
であり、浮上時は非接触状態で回転体は回転している。
そして、電源喪失等の発生時には保護軸受に接触して回
転させる。保護軸受にはキヤツプがあるため、高速回転
時には大きな振動荷重が作用して保護軸受は損傷を受
け、その結果、回転体まで破損させることになる。
[Prior Art] In a conventional rotating machine having a magnetically levitated rotating body using an electromagnetic bearing such as a turbo molecular pump, in the case of power loss (power outage) such as power failure or failure of a control circuit. There are several protective bearings to prevent damage to the rotating body. Normally, the protective bearing gear set is set to about 1/2 of the electromagnetic bearing gear set and 0.1 to 0.5 mm.
Therefore, the rotator rotates in a non-contact state when it floats.
Then, when a power loss or the like occurs, the protective bearing is contacted and rotated. Since the protective bearing has a cap, a large vibration load is applied at the time of high-speed rotation, and the protective bearing is damaged, resulting in damage to the rotating body.

これを防止するため、本発明者らが先に開発した実願昭
62-17707号の電磁軸受装置では、保護軸受の支持部と回
転体との接触部をテーパにし、電磁軸受の電磁力がなく
なった場合に、回転体が軸方向に移動して、回転体と保
護軸受とのギヤツプが零となって回転することにより、
低振動となり軸受の損傷を軽微としている。他方、テー
パにすることにより回転体振動は小さくなるが、電源復
帰時に回転体と保護軸受とが固着し分解しなければなら
ない。また、保護軸受と電磁軸受とのばね定数が異なる
ので回転体の危険速度が変わり、降速時には曲げの危険
速度を通過することになり、回転体が破損することもあ
る。すなわち、保護軸受で回転するときの振動について
の配慮がなされていなかった。
In order to prevent this, the present invention developed by the present inventors
In the electromagnetic bearing device of No. 62-17707, the contact part between the support part of the protective bearing and the rotating body is tapered, and when the electromagnetic force of the electromagnetic bearing disappears, the rotating body moves in the axial direction and becomes By rotating the gear with the protective bearing to zero,
It has low vibration and damage to the bearing is negligible. On the other hand, the taper reduces the vibration of the rotating body, but when the power is restored, the rotating body and the protective bearing must be fixed and decomposed. Also, since the spring constants of the protective bearing and the electromagnetic bearing are different, the critical speed of the rotating body changes, and the critical speed of bending is passed when descending, which may damage the rotating body. That is, no consideration was given to vibration when rotating with the protective bearing.

また、振動特性が変化しないように電磁軸受のばね定数
と同じ弱いばねで保護軸受を支承する方法も考えられる
が、通常時と保護軸受で回転するときとでは中心が大き
くずれて、回転体が固定部と接触し翼などの破損が起こ
る危険があった。
It is also possible to support the protective bearing with a weak spring that is the same as the spring constant of the electromagnetic bearing so that the vibration characteristics do not change. There was a risk of contact with the fixed part and damage to the wings.

[発明が解決しようとする課題] 上記従来技術は、保護軸受で回転するときの回転体系の
振動特性の変化に対する配慮がなされておらず、保護軸
受の損傷や回転体の破損による部品の交換も必要になる
という問題があった。
[Problems to be Solved by the Invention] In the above-mentioned prior art, no consideration is given to changes in the vibration characteristics of the rotating system when rotating with the protective bearing, and replacement of parts due to damage to the protective bearing or damage to the rotating body is also possible. There was a problem that it was necessary.

本発明は、上記従来技術における課題を解決するために
なされたもので、保護軸受で回転体を回転させるときの
振動特性を電磁力で支持した状態に近づけ、両者の振動
特性を同様にすることにより回転体の振動を押え、より
安全度の高い保護軸受にするとともに、保護軸受と回転
体とのギヤツプを小さくして振動力を小さくさせるよう
にした電磁軸受装置を提供することを、その目的とする
ものである。
The present invention has been made in order to solve the above-mentioned problems in the prior art, and makes the vibration characteristics when rotating the rotating body by the protective bearing close to the state of being supported by electromagnetic force so that the vibration characteristics of both are the same. An object of the present invention is to provide an electromagnetic bearing device that suppresses vibration of a rotating body by means of the above-mentioned method to provide a protective bearing with a higher degree of safety, and also to reduce the vibration force by reducing the gear gap between the protective bearing and the rotating body. It is what

[課題を解決するための手段] 上記目的を達成するために、本発明に係る電磁軸受装置
の構成は、回転体を磁気的な径方向軸受で支承した電磁
軸受装置であって、電磁軸受の電磁力喪失時に回転体と
接触して回転する保護軸受を備え、この保護軸受を、荷
重方向に撓ませるように弾性支持してなる電磁軸受装置
において、弾性支持した前記保護軸受は、荷重方向の撓
みを解除する手段を備えたものである。
[Means for Solving the Problems] In order to achieve the above object, the structure of an electromagnetic bearing device according to the present invention is an electromagnetic bearing device in which a rotating body is supported by magnetic radial bearings. In an electromagnetic bearing device comprising a protective bearing that rotates in contact with a rotating body when electromagnetic force is lost, and this protective bearing is elastically supported so as to bend in the load direction, the elastically supported protective bearing is It is provided with a means for canceling the bending.

また、ここで、保護軸受の撓み解除手段は、制御回路の
故障検知回路の出力で作動するように構成したものであ
る。
Further, here, the deflection releasing means of the protective bearing is configured to operate by the output of the failure detection circuit of the control circuit.

[作用] 上記技術的手段による働きは次のとおりである。[Operation] The operation of the above technical means is as follows.

保護軸受は、電磁軸受のばね定数とほぼ等しいばねで弾
性支持しておき、横形回転機械の場合、通常時には、軸
受荷重によるばねの変形量と等しく下方に吸引してお
き、この状態で回転体の浮上時において回転中心と保護
軸受の中心とを一致させておく。例えば停電等により電
磁軸受の電磁力がなくなると、回転体は保護軸受に接触
し、このとき下方への吸引力を解除する。このような作
用により、保護軸受のキヤツプを必要最低限に設定でき
るとともに振動特性も変化しないので曲げの危険速度を
通過することはない。
The protective bearing is elastically supported by a spring whose spring constant is almost the same as that of the electromagnetic bearing.In the case of a horizontal rotating machine, it is normally attracted downward by the same amount as the spring deformation due to the bearing load. The center of rotation and the center of the protective bearing should be aligned when levitating. When the electromagnetic force of the electromagnetic bearing disappears due to, for example, a power failure, the rotating body comes into contact with the protective bearing, and at this time, the downward attraction force is released. Due to such an action, the cap of the protective bearing can be set to a necessary minimum and the vibration characteristic does not change, so that the critical speed of bending is not passed.

また、保護軸受のキヤツプを小さく設定できるので、大
きな加振力が作用しないし、復帰動作も簡単となる。
Further, since the cap of the protective bearing can be set small, a large exciting force does not act and the returning operation becomes simple.

[実施例] 以下、本発明の各実施例を第1図ないし第8図を参照し
て説明する。
Embodiments Embodiments of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は、本発明の一実施例に係る電磁軸受装置の保護
軸受部の主要構成を示す断面図、第2図は、第1図のA
−A断面図、第3図は、第1図の回転体の振動特性の変
化を示す説明図である。
FIG. 1 is a cross-sectional view showing the main structure of a protective bearing portion of an electromagnetic bearing device according to an embodiment of the present invention, and FIG. 2 is A of FIG.
3A is a cross-sectional view and FIG. 3 is an explanatory diagram showing changes in vibration characteristics of the rotating body of FIG.

第1図において、1は軸受ハウジング、2は、磁気的な
径方向軸受に係るラジアル電磁軸受、3は、回転体に係
るロータ、4は、電磁軸受の電磁力喪失時に回転体と接
触して回転する保護軸受、5(5a,5b,5c,5dの総称)は
弾性支持用のばね、6は吸引電磁石である。すなわち、
第1,2図に示す電磁軸受装置は、軸受ハウジング1内
に、ラジアル電磁軸受2で電磁的に支承されたロータ3
と、停電など電源切れの異常時にロータ3の回転を維持
するための保護軸受4とが設けられている。保護軸受4
は、ばね5で弾性支持されていて、吸引電磁石6により
軸受荷重に相当する力で下方に引張っていて、ラジアル
電磁軸受2の中心と保護軸受4の中心とを一致させるよ
うに構成されている。
In FIG. 1, 1 is a bearing housing, 2 is a radial electromagnetic bearing related to a magnetic radial bearing, 3 is a rotor related to a rotating body, and 4 is in contact with the rotating body when the electromagnetic force of the electromagnetic bearing is lost. Rotating protective bearings 5 (generic names of 5a, 5b, 5c, 5d) are springs for elastic support, and 6 is an attraction electromagnet. That is,
The electromagnetic bearing device shown in FIGS. 1 and 2 has a rotor 3 electromagnetically supported by a radial electromagnetic bearing 2 in a bearing housing 1.
And a protective bearing 4 for maintaining the rotation of the rotor 3 in the event of power failure such as power failure. Protective bearing 4
Is elastically supported by a spring 5 and pulled downward by a force corresponding to a bearing load by an attraction electromagnet 6 so that the center of the radial electromagnetic bearing 2 and the center of the protective bearing 4 are aligned with each other. .

停電など電源切れが発生したときには、ラジアル電磁軸
受2の電磁力がなくなり、同時に吸引電磁石6の吸引力
もなくなる。このとき、ロータ3は保護軸受4に接触し
て回転を維持する。保護軸受4は、作用していた吸引電
磁石6の吸引力の代りに、これと等しい大きさのロータ
3の自重が働き、結果としてロータ2の回転中心は通常
時の回転中心と変らないので、ここには図示しないがロ
ータ3にある環状シール部や翼先端と固定部(ケーシン
グなど)との接触が回避できる。
When a power failure such as a power failure occurs, the electromagnetic force of the radial electromagnetic bearing 2 disappears, and at the same time, the attraction force of the attraction electromagnet 6 also disappears. At this time, the rotor 3 contacts the protective bearing 4 and maintains rotation. In the protective bearing 4, instead of the attracting force of the attracting electromagnet 6 that has been acting, the weight of the rotor 3 of the same size acts, and as a result, the center of rotation of the rotor 2 does not change from the center of rotation during normal operation. Although not shown here, it is possible to avoid contact between the annular seal portion or the blade tip of the rotor 3 and the fixed portion (casing or the like).

第3図は、電磁軸受で支承された回転体の振動特性を示
したもので、実線に示す振幅応答となる。一般に電磁軸
受のばね定数は通常の軸受に比べてばね定数が小さいの
で、低回転数で回転体全体が剛体のまま振動する剛体モ
ードの危険速度7,8を通過する。定格速度は、上記危険
速度7,8よりはるかに高い回転数となっていて、回転体
が弾性的に振動する曲げモードの危険速度9より低く設
定される。
FIG. 3 shows the vibration characteristics of the rotating body supported by the electromagnetic bearing, and has the amplitude response shown by the solid line. In general, the spring constant of an electromagnetic bearing is smaller than that of a normal bearing, so that it passes through the critical speeds 7 and 8 in the rigid body mode in which the entire rotor vibrates as a rigid body at a low rotation speed. The rated speed is much higher than the critical speeds 7 and 8 and is set lower than the critical speed 9 in the bending mode in which the rotating body vibrates elastically.

停電など電源切れが発生した場合、ばね等で弾性支持し
ていない保護軸受では、そのばね定数が電磁軸受のばね
定数に比べて10〜100倍程度大きいため、剛体モードの
危険速度7,8は消滅するが、曲げモードの危険速度9が
低下して、図上に破線で示した曲げモードの危険速度10
が定格速度以下の回転数となる。定格速度において電源
切れ等が発生すると、保護軸受を使用して降速する際、
曲げの危険速度10を通過することになり、振動幅が急増
し、回転体が固定部に接触し、回転体が損傷を受けてし
まう。
When a power failure such as a power failure occurs, the spring constant of a protective bearing that is not elastically supported by springs is 10 to 100 times larger than the spring constant of an electromagnetic bearing. Although it disappears, the critical speed 9 in the bending mode decreases and the critical speed 10 in the bending mode shown by the broken line in the figure
Will be below the rated speed. If the power is cut off at the rated speed, when using the protective bearing to lower the speed,
Since the critical velocity of bending 10 is passed, the vibration width sharply increases, the rotating body comes into contact with the fixed portion, and the rotating body is damaged.

一方、本実施例の弾性支持形の保護軸受では、ばね定数
をラジアル電磁軸受2のばね定数にほぼ等しい設定して
おけば、通常時と保護軸受で回転するときの振動特性は
等しくなり、曲げの危険速度10を超える必要はなくな
り、安全に降速することができる。
On the other hand, in the elastic support type protective bearing of this embodiment, if the spring constant is set to be substantially equal to the spring constant of the radial electromagnetic bearing 2, the vibration characteristics at the time of normal rotation and at the time of rotation by the protective bearing become equal, and bending It is not necessary to exceed the critical speed of 10 and you can safely descend.

さらに、保護軸受4を、通常時は下方に吸引しているの
で、保護軸受4とロータ3とのギヤツプを小さくするこ
とが可能となる。下方に吸引していないと、保護軸受4
がロータ3の自重により下方に偏心するため、回転体が
固定部に接触してしまう。
Further, since the protective bearing 4 is normally sucked downward, the gear gap between the protective bearing 4 and the rotor 3 can be reduced. If not sucked downward, the protective bearing 4
Is eccentric downward due to the weight of the rotor 3, so that the rotating body comes into contact with the fixed portion.

二つの保護軸受でロータを支承する場合の保護軸受とロ
ータとの半径ギヤツプδは次のように設定する。
When the rotor is supported by two protective bearings, the radial gear gap δ between the protective bearing and the rotor is set as follows.

いま、ロータ重量 2W ロータの最高回転角速度 ω 重力加速度 g とすると、保護軸受とロータとの摩擦を無視したとき、
ロータ3が保護軸受4のギヤツプ内で振れまわらないた
めには、ロータの遠心力より自重が大きいことが条件と
なる。すなわち、 を満たせばよい。したがって、ギヤツプσは となる。
Now, assuming that the rotor weight is 2 W, the maximum rotational angular velocity of the rotor is ω, and the gravity acceleration is g, when the friction between the protective bearing and the rotor is ignored,
In order to prevent the rotor 3 from swinging in the gear of the protective bearing 4, it is a condition that its own weight is larger than the centrifugal force of the rotor. That is, Should be satisfied. Therefore, the gear σ is Becomes

本実施例によれば、保護軸受4でロータ3が回転すると
き、ラジアル電磁軸受2と同じばね定数で支承されるの
で回転体系の振動特性が変化せず、曲げの危険速度を通
過することがなくなり、保護軸受4を下方に吸引してお
けるので、保護軸受のギヤツプを小さくでき、その値δ
に設定することにより、ロータ3の振れまわりを防止す
ることができる。
According to this embodiment, when the rotor 3 is rotated by the protective bearing 4, the rotor 3 is supported by the same spring constant as the radial electromagnetic bearing 2, so that the vibration characteristics of the rotating system do not change and the critical velocity of bending can be passed. Since the protective bearing 4 can be sucked downward, the gear gap of the protective bearing can be reduced, and the value δ
To By setting to 3, the whirling of the rotor 3 can be prevented.

このことから、回転体振動を小さく押えることができ、
保護軸受の損傷が軽徴となり、安全な回転機械を提供す
ることができる。
From this, it is possible to suppress the vibration of the rotating body small,
Damage to the protective bearing is a minor sign, and a safe rotating machine can be provided.

次に、第4図は、本発明の他の実施例に係る保護軸受部
の部分断面図である。第4図に図示を省略した電磁軸受
部は第1図と同等であり、図中、第1図と同一符号のも
のは第1図の実施例と同等部分であるから、その説明を
省略する。
Next, FIG. 4 is a partial sectional view of a protective bearing portion according to another embodiment of the present invention. The electromagnetic bearing portion not shown in FIG. 4 is the same as that in FIG. 1, and those having the same reference numerals as those in FIG. 1 are the same portions as the embodiment of FIG. .

第4図の実施例は、保護軸受4を荷重方向に撓ませる手
段を、第1図の吸引電磁石6の代りに、フック12、復元
ばね13を採用したものである。このフック12、復元ばね
13で構成されるものは、荷重方向の撓みを解除する手段
でもある。
The embodiment shown in FIG. 4 employs a hook 12 and a restoring spring 13 as means for bending the protective bearing 4 in the load direction, instead of the attraction electromagnet 6 shown in FIG. This hook 12, restoration spring
What is constituted by 13 is also a means for canceling the bending in the load direction.

すなわち、通常時はフック12で保護軸受4を下方にひっ
ぱっておき、電源切れ等が発生すると電磁力がなくなっ
てロータ3は保護軸受4に接触し、ロータ3の自重が保
護軸受4に作用し下方に移動する。すると、フック12は
復元ばね13により回転し、保護軸受4から離れることに
なり、保護軸受4とロータ3の回転中心がずれることな
く、ロータ3は回転を維持できる。
That is, normally, the protective bearing 4 is pulled downward by the hook 12, and when the power is cut off, the electromagnetic force disappears and the rotor 3 comes into contact with the protective bearing 4, and the weight of the rotor 3 acts on the protective bearing 4. Move down. Then, the hook 12 is rotated by the restoring spring 13 and is separated from the protective bearing 4, so that the rotor 3 can be kept rotating without the rotational centers of the protective bearing 4 and the rotor 3 being displaced.

第4図の実施例によれば、先の実施例と同様の効果が期
待されるとともに、フック12の解除を自動的に行いうる
という本実施例特有の効果がある。また、特に図示しな
いが、フック12を制御回路の故障検知回路からの信号に
連動して解除するように構成することも可能である。
According to the embodiment of FIG. 4, the same effect as that of the previous embodiment is expected, and there is an effect peculiar to this embodiment that the hook 12 can be released automatically. Further, although not particularly shown, the hook 12 can be configured to be released in synchronization with a signal from the failure detection circuit of the control circuit.

次に、保護軸受を異方性のばねで支承する実施例につい
て説明する。ここに異方性のばねとは、上下方向により
たわみ量が異なるばねをいう。
Next, an embodiment in which the protective bearing is supported by an anisotropic spring will be described. Here, the anisotropic spring means a spring having a different amount of deflection in the vertical direction.

第5図は、本発明のさらに他の実施例に係る保護軸受部
の部分断面図である。図中、第1図と同一符号のものは
同等部分であるから、その説明を省略する。
FIG. 5 is a partial sectional view of a protective bearing portion according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 are the same parts, and the description thereof will be omitted.

第5図の実施例では、保護軸受4は上側を1個のばね5
a、下側を3個のばね5bで支承している。このように、
ロータ3の荷重を受ける下側を多数のばねで支承するよ
うにしている。
In the embodiment of FIG. 5, the protective bearing 4 has one spring 5 on the upper side.
a, the lower side is supported by three springs 5b. in this way,
The lower side receiving the load of the rotor 3 is supported by a large number of springs.

これにより、保護軸受4に荷重が作用しない通常時と、
停電などの電源切れで電磁力がなくなってロータ3が保
護軸受4で回転し、保護軸受4に荷重が作用するときの
保護受4の中心の移動を小さくできるので、保護軸受4
とロータ3とのギヤツプを小さくすることができ、低振
動で安定な回転機械を提供することができる。
As a result, the normal time when the load does not act on the protective bearing 4,
Since the electromagnetic force disappears due to a power failure such as a power failure and the rotor 3 rotates in the protective bearing 4 and the load of the protective bearing 4 acts on the protective bearing 4, the movement of the center of the protective support 4 can be reduced.
It is possible to reduce the gear gap between the rotor 3 and the rotor 3, and to provide a stable rotating machine with low vibration.

次に、第6図は、本発明のさらに他の実施例に係る保護
軸受部の部分断面図、第7図は、第6図の積層板ばねの
変位一荷重線図である。図中、第1図と同一符号のもの
は同等部であるから、その説明を省略する。
Next, FIG. 6 is a partial sectional view of a protective bearing portion according to still another embodiment of the present invention, and FIG. 7 is a displacement / load diagram of the laminated leaf spring shown in FIG. In the figure, the same symbols as those in FIG.

第6図の実施例では、保護軸受4は円弧状の積層ばね14
で支承されている。この積層板ばね14は、第7図の変位
一荷重線図を示すように、上下方向によってたわみ量
(変位)の異なる、いわゆる異方性ばねである。このば
ねは、下側方向への変位に対しては大きなばね定数とな
り、一方、上方に変位すると不感帯、すなわち変位して
も荷重を発生させない領域があり、さらに変位すると徐
々にばね定数が大きくなる。
In the embodiment of FIG. 6, the protective bearing 4 is an arc-shaped laminated spring 14
Is supported by. The laminated leaf spring 14 is a so-called anisotropic spring having a different amount of deflection (displacement) depending on the vertical direction, as shown in the displacement-loading diagram of FIG. This spring has a large spring constant with respect to downward displacement, while there is a dead zone when it is displaced upward, that is, there is a region where a load is not generated even if it is displaced, and when it is further displaced, the spring constant gradually increases. .

したがって、保護軸受4にロータ3の自重が作用した場
合でも、その撓みは小さいので、保護軸受の中心が通常
時と変わらず、ギヤツプを小さく認定できる。また、保
護軸受の平均的ばね定数は大きくならず、振動特性の変
化も小さい。したがって、安全な保護軸受となる。
Therefore, even if the weight of the rotor 3 acts on the protective bearing 4, its deflection is small, so that the center of the protective bearing is the same as in the normal state, and the gear gap can be recognized as small. Further, the average spring constant of the protective bearing does not increase, and the change in vibration characteristics is small. Therefore, it becomes a safe protective bearing.

なお、積層板ばね14の間に潤滑油を注入しておけば、当
然ダンピング効果も期待できる。
If lubricating oil is injected between the laminated leaf springs 14, naturally a damping effect can be expected.

第8図は、本発明のさらに他の実施例に係る保護軸受部
の平面図である。図中、第2図と同一符号のものは同等
部分を示す。また、第8図の実施例は、第5図の実施例
で説明した異方性ばね支持の保護軸受の別の実施例であ
る。
FIG. 8 is a plan view of a protective bearing portion according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 2 indicate the same parts. The embodiment shown in FIG. 8 is another embodiment of the anisotropic spring-supported protective bearing described in the embodiment shown in FIG.

保護軸受4Aは、ばね5a,5c,5dの弱いばね、および荷重方
向を強いばね5bで支持してあり、その保護軸受4Aの内輪
4aには内周に切欠き4bを形成したものとなっている。
The protective bearing 4A is supported by weak springs 5a, 5c, 5d and a strong spring 5b in the load direction.
The notch 4b is formed on the inner circumference of the 4a.

このように構成すると、ロータ3が保護軸受4Aで回転す
るとき、接触面圧が高まって、ロータ3と内輪4aとの接
触位置が安定し、ロータ3が内輪4a内で振れまわり難く
なることによって荷重方向が一定となるという本実施例
特有の効果がある。
According to this structure, when the rotor 3 rotates with the protective bearing 4A, the contact surface pressure increases, the contact position between the rotor 3 and the inner ring 4a becomes stable, and the rotor 3 does not easily swing around in the inner ring 4a. There is an effect peculiar to this embodiment that the load direction is constant.

[発明の効果] 以上述べたように、本発明によれば、保護軸受で回転体
を回転させるときの振動特性を電磁力で支持した状態に
近づけ、両者の振動特性を同様にすることにより回転体
の振動を押え、より安全度の高い保護軸受にするととも
に、保護軸受と回転体とのギヤツプを小さくして振動力
を小さくさせるようにした電磁軸受装置を提供すること
ができる。
[Effects of the Invention] As described above, according to the present invention, the vibration characteristics when the rotating body is rotated by the protective bearing are brought closer to the state of being supported by the electromagnetic force, and the vibration characteristics of both are made to be similar to each other. It is possible to provide an electromagnetic bearing device that suppresses the vibration of the body to form a protective bearing with a higher degree of safety and reduces the gear gap between the protective bearing and the rotating body to reduce the vibration force.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る電磁軸受装置の保護
軸受部の主要構成を示す断面図、第2図は、第1図のA
−A断面図、第3図は、第1図の回転体の振動特性の変
化を示す説明図、第4図は、本発明の他の実施例に係る
保護軸受部の部分断面図、第5図および第6図は、いず
れも本発明のさらに他の実施例に係る保護軸受部の部分
断面図、第7図は、第6図の積層板ばねの変位一荷重線
図、第8図は、本発明のさらに他の実施例に係る保護軸
受部の平面図である。 1……軸受ハウジング、2……ラジアル電磁軸受、3…
…ロータ、4,4A……保護軸受、5,5a,5b,5c,5d……ば
ね、6……吸引電磁石、12……フック、13……復元ば
ね、14……積層板ばね。
FIG. 1 is a cross-sectional view showing the main structure of a protective bearing portion of an electromagnetic bearing device according to an embodiment of the present invention, and FIG. 2 is A of FIG.
-A sectional view, FIG. 3 is an explanatory view showing changes in vibration characteristics of the rotating body of FIG. 1, and FIG. 4 is a partial sectional view of a protective bearing portion according to another embodiment of the present invention. FIG. 6 and FIG. 6 are partial sectional views of a protective bearing portion according to still another embodiment of the present invention, FIG. 7 is a displacement / load line diagram of the laminated leaf spring of FIG. 6, and FIG. FIG. 7 is a plan view of a protective bearing portion according to still another embodiment of the present invention. 1 ... Bearing housing, 2 ... Radial electromagnetic bearing, 3 ...
… Rotor, 4,4A …… Protective bearing, 5,5a, 5b, 5c, 5d …… Spring, 6 …… Suction electromagnet, 12 …… Hook, 13 …… Restoring spring, 14 …… Layered leaf spring.

フロントページの続き (72)発明者 斎藤 郁浩 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 井上 知昭 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (56)参考文献 特開 昭62−194025(JP,A) 特開 昭58−65321(JP,A) 特公 昭61−57493(JP,B1)Front page continuation (72) Inventor Ikuhiro Saito 502 Jinritsu Machinery Co., Ltd., Tsuchiura City, Ibaraki Pref., Mechanical Research Laboratory, Inc. (72) Inventor Tomoaki Inoue, 502 Jinritsucho, Tsuchiura City, Ibaraki Co., Ltd. (56) References JP-A-62-194025 (JP, A) JP-A-58-65321 (JP, A) JP-B-61-57493 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回転体を磁気的な径方向軸受で支承した電
磁軸受装置であって、電磁軸受の電磁力喪失時に回転体
と接触して回転する保護軸受を備え、この保護軸受を、
荷重方向に撓ませるように弾性支持してなる電磁軸受装
置において、 弾性支持した前記保護軸受は、荷重方向の撓みを解除す
る手段を備えたことを特徴とする電磁軸受装置。
1. An electromagnetic bearing device in which a rotating body is supported by a magnetic radial bearing, and a protective bearing is provided which rotates in contact with the rotating body when the electromagnetic force of the electromagnetic bearing is lost.
In an electromagnetic bearing device elastically supported so as to bend in the load direction, the elastically supported protective bearing includes means for canceling the bend in the load direction.
【請求項2】特許請求の範囲第1項記載のものにおい
て、保護軸受の撓み解除手段は、制御回路の故障検知回
路の出力で作動するように構成したことを特徴とする電
磁軸受装置。
2. The electromagnetic bearing device according to claim 1, wherein the deflection releasing means of the protective bearing is configured to operate with the output of the failure detection circuit of the control circuit.
JP63218355A 1988-09-02 1988-09-02 Electromagnetic bearing device Expired - Lifetime JPH0672613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218355A JPH0672613B2 (en) 1988-09-02 1988-09-02 Electromagnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218355A JPH0672613B2 (en) 1988-09-02 1988-09-02 Electromagnetic bearing device

Publications (2)

Publication Number Publication Date
JPH0272217A JPH0272217A (en) 1990-03-12
JPH0672613B2 true JPH0672613B2 (en) 1994-09-14

Family

ID=16718584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218355A Expired - Lifetime JPH0672613B2 (en) 1988-09-02 1988-09-02 Electromagnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0672613B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9103257D0 (en) * 1991-02-15 1991-04-03 Glacier Metal The Company Limi A magnetic bearing-shaft assembly having a bearing to support the shaft in the event of failure of the magnetic bearing
KR100294915B1 (en) * 1994-02-28 2001-11-22 이형도 Rotary shaft support apparatus
JP4972146B2 (en) * 2009-12-14 2012-07-11 株式会社豊田中央研究所 Gear transmission case
CN102562799B (en) * 2011-12-20 2014-04-16 南京航空航天大学 Radial protection bearing device for automatically eliminating radial clearance of rolling bearing inner ring
CN102537045B (en) * 2011-12-20 2013-12-25 南京航空航天大学 Radial protection bearing device for automatically removing radial clearance of outer ring of rolling bearing
JP6010762B2 (en) * 2011-12-27 2016-10-19 パナソニックIpマネジメント株式会社 Hermetic compressor and refrigerator including the same
EP2829756B1 (en) * 2013-07-26 2016-06-29 SKF Magnetic Mechatronics S.A.S. Auxiliary bearing of the ball bearing type for a magnetically suspended rotor system
CN103912589B (en) * 2014-03-25 2016-06-29 南京航空航天大学 Automatically the centripetal thrust force protection bearing arrangement in gap is eliminated
CN103982544B (en) * 2014-05-16 2016-05-11 常州工学院 The radial protection bearing device in a kind of automatic elimination and recovery and protection gap
JP6626261B2 (en) * 2015-03-20 2019-12-25 Ntn株式会社 Wind turbine seismic isolation device
WO2016147939A1 (en) * 2015-03-13 2016-09-22 株式会社グローバルエナジー Vertical shaft windmill base isolation apparatus
CN106402157B (en) * 2016-11-16 2018-07-10 常州工学院 The magnetic suspension bearing control system and its control method of settling flux are realized after unstability
EP3327302B1 (en) * 2016-11-28 2019-11-13 Skf Magnetic Mechatronics Landing bearing assembly and rotary machine equipped with such an assembly
CN109707734B (en) * 2019-01-02 2020-05-26 江苏理工学院 Electromagnetic adsorption type bearing protection device
CN113389743A (en) * 2020-03-13 2021-09-14 佛山市广鼓鼓风机有限公司 Magnetic suspension fan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865321A (en) * 1981-10-15 1983-04-19 Seiko Instr & Electronics Ltd Magnetic bearing
JPS6157493A (en) * 1984-08-30 1986-03-24 Eagle Ind Co Ltd Automatic pressure regulating method
JPS62194025A (en) * 1986-02-18 1987-08-26 Ebara Corp Magnetic bearing

Also Published As

Publication number Publication date
JPH0272217A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
JPH0672613B2 (en) Electromagnetic bearing device
US3934950A (en) Bearing for high speed rotary shafts
US4334718A (en) Coupling bearing for rotors above critical speed
EP0994265B1 (en) Device for limiting a whirl speed of a shaft
JP2005503520A (en) Emergency bearings not affected by shaft load
US6483216B2 (en) Damper system and bearing centering device for magnetic bearing vacuum pump
GB9904382D0 (en) Bearing structure
JPH0436278B2 (en)
SE9700256D0 (en) Magnet-stored high-speed vacuum pump
GB1596120A (en) Gyroscope rotors
JPS63190930A (en) Magnetic bearing device
US6172435B1 (en) Flywheel power source device
JP3733160B2 (en) Magnetic bearing device
JPH07103231A (en) Emergency bearing device
KR20080034005A (en) Turbomachine
JPS60190697A (en) Control system of magnetic bearing in turbo molecular pump
JPH068339Y2 (en) Magnetic bearing device
JP2003269452A (en) Magnetic bearing device
JPS63198796A (en) Thrust bearing device for vertical rotor
KR100401096B1 (en) Thrust magnetic bearing motor
JPH0820620B2 (en) Rotating polygon mirror device
JPH068316Y2 (en) Vertical turbo molecular pump
JPH10159707A (en) Flywheel
JP2651569B2 (en) Turbo molecular pump
JP3414918B2 (en) Rotary electric machine with magnetic bearing