JPH0672016B2 - Thin plate zirconia-based crystallites - Google Patents

Thin plate zirconia-based crystallites

Info

Publication number
JPH0672016B2
JPH0672016B2 JP14723885A JP14723885A JPH0672016B2 JP H0672016 B2 JPH0672016 B2 JP H0672016B2 JP 14723885 A JP14723885 A JP 14723885A JP 14723885 A JP14723885 A JP 14723885A JP H0672016 B2 JPH0672016 B2 JP H0672016B2
Authority
JP
Japan
Prior art keywords
zirconia
thin plate
ion
less
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14723885A
Other languages
Japanese (ja)
Other versions
JPS627629A (en
Inventor
悦朗 加藤
Original Assignee
悦朗 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悦朗 加藤 filed Critical 悦朗 加藤
Priority to JP14723885A priority Critical patent/JPH0672016B2/en
Priority to DE86108797T priority patent/DE3688153T2/en
Priority to EP86108797A priority patent/EP0207469B1/en
Priority to CN86104600A priority patent/CN1008997B/en
Priority to KR1019860005359A priority patent/KR920007598B1/en
Priority to AU59718/86A priority patent/AU591141B2/en
Priority to US06/881,812 priority patent/US4765970A/en
Publication of JPS627629A publication Critical patent/JPS627629A/en
Publication of JPH0672016B2 publication Critical patent/JPH0672016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 ジルコニア(ZrO2およびその固溶体をここではジルコニ
アと総称する)は高耐火性酸化物でファインセラミック
スとして各種の応用がある。特にY2O3などを固溶させた
ものは酸素センサーや,高強度エンジニアリングセラミ
ックスとして脚光を浴び,また圧電体セラミックスの原
料としても大量に使用されている。一般にこれらのファ
インセラミックスの原料として微粒子ジルコニアが使用
され,形状が球状の微粒子粉末が充填性と焼結性に優れ
ることから,殆んどが摩砕処理物またはそれと類似形状
の微粒粉末として用いられる。しかし,薄板状のジルコ
ニア微粒子については従来その工業的製造法がなかった
ので,その応用の試ろみの記述すら全く見ることのでき
ない現状である。
DETAILED DESCRIPTION OF THE INVENTION Zirconia (ZrO 2 and its solid solution are collectively referred to herein as zirconia) is a highly refractory oxide and has various applications as fine ceramics. In particular, solid solutions of Y 2 O 3 and others are in the spotlight as oxygen sensors and high-strength engineering ceramics, and are also used in large quantities as raw materials for piezoelectric ceramics. Generally, fine particle zirconia is used as a raw material for these fine ceramics, and most of the fine spherical particles are used as a ground product or a fine powder having a similar shape because of its excellent packing and sinterability. . However, since there is no conventional industrial manufacturing method for thin plate-shaped zirconia particles, it is the current situation that even a description of the trial of its application cannot be seen at all.

本発明者は薄板状ジルコニアに特殊な応用の可能性のあ
ることに気付き,種々の実験を繰返して,先ず,薄板状
ジルコニアに最も接近した原子配置を持つ従来全く知ら
れていない薄板状ジルコニア系微結晶の合成に成功し
た。この微結晶は化学分析によればZrを主要金属成分と
し,その原子数のほぼ2/5のSO4 2-イオンを含有する層状
構造を持つ化合物で,厚さが500Å以下,層に平行方向
の大きさがその5倍以上である六角板状もしくは円板状
の薄板状に結晶化させることができる。
The inventor noticed that the thin plate-shaped zirconia has a special application possibility, and repeated various experiments. Successful synthesis of microcrystals. According to chemical analysis, these microcrystals are compounds with a layered structure containing Zr as the main metal component and SO 4 2− ions whose atomic number is approximately 2/5. The thickness is 500 Å or less, and the direction parallel to the layers. Can be crystallized into a hexagonal plate-shaped or disk-shaped thin plate having a size 5 times or more that of the above.

この薄板状結晶は電子線回析によれば層平面に垂直に六
方もしくは三方対称の結晶軸を持ち,その粉末X線回折
図形は,第2図に示すように,主要ピークが正方または
立方ジルコニアのそれとほぼ同じ位置にある結晶構造を
持つ。Zrに対しSO4 2-が相対的に少なく,かつZrとOの
空間配置が正方または立方ジルコニアに類似し,結晶中
Zrの空間濃度がZrO2に近いことは極めて重要な点で,加
熱により第1図に示すように200℃までに含有する水を
失うが結晶構造は殆んど変化なく保たれ,それ自体空気
中600℃まで安定であるほか,さらに高温で熱処理すれ
ば分解脱硫によって比較的強度を持ったジルコニアの薄
板状形骸粒子を生成する。
According to electron diffraction, this thin plate crystal has hexagonal or trigonal symmetry crystal axes perpendicular to the plane of the layer, and its powder X-ray diffraction pattern shows that the major peak is square or cubic zirconia, as shown in FIG. It has a crystal structure in almost the same position as that of. SO 4 2− is relatively less than Zr, and the spatial arrangement of Zr and O is similar to that of tetragonal or cubic zirconia.
The fact that the spatial concentration of Zr is close to that of ZrO 2 is extremely important. As shown in Fig. 1, the water contained up to 200 ° C is lost by heating, but the crystal structure is maintained almost unchanged, and the air itself does not change. It is stable up to 600 ℃, and if it is heat-treated at a higher temperature, it decomposes and desulfurizes to form zirconia thin slab particles with relatively strong strength.

このSO4 2-を含む薄板状ジルコニア系微結晶は可溶性ジ
ルコニア塩をZrとして0.1〜1.5g・atom/l,SO4 2-イオン
を0.3〜3.0g・ion/l含有するPH1.0以下の酸性水溶液を1
10〜300℃に熱処理することによって液中に生成結晶化
させ得る。水溶液中Zrの濃度が0.1atom/l以下,あるい
はSO4 2-イオンの濃度が0.3g・ion/l以下の領域では析出
物は結晶性が悪く,薄板状の特徴を失い,また単斜型Zr
O2を混在するようになる。またZrが1.5g・atom/l以上,
あるいはSO4 2-が3.0g・ion/l以上の領域は析出に高温
度,長時間を要し実際的でない。良好な結果を得るため
には,Zrが0.2〜1.0g・atom,SO4 2-イオンが0.4〜1.5g・i
on/lで,かつ,SO4 2-/Zrのモル比が1.0以上であること
が望ましい。
This thin plate zirconia-based crystallite containing SO 4 2- is 0.1 to 1.5 g ・ atom / l containing soluble zirconia salt as Zr, and SO 4 2- ion is 0.3 to 3.0 g ・ ion / l containing PH 1.0 or less. 1 acidic solution
It can be produced and crystallized in the liquid by heat treatment at 10 to 300 ° C. In the region where the Zr concentration in the aqueous solution is 0.1 atom / l or less or the SO 4 2- ion concentration is 0.3 g · ion / l or less, the precipitate has poor crystallinity and loses the thin plate-like characteristics, and is monoclinic. Zr
O 2 will be mixed. Also, Zr is 1.5g ・ atom / l or more,
Alternatively, in the region where SO 4 2- is 3.0 g · ion / l or more, high temperature and long time are required for precipitation, which is not practical. In order to obtain good results, Zr is 0.2--1.0 g ・ atom and SO 4 2− ion is 0.4--1.5 g ・ i.
It is desirable that it is on / l and the molar ratio of SO 4 2- / Zr is 1.0 or more.

本発明方法により得られる微結晶はPH約3以上で凝集沈
降し、PH5〜6附近で解膠し,ゾルとなる。また有機溶
媒で水を置換後乾燥するか,凍結乾燥を行えば,凝集の
ない個々の粒子として得ることができる。
The microcrystals obtained by the method of the present invention coagulate and settle at a pH of about 3 or more, and peptize at a pH of about 5 to 6 to form a sol. Further, if water is replaced with an organic solvent and then dried or freeze-dried, individual particles without aggregation can be obtained.

SO4 2-を含有する上記薄板状微結晶は水を含むが,これ
は約200℃以下で離脱し,結晶構造,特にZrとOの相互
関係は殆んど変化しない。この結晶構造は約600℃まで
保たれ,600〜700℃で脱硫分解してジルコニアとなる。
このジルコニアは分解前の微結晶の形状を残して薄板状
となるが,分解条件によってはジルコニア粒子間に若干
の凝集が起る。しかしながらこの凝集は多くは層面間で
起り,薄板状の特徴を失うことはない。炭素質物質を薄
板状微結晶の間に介在させて熱分解した後,低温で炭素
を燃焼除去すれば凝集のない個々の薄板状ジルコニア微
粒子を得ることもできる。また熱分解時にY2O3,CaOなど
を共存させておけば,固溶体化し,安定化もしくは部分
安定化ジルコニアの薄板状微粒子となる。これらの脱硫
した薄板状ジルコニア微粒子は,原粒子の形状によって
六角板状もしくは円板状であり,脱硫の条件によって緻
密質もしくは多孔質であるが,何れも十分な形状維持強
度を以ている。これらの微粒子粉末は再び水に分散させ
てゾルにすることできる。
The thin plate-like crystallites containing SO 4 2− contain water, but they are released at about 200 ° C. or below, and the crystal structure, especially the mutual relation between Zr and O, hardly changes. This crystal structure is maintained up to about 600 ℃, and is desulfurized and decomposed at 600-700 ℃ to form zirconia.
This zirconia becomes a thin plate shape, leaving the shape of microcrystals before decomposition, but some agglomeration occurs between the zirconia particles depending on the decomposition conditions. However, most of this agglomeration occurs between the layers, and the thin plate-like characteristics are not lost. It is also possible to obtain individual thin plate-shaped zirconia fine particles without agglomeration by interposing a carbonaceous substance between thin plate-like microcrystals for thermal decomposition and then burning and removing carbon at a low temperature. If Y 2 O 3 , CaO, etc. are allowed to coexist during thermal decomposition, they form solid solution and become thin plate-like particles of stabilized or partially stabilized zirconia. These desulfurized thin plate zirconia fine particles have a hexagonal plate shape or a disk shape depending on the shape of the original particles, and are dense or porous depending on the desulfurization conditions, but all have sufficient shape maintaining strength. These fine particle powders can be dispersed again in water to form a sol.

以上,本発明の薄板状微粒子は,脱硫物は勿論,脱硫前
でもZrO2に極めて近く,それ自体600℃以上まで安定で
あり,また加熱脱硫で原形状を保持して薄板状ジルコニ
アとなるので,両者ほぼ類似の作用,効果を持ち,セラ
ミック原料としてはほぼ同一の用途がある。両者とも,
薄板状もしくはシート状セラミックスの主原料,あるい
は副原料として好適である。ともに成形時,平面方向に
配列し易く,極めて薄い膜に対しても成形強度を与え,
かつ焼成時面積方向の収縮を軽減して亀裂や反りなどの
発生を防ぐからである。また両者とも,PZTなどの圧電性
セラミックスの原料として特異な効果を持ち,ジルコニ
アと反応して生成する圧電結晶はジルコニアの薄板性に
よって配向し,その性能を高める。またこれらの微粒子
を懸濁したゾルまたは泥漿は固体面への塗布によって面
方向に配向するので,セラミックスへの表面処理の他,
一般にコーティング材,塗料充填材,化粧品,防錆塗
料,耐酸化耐熱塗料などとしても極めて価値の高いもの
である。
As described above, the thin plate-like fine particles of the present invention are extremely close to ZrO 2 before desulfurization as well as desulfurization, and are stable up to 600 ° C. or more themselves, and they retain their original shape by heat desulfurization to become thin plate zirconia. Both have similar functions and effects and have almost the same uses as ceramic raw materials. Both
It is suitable as a main raw material or auxiliary raw material for thin plate or sheet ceramics. Both of them are easy to arrange in the plane direction at the time of molding, and give molding strength even to an extremely thin film.
In addition, the shrinkage in the area direction during firing is reduced to prevent the occurrence of cracks or warpage. In addition, both have a unique effect as a raw material for piezoelectric ceramics such as PZT, and the piezoelectric crystals formed by reacting with zirconia are oriented by the thinness of zirconia and enhance its performance. In addition, the sol or sludge in which these fine particles are suspended is oriented in the surface direction when applied to a solid surface, so in addition to surface treatment of ceramics,
In general, it is also extremely valuable as a coating material, paint filler, cosmetics, rust preventive paint, oxidation resistant heat resistant paint, etc.

実施例1 試薬炭酸ジルコニアを硫酸に溶解して硫酸ジルコニア水
溶液を調製した。溶液濃度はZrとして約1.0mol/l,H2SO4
が約1.5mol/lで,PHが1以下であった。これをテフロン
容器中に密閉し,オートクレーブ中で200℃に4日間加
熱処理を行ったところ白色の析出物を得た。これは、水
洗乾燥後透過電子顕微鏡で観察すると,一辺が1000Å程
度以上である六角板状の微結晶から成り,厚さは約70Å
であった。
Example 1 A zirconia sulfate aqueous solution was prepared by dissolving the reagent zirconia carbonate in sulfuric acid. The solution concentration is about 1.0 mol / l as Zr, H 2 SO 4
Was about 1.5 mol / l and PH was less than 1. This was sealed in a Teflon container and heat-treated at 200 ° C. for 4 days in an autoclave to obtain a white precipitate. This is composed of hexagonal plate-like crystallites with a side of about 1000 Å or more and a thickness of about 70 Å when observed with a transmission electron microscope after washing with water and drying.
Met.

この微結晶の化学組成は,化学分析によればほぼZr5O
8(SO4)2・nH2Oに相当し,その加熱重量変化は第1図の
ようで,水はほぼ200℃までに除去され,650℃附近で分
解脱硫する。この微結晶の粉末X線回折図形(CuKα)
は,第2図の(a)に示すようで,2θが8°附近の層状
構造を示すピーク以外は,ほとんどの主要ピークが正方
型ZrO2微粒子(第2図(e))のそれとほぼ同一の位置
にある。この微結晶は熱的に安定で,600℃2時間の仮焼
後も,第2図(b)に見られるように,8°附近のピーク
が若干高角度に移行するのみで,他のピークの位置およ
び強度は殆んど変化しない。700℃の仮焼物は第2図
(c)のように単斜ジルコニアとなるが透過電子顕微鏡
によればこの単斜ジルコニア粒子は薄板状の形骸を完全
に残している。
The chemical composition of this crystallite is approximately Zr 5 O according to chemical analysis.
Corresponding to 8 (SO 4 ) 2 · nH 2 O, its weight change due to heating is as shown in Fig. 1. Water is removed up to about 200 ° C and decomposed and desulfurized near 650 ° C. Powder X-ray diffraction pattern (CuKα) of this crystallite
As shown in Fig. 2 (a), most of the major peaks are almost the same as those of the tetragonal ZrO 2 particles (Fig. 2 (e)), except for the peak showing a layered structure with 2θ close to 8 °. In the position. These crystallites are thermally stable, and even after calcination at 600 ° C for 2 hours, the peak around 8 ° only shifts to a slightly higher angle, as shown in Fig. 2 (b), and the other peaks. The position and the intensity of are almost unchanged. The calcined product at 700 ° C. becomes monoclinic zirconia as shown in FIG. 2 (c), but the monoclinic zirconia particles completely leave a thin plate-like skeleton according to a transmission electron microscope.

実施例2 試薬塩化ジルコニルにアンモニアを加えて水酸化ジルコ
ニウムの沈澱を作り,十分に水洗した後濃硫酸を加えて
透明な水溶液とした。これから,Zrの濃度を0.5mol/l,H2
SO4の濃度を1.0mol/lにした水溶液,およびZrの濃度を
0.25mol/l,H2SO4の濃度を0.5mol/lにした水溶液を調製
し,それぞれテフロン容器中に密閉してオートクレーブ
中200℃で3日間処理を行ったところ,それぞれ白色の
析出物を得た。化学分析,電子顕微鏡観察,粉末X線回
折によれば,前者は実施例1により得られるものと,化
学組成,結晶性,粒子形状などすべて殆んど同じであ
り,また後者は第2図(d)に示すように結晶性がいく
らか悪いが,同一の結晶構造を持ち,形状は円板状で,
化学組成はほぼ同一の薄板状微結晶であり,900℃に焼成
したジルコニアはその薄板状を完全に保留する。
Example 2 Ammonia was added to the reagent zirconyl chloride to form a precipitate of zirconium hydroxide, which was thoroughly washed with water and then concentrated sulfuric acid was added to obtain a transparent aqueous solution. From this, the Zr concentration was changed to 0.5 mol / l, H 2
Aqueous solution with SO 4 concentration of 1.0 mol / l and Zr concentration
An aqueous solution containing 0.25 mol / l and H 2 SO 4 concentration of 0.5 mol / l was prepared, and each was sealed in a Teflon container and treated at 200 ° C for 3 days in an autoclave. Obtained. According to chemical analysis, electron microscope observation, and powder X-ray diffraction, the former is almost the same as that obtained in Example 1 in chemical composition, crystallinity, particle shape, and the latter is shown in FIG. As shown in d), the crystallinity is somewhat poor, but they have the same crystal structure and are disk-shaped.
The chemical composition is plate-like microcrystals with almost the same chemical composition, and zirconia calcined at 900 ℃ completely retains the plate-like shape.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のSO4 2-を含有する薄板状ジルコニア系
微結晶の粉末の熱重量分析結果である。また第2図は試
料の粉末X線回折図形(CuKα)を示すもので,(a)
は本発明のSO4 2-を含有する薄板状ジルコニア系微結晶
で結晶性の高いもの,(b)は(a)を600℃に仮焼し
た粉末,(c)は(a)を700℃に仮焼した粉末,
(d)は(a)よりいくらか結晶性の劣るもの,(e)
は水酸化物を低温で仮焼した正方型ZrO2微結晶である。
FIG. 1 shows the results of thermogravimetric analysis of the powder of thin plate zirconia-based microcrystals containing SO 4 2− according to the present invention. Fig. 2 shows the powder X-ray diffraction pattern (CuKα) of the sample.
Is a thin plate-like zirconia-based microcrystal containing SO 4 2- of the present invention, which has high crystallinity, (b) is a powder obtained by calcining (a) to 600 ° C., (c) is (a) 700 ° C. Powder calcined into
(D) is somewhat less crystalline than (a), (e)
Is a tetragonal ZrO 2 microcrystal obtained by calcining a hydroxide at low temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可溶性ジルコニウム塩をZrとして0.1〜1.5
g・atm/l、SO4 2-イオンを0.3〜3.0g・ion/l含有するPH
1.0以下の酸性水溶液を110〜350℃に熱処理することに
より得られる、 化学組成がほぼZr5O8(SO4)2・nH2Oに相当する薄板状ジ
ルコニア系微結晶であって; Zrを主とする金属イオンと、その原子数のほぼ2/5のSO4
2-イオンを含有する層状構造の化合物で、層面に垂直に
六方もしくは三方対称の結晶軸を持ち、ZrとOの相互位
置がZrO2の結晶と類似し、その粉末X線解析図形の主要
ピークのいくつかが正方もしくは立方晶ZrO2とほぼ同じ
位置になる結晶であり、層面に平行方向に拡がり、厚さ
が500Å以下であることを特徴とする薄板状ジルコニア
系微結晶。
1. A soluble zirconium salt having a Zr of 0.1 to 1.5.
PH containing g ・ atm / l, SO 4 2- ion 0.3 to 3.0 g ・ ion / l
A thin plate zirconia-based crystallite having a chemical composition substantially equivalent to Zr 5 O 8 (SO 4 ) 2 · nH 2 O, obtained by heat-treating an acidic aqueous solution of 1.0 or less at 110 to 350 ° C .; Main metal ion and SO 4 which is almost 2/5 of the number of atoms
A compound with a layered structure containing 2- ions, which has a hexagonal or trigonal symmetry crystal axis perpendicular to the layer plane, and the mutual position of Zr and O resembles that of ZrO 2 crystals, and the main peaks of its powder X-ray analysis pattern Some of the crystals are in the same position as tetragonal or cubic ZrO 2 , and are thin plate zirconia-based microcrystals characterized by spreading in the direction parallel to the layer plane and having a thickness of 500 Å or less.
JP14723885A 1985-07-03 1985-07-03 Thin plate zirconia-based crystallites Expired - Lifetime JPH0672016B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14723885A JPH0672016B2 (en) 1985-07-03 1985-07-03 Thin plate zirconia-based crystallites
DE86108797T DE3688153T2 (en) 1985-07-03 1986-06-27 Scale-like fine crystals of the zirconium oxide type and process for their production.
EP86108797A EP0207469B1 (en) 1985-07-03 1986-06-27 Flaky zirconia type fine crystals and method for producing them
CN86104600A CN1008997B (en) 1985-07-03 1986-07-02 The production method of flaky zirconia type fine crystals
KR1019860005359A KR920007598B1 (en) 1985-07-03 1986-07-02 Flaky zirconia type fine crystals and methods of producing the same
AU59718/86A AU591141B2 (en) 1985-07-03 1986-07-03 Flaky zirconia fine crystals and methods of producing them
US06/881,812 US4765970A (en) 1985-07-03 1986-07-03 Flaky zirconia type fine crystals and methods of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14723885A JPH0672016B2 (en) 1985-07-03 1985-07-03 Thin plate zirconia-based crystallites

Publications (2)

Publication Number Publication Date
JPS627629A JPS627629A (en) 1987-01-14
JPH0672016B2 true JPH0672016B2 (en) 1994-09-14

Family

ID=15425699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14723885A Expired - Lifetime JPH0672016B2 (en) 1985-07-03 1985-07-03 Thin plate zirconia-based crystallites

Country Status (1)

Country Link
JP (1) JPH0672016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646843B1 (en) * 1989-05-10 1991-12-13 Rhone Poulenc Chimie MICROPOROUS ZIRCONIA AND PROCESS FOR THE PREPARATION THEREOF
DE19653629A1 (en) * 1996-12-20 1998-06-25 Basf Ag Monoclinic zirconium oxide with a high surface area

Also Published As

Publication number Publication date
JPS627629A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
Douy Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses
Hosono et al. Ferroelectric BaTaO2N crystals grown in a BaCN2 flux
KR910019931A (en) Ceramic composition and its obtaining method
Zhang et al. Anomalous piezoelectric response of ferroelectric mesocrystalline BaTiO 3/Bi 0.5 Na 0.5 TiO 3 nanocomposites designed by strain engineering
Bogicevic et al. Morphogenesis mechanisms in the solvothermal synthesis of BaTiO 3 from titanate nanorods and nanotubes
US5066617A (en) Method for producing plzt powder
Oren et al. Preparation of lead zirconate by homogeneous precipitation and calcination
KR920007598B1 (en) Flaky zirconia type fine crystals and methods of producing the same
Supriya Effect of doping and enhanced microstructures of bismuth titanates as aurivillius perovskites
JPH0437010B2 (en)
JPH0346407B2 (en)
JPH0672016B2 (en) Thin plate zirconia-based crystallites
Bose et al. Novel synthesis route to make nanocrystalline lead zirconate titanate powder
Deloume et al. Molten alkali metal oxonitrates, a liquid state for nanosized perovskite phase elaboration
JPH0472772B2 (en)
JPS62223018A (en) Flaky fine crystal of hydrated zirconia and production thereof
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS62138329A (en) Ultrathin sheet-like zirconia fine crystal powder and production thereof
Lu et al. Preparation of Pb (Zr, Ti) O3-Pb (Ni13Nb23) O3 solid solution powder from hydrothermally-treated precursors
Shahnawaz et al. EVOLUTION AND CHARACTERIZATIONS OF AURIVILLIUS BISMUTH TITANATE BY MODIFIED SOLID STATE PROCESSING
Guinebretiere et al. Sol-gel coating of ceramic powders
JPH0420851B2 (en)
Abothu et al. Nanocomposite versus monophasic sol-gel processing of PLZT ceramics
JP3237140B2 (en) Method for producing hydrated zirconia sol and zirconia powder
張文雄 et al. Development of functional mesocrystalline materials and ferroelectric perovskites