JPH0671359A - Method for detecting bend of steel tube - Google Patents

Method for detecting bend of steel tube

Info

Publication number
JPH0671359A
JPH0671359A JP24444692A JP24444692A JPH0671359A JP H0671359 A JPH0671359 A JP H0671359A JP 24444692 A JP24444692 A JP 24444692A JP 24444692 A JP24444692 A JP 24444692A JP H0671359 A JPH0671359 A JP H0671359A
Authority
JP
Japan
Prior art keywords
boom
steel pipe
pipe
bending
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24444692A
Other languages
Japanese (ja)
Other versions
JP2745996B2 (en
Inventor
Noboru Ohira
昇 大平
Kozo Maeda
孝三 前田
Mamoru Inaba
護 稲葉
Mikio Sawa
幹夫 澤
Noritsugu Mifune
法嗣 三船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24444692A priority Critical patent/JP2745996B2/en
Publication of JPH0671359A publication Critical patent/JPH0671359A/en
Application granted granted Critical
Publication of JP2745996B2 publication Critical patent/JP2745996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To enable measuring in real time the direction and amount of bend of steel tube during expansion by arranging a prescribed number of non-contact type distance measuring devices in the downstream direction from a tube expansion head. CONSTITUTION:The non-contact type distance measuring devices 4a-4f are arranged at least in three places at equal spaces apart on a boom 2 in the downstream direction from the tube expansion head 3. Also these distance measuring devices 4a-4f are arranged for an adequate angle on the peripheral surface of the boom 2 so as to measure in at least two directions a distance to the inner surface 5, 6 of the steel tube 1 with the peripheral surface of the boom 2 as a reference. Namely, the distance measuring devices are arranged dividedly in groups, 4a-4c and 4d-4f. The distance measuring devices of each group are arranged in parallel to the center axis 7 of the boom 2 and nearly in a straight line. A reference ultrasonic distance measuring device 4l is attached to the boom 2, and the variance of sound velocity due to temperature is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばUOE鋼管の曲
がり方向及び曲がり量をオンラインで検知する鋼管の曲
がり検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting bending of a UOE steel pipe by detecting the bending direction and the amount of bending of the pipe online.

【0002】[0002]

【従来の技術】UOE製管に際しては、形状の改善や溶
接に伴う残留応力の除去のために拡管機による拡管が行
われる。この拡管に際しては、拡管前に曲がりを知って
おくことが、拡管操作の的確性の点から重要である。こ
のための提案はきわめて少なく、代表例としては、実開
昭61−107431号公報のものがある。これは、拡
管ヘッドより下流側(鋼管が送られる方向を基準にして
下流側を意味する。以下同じ。)にてブームと管内面と
の距離を複数個のメジャリングロールを用いて周方向複
数点において測定することにより曲がり量を検出するも
のである。
2. Description of the Related Art When making a UOE pipe, the pipe is expanded by a pipe expander in order to improve the shape and remove the residual stress caused by welding. At the time of this pipe expansion, it is important to know the bend before the pipe expansion from the viewpoint of the accuracy of the pipe expansion operation. There are very few proposals for this purpose, and a representative example thereof is that of Japanese Utility Model Laid-Open No. 61-107431. This means that the distance between the boom and the inner surface of the pipe on the downstream side of the pipe expanding head (which means the downstream side with respect to the direction in which the steel pipe is fed. The same applies hereinafter) is set in the circumferential direction using a plurality of measuring rolls. The amount of bending is detected by measuring at a point.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記公報に示
された方法では、メジャリングロールを鋼管内面に接触
させる手段が機構的に複雑になるし、拡管ステップごと
にメジャリングロールを繰り返し伸縮させねばならない
ので時間がかかり、さらに振動等の影響によって検出精
度が高くない。また最初の半分を拡管するとき、未拡管
の部分はビード溶接部の残留応力の影響による反りが残
っており、拡管ヘッド前後での鋼管の軸線はブームに対
して平行となっていない。したがって、拡管後の基準位
置測定と変位測定による傾き情報には未拡管部分の反り
の影響が含まれ、正確な曲がり測定ができないという課
題があった。
However, in the method disclosed in the above publication, the means for bringing the measuring roll into contact with the inner surface of the steel pipe is mechanically complicated, and the measuring roll is repeatedly expanded and contracted at each pipe expanding step. Since it must be done, it takes time, and the detection accuracy is not high due to the influence of vibration and the like. When expanding the first half, the unexpanded part still has a warp due to the residual stress of the bead weld, and the axis of the steel pipe before and after the expanding head is not parallel to the boom. Therefore, the tilt information obtained by the reference position measurement and the displacement measurement after the pipe expansion includes the influence of the warp of the unexpanded portion, and there is a problem that the accurate bend measurement cannot be performed.

【0004】本発明は、上記のような課題を解決するた
めになされたもので、拡管中にリアルタイムで曲がりを
正確に検知できる鋼管の曲がり検知方法を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for detecting bending of a steel pipe which can accurately detect bending in real time during pipe expansion.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る鋼管の曲がり検知方法は、前述のよう
に拡管後の基準位置測定と変位測定による傾き情報によ
って曲がりを測定するのではなく、拡管ヘッドより下流
方向の等間隔の少なくとも3カ所において、ブーム周面
を基準として鋼管内面までの距離を、ブーム周面に取り
付けた非接触式距離計により少なくとも周方向の2カ所
について計測し、その結果得られた計測値を演算するこ
とにより、鋼管の曲がり方向及び曲がり量を検知するも
のである。
In order to achieve the above object, the method for detecting the bend of a steel pipe according to the present invention measures the bend by the reference position measurement after pipe expansion and the inclination information by the displacement measurement as described above. Rather than measuring the boom circumference, the distance from the boom circumference to the steel pipe inner surface is measured at least at two locations in the circumferential direction with a non-contact distance meter attached to the boom circumference. Then, the bending direction and the bending amount of the steel pipe are detected by calculating the measurement value obtained as a result.

【0006】また、本発明は、非接触式距離計に超音波
距離計を用いるとともに、両端にブームの周面に接触す
る支持脚を有する治具を用いて鋼管の曲がり量を補正す
るものである。
In addition, the present invention uses an ultrasonic range finder as a non-contact type range finder and corrects the bending amount of a steel pipe by using a jig having support legs at both ends which come into contact with the peripheral surface of the boom. is there.

【0007】[0007]

【作用】非接触式距離計を拡管ヘッドより下流方向に等
間隔に少なくとも3カ所及びブーム周方向に少なくとも
2カ所配置することにより、拡管中においてブーム周面
から鋼管内面までの距離を測定することができる。これ
らの距離計の測定値を後述する方法で演算すれば、鋼管
の曲がり方向及び曲がり量をリアルタイムに検知するこ
とができる。
[Operation] By arranging at least three non-contact distance meters at equal intervals in the downstream direction of the pipe expanding head and at least two places in the boom circumferential direction, to measure the distance from the boom peripheral surface to the steel pipe inner surface during pipe expanding. You can If the measured values of these rangefinders are calculated by the method described below, the bending direction and bending amount of the steel pipe can be detected in real time.

【0008】また、本測定方式のように鋼管の曲がりを
超音波距離計により拡管ヘッド直後の比較的短い間隔で
検出しようとする場合には、各距離計のわずかなゼロ点
のバラツキや距離計の取り付け座面のブーム中心軸に対
する非対称性によって、曲がり情報が大きく変動するの
で、これらを総合的にかつ簡単に校正するため、両端に
ブームの周面に接触する支持脚を有する治具を用いて、
ブーム周面から治具内面までの距離を測定し、これらの
測定値でもって上で得られた鋼管の曲がり量を補正する
ことにより、鋼管の曲がりを高精度に測定することがで
きる。
When it is attempted to detect the bending of the steel pipe by the ultrasonic range finder at a relatively short interval immediately after the pipe expanding head as in the present measuring method, a slight variation in the zero point of each range finder or the range finder. Since the bending information fluctuates greatly due to the asymmetry of the mounting seat surface of the robot with respect to the boom center axis, in order to calibrate these comprehensively and easily, use a jig that has support legs that contact the peripheral surface of the boom at both ends. hand,
By measuring the distance from the circumferential surface of the boom to the inner surface of the jig and correcting the bending amount of the steel pipe obtained above with these measured values, the bending of the steel pipe can be measured with high accuracy.

【0009】[0009]

【実施例】図1は本発明の鋼管の曲がり検知方法の一実
施例を示す説明図であり、図において、1は拡管中の被
処理鋼管(以下、単に鋼管という)、2は先端に拡管ヘ
ッド3を有するブームで、その基端は拡管機本体(図示
せず)に固定保持されている。4a〜4fは拡管ヘッド
3より下流方向のブーム2周面上に等間隔に少なくとも
3カ所に配置された非接触式距離計で、本実施例では例
えば超音波距離計を用いている。これらの距離計4a〜
4fはまたブーム2の周面を基準として鋼管1の内面
5,6までの距離を少なくとも2方向について計測する
べく、ブーム2の周面上に適当な角度に振り分けて、つ
まり距離計4a〜4cの組と距離計4d〜4fの組に分
けて配置されている。各組の距離計はブーム2の中心軸
7に対して平行にほぼ一直線上に配置されている。実施
例では2組の距離計が180°隔てて配置されている。
4gは音速変動による超音波距離計4a〜4fのスパン
変動を補正するための基準超音波距離計であり、基準距
離に反射板4hを有するもので、この基準超音波距離計
4gをブーム2に取り付け、気温による音速変動を補正
することとしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an embodiment of a method for detecting bending of a steel pipe according to the present invention. In the drawing, 1 is a steel pipe to be treated (hereinafter simply referred to as steel pipe) while being expanded, and 2 is a pipe expanded at a tip thereof. A boom having a head 3 whose base end is fixedly held by a tube expander body (not shown). Reference numerals 4a to 4f are non-contact distance meters which are arranged at equal intervals on the peripheral surface of the boom 2 in the downstream direction of the pipe expanding head 3, and in this embodiment, for example, ultrasonic distance meters are used. These rangefinders 4a-
In order to measure the distance to the inner surfaces 5 and 6 of the steel pipe 1 in at least two directions with reference to the peripheral surface of the boom 2, 4f is distributed on the peripheral surface of the boom 2 at an appropriate angle, that is, the distance meters 4a to 4c. And the rangefinders 4d to 4f are arranged separately. The distance meters of each set are arranged in parallel with the central axis 7 of the boom 2 and on a substantially straight line. In the embodiment, two sets of rangefinders are arranged 180 ° apart.
Reference numeral 4g is a reference ultrasonic rangefinder for correcting the span variation of the ultrasonic rangefinders 4a to 4f due to sound velocity variation, and has a reflector 4h at the reference distance. The reference ultrasonic rangefinder 4g is attached to the boom 2. It will be installed and the sound velocity fluctuation due to temperature will be corrected.

【0010】UOE鋼管1はブーム2の拡管ヘッド3に
対して所定長さずつ間欠的に外嵌挿入され、このとき拡
管ヘッド3の拡張動作によって拡管される。そこで次
に、本実施例の曲がり検知方法について図2を参照して
説明する。図2は本測定方式による測定原理を示す図で
ある。鋼管1を任意の長さ挿入した位置における各距離
計4a〜4fの測定値をxiとすると、ブーム中心軸7
からの鋼管1の中心軸8のずれyi は y1 =x1 −x4 y2 =x2 −x5 y3 =x3 −x6 となり、中心軸8の曲がりをあらわす量Mは M=(y1 +y3 )/2−y2 (1) となる。したがって、式(1)のMの値の正負で鋼管1
の曲がりの方向が判り、かつ、Mの値の大小で曲がり量
が判る。
The UOE steel pipe 1 is intermittently fitted and inserted into the pipe expanding head 3 of the boom 2 by a predetermined length, and the pipe is expanded by the expanding operation of the pipe expanding head 3 at this time. Therefore, next, the bending detection method of this embodiment will be described with reference to FIG. FIG. 2 is a diagram showing the measurement principle of this measurement method. If the measured value of each distance meter 4a to 4f at the position where the steel pipe 1 is inserted with an arbitrary length is xi, the boom center shaft 7
The deviation yi of the central axis 8 of the steel pipe 1 from the above is y1 = x1 -x4 y2 = x2 -x5 y3 = x3 -x6, and the amount M representing the bending of the central axis 8 is M = (y1 + y3) / 2-y2 ( 1) Therefore, if the value of M in equation (1) is positive or negative, the steel pipe 1
The bending direction can be determined, and the amount of bending can be determined by the magnitude of the M value.

【0011】次に、式(1)により得られる鋼管の曲が
り量Mの校正方法について説明する。これは、上述のよ
うに鋼管の曲がりを超音波距離計4a〜4fにより拡管
ヘッド直後の比較的短い間隔で検出しようとする場合に
は、各距離計4a〜4fのわずかなゼロ点のバラツキや
距離計の取り付け座面のブーム中心軸7に対する非対称
性によって、曲がり情報が大きく変動するからである。
そこで、これらを総合的にかつ簡単に校正するため、図
3に示すような治具10を用いて曲がり量Mを校正す
る。治具10はある程度の真直度と剛性を持つ直線状の
ものであり、両端にブーム2の周面に接触してブーム2
とほぼ同心に保持される支持脚10a,10bを有して
いる。この治具10による校正は拡管操作の前もしくは
後において距離計取付部の2方向において合計2度行っ
ておけばよい。
Next, a method of calibrating the bending amount M of the steel pipe obtained by the equation (1) will be described. This is because when the bending of the steel pipe is to be detected by the ultrasonic distance meters 4a to 4f at a relatively short interval immediately after the pipe expanding head as described above, there are slight variations in the zero points of the distance meters 4a to 4f. This is because the bending information greatly changes due to the asymmetry of the mounting surface of the rangefinder with respect to the boom center axis 7.
Therefore, in order to calibrate these comprehensively and easily, the bending amount M is calibrated using a jig 10 as shown in FIG. The jig 10 is a straight line having a certain degree of straightness and rigidity, and the ends of the jig 10 come into contact with the circumferential surface of the boom 2 and the boom 2
Has support legs 10a and 10b that are held substantially concentrically with. The calibration with the jig 10 may be performed twice in total in the two directions of the distance meter mounting portion before or after the tube expanding operation.

【0012】図3に示すように、治具10の支持脚10
a,10bの長さをそれぞれl1 ,l2 ,治具10中央
部での真直度を外側方向を正符号としてΔ,治具10を
ブーム2に接触させたときの各距離計4a〜4fの測定
値をxi1,鋼管1を挿入したときの各距離計4a〜4f
の測定値をxi ,各距離計4a〜4fの座面のブーム中
心軸7までの距離をai とするとき、距離計の座面位置
におけるブーム2の周面から鋼管内面5,6までの距離
は x1 +(l1 −x11) x3 +(l2 −x31) x4 +(l1 −x41) x6 +(l2 −x61) 中央の距離計4b,4eについては、両端座面の中間面
から鋼管内面5,6までの距離は x2 +([l1 +l2 ]/2+Δ−x21) x5 +([l1 +l2 ]/2+Δ−x51) となる。両端座面の中間位置とブーム中心軸7との距離
をa2 ,a5 とすると a2 =(a1 +a3 )/2 a5 =(a4 +a6 )/2 である。したがって、ブーム中心軸7からの鋼管1の中
心軸8のずれyi は y1 ={x1 +[l1 −x11]+a1 −(x4 +[l1 −x41]+a4 )}/2 =(x1 −x4 )/2−(x11−x41)/2+(a1 −a4 )/2 y2 ={x2 +[l1 +l2 ]/2+Δ−x21+a2 −(x5 +[l1 +l2 ] /2+Δ−x51+a5 )}/2 =(x2 −x5 )/2−(x21−x51)/2+(a2 −a5 )/2 y3 ={x3 +[l2 −x31]+a3 −(x6 +[l2 −x61]+a6 )}/2 =(x3 −x6 )/2−(x31−x61)/2+(a3 −a6 )/2 となる。したがって、式(1)の鋼管1の中心軸8の曲
がりをあらわす量Mは M=(y1 +y3 )/2−y2 ={(x1 −x4 )/2−(x11−x41)/2+(a1 −a4 )/2 +(x3 −x6 )/2−(x31−x61)/2+(a3 −a6 )/2}/2 −{(x2 −x5 )/2−(x21−x51)/2+(a2 −a5 )/2} ={(x1 −x4 )/2+(x3 −x6 )/2}/2−(x2 −x5 )/2 −{(x11−x41)/2+(x31−x61)/2}/2+(x21−x51)/ 2 (2) となる。ここで、両端座面の中間面とブーム中心軸との
距離をa2 ,a5 としているので、 a2 =(a1 +a3 )/2 a5 =(a4 +a6 )/2 の関係を用いている。したがって、式(2)から、治具
10をブーム2の周面に接触させたときの各距離計4a
〜4fの測定値x11,x21,x31,x41,x51,x61の
みを用いて曲がり量の補正値が求まる。
As shown in FIG. 3, a supporting leg 10 of the jig 10 is provided.
The lengths of a and 10b are respectively l1 and l2, the straightness at the central portion of the jig 10 is Δ with the outer direction being a positive sign, and the distance meters 4a to 4f are measured when the jig 10 is brought into contact with the boom 2. Value is xi1, each distance meter 4a-4f when steel pipe 1 is inserted
Where xi is the measured value of each distance meter 4a to 4f and the distance to the boom center axis 7 of the seat surface of each distance meter 4a-4f is ai, the distance from the peripheral surface of the boom 2 to the steel pipe inner surfaces 5 and 6 at the seat surface position of the distance meter. Is x1 + (l1-x11) x3 + (l2-x31) x4 + (l1-x41) x6 + (l2-x61) For the central rangefinders 4b and 4e, from the intermediate surface of both seats to the inner surface of the steel pipe 5, The distance to 6 is x2 + ([l1 + l2] / 2 + [Delta] -x21) x5 + ([l1 + l2] / 2 + [Delta] -x51). Assuming that the distance between the intermediate position of the seats on both ends and the boom center axis 7 is a2, a5, then a2 = (a1 + a3) / 2 a5 = (a4 + a6) / 2. Therefore, the deviation yi of the central axis 8 of the steel pipe 1 from the boom central axis 7 is y1 = {x1 + [l1-x11] + a1- (x4 + [l1-x41] + a4)} / 2 = (x1-x4) / 2- (x11-x41) / 2 + (a1-a4) / 2y2 = {x2 + [l1 + l2] /2+.DELTA.-x21+a2-(x5 + [l1 + l2] /2+.DELTA.-x51+a5)} / 2 = (x2-x5 ) / 2- (x21-x51) / 2 + (a2-a5) / 2y3 = {x3 + [l2-x31] + a3-(x6 + [l2-x61] + a6)} / 2 = (x3-x6) / 2- (x31-x61) / 2 + (a3-a6) / 2. Therefore, the amount M representing the bending of the central axis 8 of the steel pipe 1 of the formula (1) is M = (y1 + y3) / 2-y2 = {(x1-x4) / 2- (x11-x41) / 2 + (a1- a4) / 2 + (x3-x6) / 2- (x31-x61) / 2 + (a3-a6) / 2} / 2-{(x2-x5) / 2- (x21-x51) / 2 + (a2- a5) / 2} = {(x1-x4) / 2 + (x3-x6) / 2} / 2- (x2-x5) / 2-{(x11-x41) / 2 + (x31-x61) / 2} / It becomes 2+ (x21-x51) / 2 (2). Here, since the distance between the intermediate surface of the two end bearing surfaces and the boom center axis is a2, a5, the relationship of a2 = (a1 + a3) / 2a5 = (a4 + a6) / 2 is used. Therefore, from the formula (2), each distance meter 4a when the jig 10 is brought into contact with the peripheral surface of the boom 2
The correction value of the bending amount can be obtained by using only the measured values x11, x21, x31, x41, x51, x61 of 4f.

【0013】図4,図5に距離計の取付けピッチl=1
mとし、取付け方向は左右方向で互いに180°の角度
を持たせて、左右方向の曲がりを測定した例を示す。図
中に拡大中とあるのは、拡管ヘッド3が拡大中であるこ
とを示し、図中に収縮中とあるのは、拡管ヘッド3が収
縮中であることを示し、図中にフィード中とあるのは、
拡管機に対して鋼管1を挿入動作中(以下、「フィード
中」と略する)であることを示す。図4中では5回目、
図5中では4回目のフィード動作11のときに6台の全
距離計4a〜4fが鋼管1の内部に入り、計測が開始さ
れた。フィード中12のタイミング以外、すなわち拡大
中及び収縮中を含む鋼管1の停止中13で、鋼管1の中
心軸8のずれyi は大きく変化しているにもかかわら
ず、安定した曲がりMの値が得られている。図4は比較
的曲がりの少ない鋼管であり、図5は距離計4eの取付
け方向に凸であることを示している。
In FIG. 4 and FIG. 5, the distance mounting pitch l = 1
Here, an example is shown in which the bending in the left-right direction is measured with m as the mounting direction and the mounting directions have an angle of 180 ° with each other. In the figure, “expanding” indicates that the tube expanding head 3 is expanding, and “contracting” in the figure indicates that the tube expanding head 3 is contracting, indicating “feeding” in the figure. There is
This shows that the steel pipe 1 is being inserted into the pipe expanding machine (hereinafter, abbreviated as "feeding"). The fifth time in FIG. 4,
In FIG. 5, at the time of the fourth feeding operation 11, the six total distance meters 4a to 4f entered the inside of the steel pipe 1 and the measurement was started. Other than the timing of 12 during feeding, that is, during the stop 13 of the steel pipe 1 including during expansion and contraction, although the deviation yi of the central axis 8 of the steel pipe 1 greatly changes, the value of the stable bend M is Has been obtained. FIG. 4 shows a steel pipe having a relatively small bend, and FIG. 5 shows that it is convex in the mounting direction of the distance meter 4e.

【0014】ここでは、簡単のために軸方向3点及び周
方向2点で測定する場合を述べた。これは、鋼管の左右
あるいは上下方向の曲がりのみを測定する場合である。
しかし、周方向4点で測定する場合には同時に左右と上
下の両方向の曲がりを測定することができるので、本発
明はこのような場合を排除するものではない。また軸方
向の測定点も3点以上とすることができることはいうま
でもない。
Here, for simplification, the case where measurement is performed at three points in the axial direction and two points in the circumferential direction has been described. This is a case where only the bending of the steel pipe in the left-right direction or the vertical direction is measured.
However, in the case of measuring at four points in the circumferential direction, it is possible to simultaneously measure the bending in both the left and right directions and the up and down directions, and the present invention does not exclude such a case. Needless to say, the number of measurement points in the axial direction can be three or more.

【0015】以下に前記の周方向4点で測定して同時に
左右と上下の両方向の曲がりを測定する場合について述
べる。図6は上下及び左右方向の曲がりを同時に測定す
る場合の非接触式距離計の配置図である。図1と同一の
ものについては同一符号を用いている。図6に示すよう
に、拡管中は一般に溶接ビード部14が鉛直上方になる
ように挿入されるので、非接触式距離計の対象面がビー
ド部14と重ならないように距離計取り付け軸を鉛直軸
に対して角度をもたせてある。そして距離計4a〜4f
を含む面内での測定状態を図7(a)に、また距離計4
i〜4nを含む面内での測定状態を図7(b)に示して
ある。前者の面内での管中心軸8とブーム中心軸7との
偏差をXi(i=1〜3),曲がり量をMxとする。後
者の面内での管中心軸8とブーム中心軸7との偏差をY
i(i=1〜3),曲がり量をMyとする。ここで、X
i,Yiはそれぞれx1〜x6 ,x7 〜x12を用いて以
下のようになる。 X1 =x4 −x1 X2 =x5 −x2 X3 =x6 −x3 Y1 =x10−x7 Y2 =x11−x8 Y3 =x12−x9
A case will be described below in which the measurement is performed at four points in the circumferential direction and the bendings in both the left and right directions and the up and down directions are simultaneously measured. FIG. 6 is a layout view of a non-contact distance meter in the case of simultaneously measuring the bending in the vertical and horizontal directions. The same parts as those in FIG. 1 are designated by the same reference numerals. As shown in FIG. 6, since the weld bead portion 14 is generally inserted vertically upward during pipe expansion, the distance meter mounting axis is set vertically so that the target surface of the non-contact distance meter does not overlap the bead portion 14. It has an angle to the axis. And rangefinders 4a-4f
Fig. 7 (a) shows the measurement state in the plane including
FIG. 7B shows a measurement state in the plane including i to 4n. The deviation between the tube center axis 8 and the boom center axis 7 in the former plane is Xi (i = 1 to 3), and the bending amount is Mx. The deviation between the tube center axis 8 and the boom center axis 7 in the latter plane is Y
Let i (i = 1 to 3) and the amount of bending be My. Where X
i and Yi are as follows using x1 to x6 and x7 to x12, respectively. X1 = x4 -x1 X2 = x5 -x2 X3 = x6 -x3 Y1 = x10 -x7 Y2 = x11 -x8 Y3 = x12 -x9

【0016】次に、距離計取り付け面内での測定値X
i,Yiから上下、あるいは左右方向の曲がり量を求め
る方法を図8により説明する。距離計4a〜4fの取り
付け面と水平方向の成す角度をα,距離計4i〜4nの
取り付け面と水平方向の成す角度をβとし、各距離計取
り付け面と管中心軸8との交点をOiとすると、測定値
Xi,Yi,水平方向の変位ξi,垂直方向の変位ηi
の関係は図8のようになる。 a1i=Xi*sinα+Xi*cosα/k1 a2i=Yi*sinβ+Yi*cosβ/k2 と、a1i,a2iを定義する。ここで、k1 ,k2 は k1 =tanα k2 =tanβ である。このときξi,ηiは ξi=k1 *k2 *(a1i−a2i)/(k2 −k1 ) ηi=(k1 *a1i−k2 *a2i)/(k1 −k2 ) となる。したがって水平方向の曲がり量Mξを Mξ=(ξ1 +ξ3 )/2−ξ2 垂直方向の曲がり量Mηを Mη=(η1 +η3 )/2−η2 とすれば、水平及び垂直方向の曲がり量が計算できる。
Next, the measured value X on the mounting surface of the rangefinder
A method of obtaining the amount of bending in the vertical or horizontal direction from i, Yi will be described with reference to FIG. The angle formed by the mounting surfaces of the rangefinders 4a to 4f in the horizontal direction is α, the angle formed by the mounting planes of the rangefinders 4i to 4n in the horizontal direction is β, and the intersection point between each rangefinder mounting surface and the pipe central axis 8 is Oi. Then, measured values Xi, Yi, horizontal displacement ξi, vertical displacement ηi
The relationship is as shown in FIG. a1i = Xi * sinα + Xi * cosα / k1 a2i = Yi * sinβ + Yi * cosβ / k2 and a1i and a2i are defined. Here, k1 and k2 are k1 = tan α k2 = tan β. At this time, ξi and ηi are ξi = k1 * k2 * (a1i-a2i) / (k2-k1) ηi = (k1 * a1i-k2 * a2i) / (k1-k2). Therefore, if the horizontal bending amount M ξ is M ξ = (ξ 1 + ξ 3) / 2-ξ 2 and the vertical bending amount M η is M η = ( η 1 + η 3) / 2- η 2, the horizontal and vertical bending amounts Can be calculated.

【0017】[0017]

【発明の効果】以上のように本発明によれば、非接触式
距離計を拡管ヘッドより下流方向に等間隔に少なくとも
3カ所及びブーム周方向に少なくとも2カ所配置するこ
とにより、拡管中において鋼管の曲がり方向及び曲がり
量をリアルタイムに測定することができる。また、治具
を用いることにより鋼管の曲がり量を補正することによ
り、超音波距離計のわずかなゼロ点のバラツキや距離計
の取り付け座面のブーム中心軸に対する非対称性などに
起因する曲がり量の誤差を排除し、高精度の鋼管の曲が
り測定が可能になる。
As described above, according to the present invention, by disposing the non-contact distance meters at least at three positions at equal intervals in the downstream direction of the pipe expanding head and at least two positions in the boom circumferential direction, the steel pipe is expanded during pipe expansion. The bending direction and the bending amount of can be measured in real time. In addition, by correcting the bending amount of the steel pipe by using a jig, the bending amount due to slight variations in the zero point of the ultrasonic rangefinder and asymmetry of the distance seat mounting surface with respect to the boom center axis It eliminates errors and enables highly accurate bending measurement of steel pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】曲がりの測定原理を示す説明図である。FIG. 2 is an explanatory diagram showing a principle of measuring a bend.

【図3】治具による校正方法を示す説明図である。FIG. 3 is an explanatory diagram showing a calibration method using a jig.

【図4】実施例における測定結果の一例を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing an example of measurement results in an example.

【図5】実施例における測定結果の他の例を示す説明図
である。
FIG. 5 is an explanatory diagram showing another example of the measurement result in the example.

【図6】本発明の他の実施例を示す説明図である。FIG. 6 is an explanatory diagram showing another embodiment of the present invention.

【図7】図6の実施例における測定状態を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a measurement state in the embodiment of FIG.

【図8】図6の実施例における曲がり量を求めるための
座標関係図である。
FIG. 8 is a coordinate relationship diagram for obtaining a bending amount in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 鋼管 2 ブーム 3 拡管ヘッド 4a〜4f 非接触式距離計(超音波距離計) 5,6 鋼管内面 7 ブーム中心軸 8 鋼管中心軸 10 治具 10a,10b 治具の支持脚 11 測定開始 12 フィード中 13 鋼管の停止中 1 Steel Pipe 2 Boom 3 Pipe Expansion Head 4a-4f Non-contact Distance Meter (Ultrasonic Distance Meter) 5,6 Steel Pipe Inner Surface 7 Boom Center Axis 8 Steel Pipe Center Axis 10 Jigs 10a, 10b Jig Support Leg 11 Measurement Start 12 Feed Medium 13 Steel pipe stopped

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月28日[Submission date] September 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】また、本発明は、両端にブームの周面に接
触する支持脚を有する治具を用いて鋼管の曲がり量を補
正するものである。
Further, according to the present invention, the bending amount of the steel pipe is corrected by using a jig having support legs at both ends which are in contact with the peripheral surface of the boom.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤 幹夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 三船 法嗣 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikio Sawa Marunouchi 1-2-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Lawyer Mifune Mitsuo 1-2-Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先端に拡管ヘッドを有するブームの基端
を固定保持し、前記拡管ヘッドに対して被処理鋼管を所
定長さずつ間欠的に外嵌挿入しながら拡管を行う場合に
おいて、前記拡管ヘッドより下流方向の等間隔の少なく
とも3カ所において、前記ブームの周面を基準として、
前記鋼管の内面までの距離を前記ブームの周面上に配置
した非接触式距離計により少なくとも周方向の2カ所に
ついて計測し、その結果得られた計測値を演算すること
により、前記鋼管の曲がり方向及び曲がり量を検知する
ことを特徴とする鋼管の曲がり検知方法。
1. When expanding a pipe by fixing and holding a base end of a boom having a pipe expanding head at a tip thereof, and performing a pipe-expansion of the steel pipe to be processed by intermittently fitting the pipe to be processed to the pipe expanding head by a predetermined length. At least three locations at equal intervals in the downstream direction from the head, with reference to the circumferential surface of the boom,
Bending of the steel pipe is measured by measuring the distance to the inner surface of the steel pipe at least at two positions in the circumferential direction by a non-contact distance meter arranged on the peripheral surface of the boom, and calculating the resulting measurement value. A method for detecting bending of a steel pipe, characterized by detecting a direction and a bending amount.
【請求項2】 前記非接触式距離計に超音波距離計を用
いるとともに、両端に前記ブームの周面に接触する支持
脚を有する治具を用いて前記鋼管の曲がり量を補正する
ことを特徴とする請求項1記載の鋼管の曲がり検知方
法。
2. An ultrasonic range finder is used as the non-contact type range finder, and a bending amount of the steel pipe is corrected by using a jig having support legs at both ends that contact the peripheral surface of the boom. The method for detecting bending of a steel pipe according to claim 1.
JP24444692A 1991-09-17 1992-09-14 Bending detection method for steel pipes Expired - Lifetime JP2745996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24444692A JP2745996B2 (en) 1991-09-17 1992-09-14 Bending detection method for steel pipes

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP23590991 1991-09-17
JP4-182072 1992-07-09
JP18207292 1992-07-09
JP3-235909 1992-07-09
JP24444692A JP2745996B2 (en) 1991-09-17 1992-09-14 Bending detection method for steel pipes

Publications (2)

Publication Number Publication Date
JPH0671359A true JPH0671359A (en) 1994-03-15
JP2745996B2 JP2745996B2 (en) 1998-04-28

Family

ID=27325113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24444692A Expired - Lifetime JP2745996B2 (en) 1991-09-17 1992-09-14 Bending detection method for steel pipes

Country Status (1)

Country Link
JP (1) JP2745996B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874207A (en) * 1987-06-27 1989-10-17 Aisin Seiki Kabushiki Kaisha Hydraulic braking system for an automotive vehicle
JP2008096294A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Method and apparatus for measuring bent shape
CN106996731A (en) * 2017-05-09 2017-08-01 镇江成泰自动化技术有限公司 Battery pole ear dislocation detection means
CN114570787A (en) * 2022-03-02 2022-06-03 西安热工研究院有限公司 In-situ stress detection, recovery and correction system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636274B1 (en) 2014-10-07 2016-07-06 두산중공업 주식회사 Gauge for measuring depth and gauge capable of measuring depth and inside diameter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874207A (en) * 1987-06-27 1989-10-17 Aisin Seiki Kabushiki Kaisha Hydraulic braking system for an automotive vehicle
JP2008096294A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Method and apparatus for measuring bent shape
CN106996731A (en) * 2017-05-09 2017-08-01 镇江成泰自动化技术有限公司 Battery pole ear dislocation detection means
CN114570787A (en) * 2022-03-02 2022-06-03 西安热工研究院有限公司 In-situ stress detection, recovery and correction system
CN114570787B (en) * 2022-03-02 2023-09-05 西安热工研究院有限公司 In-situ stress detection and recovery correction system

Also Published As

Publication number Publication date
JP2745996B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
CA2682635C (en) Method for measuring the roundness of round profiles
JP5129727B2 (en) Boiler furnace evaporator tube inspection device and inspection method
US10556290B2 (en) System for coordinated stationary tracking with root path memory clocking for cylindrical welding
US20070100554A1 (en) Measuring method of cylindrical body
JPH02291908A (en) Inspection of tandem-layout shaft
JPS6238642B2 (en)
TW201020490A (en) Inspection device and inspection method for evaporation pipe in boiler furnace
CN111795644A (en) Orthogonal point laser double-measuring-head pose calibration test piece
JP2745996B2 (en) Bending detection method for steel pipes
JP4897951B2 (en) Tubular deflection measurement method and apparatus
AU2012372427B2 (en) Misalignment calculation system
JP2011033375A (en) Device and method for inspecting evaporation pipe of boiler furnace
JP2008107156A (en) Method and device for detecting sectional shape
JP3583468B2 (en) Axis misalignment measuring device
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
JP2674466B2 (en) Pipe shape measuring device
JP2016087630A (en) Distortion correction method
CN108444431A (en) Pipe fitting method for detecting shape based on three installation points
JP3603073B2 (en) Pipe straightening device and groove forming device
JP6490266B1 (en) Apparatus and method for measuring outer circumference of spiral steel pipe
JPH08141643A (en) Large tube shape correcting method and device for measuring dimension and shape of large tube
JP2021130173A (en) Projection device
JP2003028625A (en) 3d measuring device for manufacturing shop adjustment pipe
JP2011056569A (en) Method of measuring circumferential length of spiral steel pipe and circumferential length measuring device
JPH07243829A (en) Method for measuring offset quantity of butt part of welded pipe