JPH0669725B2 - 3D shape formation method - Google Patents

3D shape formation method

Info

Publication number
JPH0669725B2
JPH0669725B2 JP62028425A JP2842587A JPH0669725B2 JP H0669725 B2 JPH0669725 B2 JP H0669725B2 JP 62028425 A JP62028425 A JP 62028425A JP 2842587 A JP2842587 A JP 2842587A JP H0669725 B2 JPH0669725 B2 JP H0669725B2
Authority
JP
Japan
Prior art keywords
resin material
dimensional shape
exposure
layer
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028425A
Other languages
Japanese (ja)
Other versions
JPS63194931A (en
Inventor
晴彦 和泉
隆 森原
敏 伊丹
文隆 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62028425A priority Critical patent/JPH0669725B2/en
Publication of JPS63194931A publication Critical patent/JPS63194931A/en
Publication of JPH0669725B2 publication Critical patent/JPH0669725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は3次元的な立体情報を表示する立体形状を、樹
脂材収容容器に液状光硬化型樹脂材を順次層状に供給す
る毎に、該樹脂材にレーザビーム光学系によるビーム照
射により露光走査を行って選択的に光硬化せしめ、積層
状に形成する方法において、前記露光走査を行う液状光
硬化型樹脂材からなる各一層の層厚を、該樹脂材の光吸
収係数の逆数と等しくなるようにし、かつ体積当たりの
照射ビームの露光エネルギーを最小にして有効に利用す
ることにより、立体形状を形成するに要する全露光硬化
時間を最小に短縮し、立体形状を効率よく短時間で形成
し得るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention provides a three-dimensional shape for displaying three-dimensional three-dimensional information to a resin material container every time a liquid photocurable resin material is sequentially layered. In the method of forming a laminated shape by performing exposure scanning by beam irradiation by a laser beam optical system to selectively form a layer, a layer thickness of each layer made of a liquid photocurable resin material for performing the exposure scanning is set to By making it equal to the reciprocal of the light absorption coefficient of the material, and by effectively utilizing the exposure energy of the irradiation beam per volume, the total exposure and curing time required to form a three-dimensional shape can be shortened to the minimum. The three-dimensional shape can be efficiently formed in a short time.

〔産業上の利用分野〕[Industrial application field]

本発明は液状光硬化型樹脂材の供給とレーザ光学系によ
る選択的にレーザビーム照射露光により、硬化樹脂層を
形成する工程を繰り返して3次元立体情報を表示す立体
形状を形成する方法に係り、特に立体形状を形成するに
要する全露光硬化時間を短縮した露光硬化方法の改良に
関するものである。
The present invention relates to a method for forming a three-dimensional shape for displaying three-dimensional three-dimensional information by repeating a step of forming a cured resin layer by supplying a liquid photo-curable resin material and selectively exposing a laser beam to a laser beam for exposure. In particular, the present invention relates to an improvement in an exposure and curing method that shortens the total exposure and curing time required to form a three-dimensional shape.

3次元的な立体情報を表示する方法として、透視図表
示、投影図表示、等高線表示、或いはホロクラフィーに
よる立体視表示等が広く用いられている。これらの方法
はホロクラフィーによる立体視表示を除いて、何れも3
次元情報を2次元情報に変換する手順が含まれており、
表示した立体形状を直感的に把握し、充分に理解する上
で必ずしも満足できる方法ではない。
As a method of displaying three-dimensional stereoscopic information, a perspective view display, a projection view display, a contour line display, a stereoscopic display by Holographic and the like are widely used. These methods are all 3 except for the stereoscopic display by Holocalyphy.
Includes a procedure for converting dimensional information into two-dimensional information,
This is not always a satisfactory method for intuitively grasping and fully understanding the displayed three-dimensional shape.

この点、前記ホログラフィーによる立体視表示は視覚
的、直感的に上記した各表示方法より有利ではあるが、
しかし再生装置を必要とし、また実在しない立体仮装物
体や立体鳥瞰図などを形成表示することは容易でない。
In this respect, although the stereoscopic display by the holography is visually and intuitively advantageous over the above-mentioned display methods,
However, it requires a reproducing apparatus, and it is not easy to form and display a non-existent three-dimensional virtual object or a three-dimensional bird's-eye view.

このようなことから、近来、立体情報を直感的に把握し
て理解し易く表示する立体模型を比較的容易に形成する
方法として、例えば光硬化型樹脂材とレーザビーム走査
光学系等を用い、立体情報に基づいて光硬化性樹脂材層
を選択的な露光硬化する工程を連続的に繰り返して硬化
層を積層せしめることにより、複雑な積層形成の立体模
型を形成する方法が提案されている。
Therefore, as a method of relatively easily forming a stereoscopic model that intuitively grasps and displays stereoscopic information in recent years, for example, using a photocurable resin material and a laser beam scanning optical system, A method has been proposed in which a step of selectively exposing and curing a photo-curable resin material layer based on three-dimensional information is repeatedly repeated to stack cured layers to form a three-dimensional model having a complicated stacked formation.

このような立体形状の形成方法では、用いられる光硬化
型樹脂材の光硬化特性に応じて効率の良い露光硬化条件
を設定し、立体形状の形成に要する全露光硬化時間を短
縮し得る方法が要求されている。
In such a three-dimensional shape forming method, there is a method capable of shortening the total exposure and curing time required for forming a three-dimensional shape by setting efficient exposure and curing conditions according to the photocuring characteristics of the photocurable resin material used. Is required.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する立体模型形状を形
成するには、先ず第3図(a)に示すように昇降可能な
副走査台2上に載置された樹脂材収容容器1内に、作成
すべき立体模型形状を幾つかの輪切り状に分割した厚さ
に対応する第一層分の液状光硬化型樹脂材5を供給し、
この供給樹脂材5の表面が平坦化された後、該樹脂材5
表面が露光照射するレーザビーム4の焦点レベルとなる
ように前記副走査台2を上下方向に微動調整を行う。
Conventionally, in order to form a three-dimensional model shape for displaying three-dimensional three-dimensional information by using a laser beam irradiation means using a photo-curing resin material, first, as shown in FIG. The liquid photocurable resin material 5 for the first layer corresponding to the thickness obtained by dividing the three-dimensional model shape to be created into several circular slices is supplied into the resin material container 1 placed on ,
After the surface of the supplied resin material 5 is flattened, the resin material 5 is
The sub-scanning base 2 is finely adjusted in the vertical direction so that the surface becomes the focus level of the laser beam 4 for exposure and irradiation.

次に第3図(b)に示すように前記樹脂材5表面に対し
て、幾つかの輪切り状に分割した立体形状パターンデー
タに基づいて、レーザビーム光学系から走査反射鏡で反
射したレーザビーム4の照射、または前記前記副走査台
2をX,Y方向に移動走査してレーザビーム4照射を行
い、選択的に露光硬化させた第一硬化樹脂層5aを形成す
る。
Next, as shown in FIG. 3 (b), based on the three-dimensional pattern data obtained by dividing the surface of the resin material 5 into several circular slices, the laser beam reflected by the scanning reflecting mirror from the laser beam optical system. 4, or the sub-scanning table 2 is moved and scanned in the X and Y directions to irradiate the laser beam 4 to form the first cured resin layer 5a selectively exposed and cured.

次に第3図(c)に示すように第二層分の液状光硬化型
樹脂材6を供給し、その表面が平坦化された後、該樹脂
材6表面が露光照射するレーザビーム4の焦点レベルと
なるように再度前記副走査台2を上下方向に微動調整を
行い、引き続き第3図(d)に示すように前記樹脂材6
表面に前記立体形状パターンデータに基づいて、同様に
レーザビーム4照射を行い、選択的に露光硬化させた第
二硬化樹脂層6aを形成する。
Next, as shown in FIG. 3C, the liquid photocurable resin material 6 for the second layer is supplied, and after the surface is flattened, the surface of the resin material 6 is exposed to the laser beam 4 for exposure and irradiation. The sub-scanning base 2 is again finely adjusted in the vertical direction so as to reach the focus level, and then, as shown in FIG.
Based on the three-dimensional pattern data, the surface is similarly irradiated with the laser beam 4 to form the second cured resin layer 6a selectively exposed and cured.

以下同様の工程を繰り返して第3図(e)に示すように
供給された第三層分の液状光硬化型樹脂材7を選択的に
露光硬化させて第三硬化樹脂層7aを形成した後、最終的
に未露光の液状光硬化型樹脂材中より積層状に形成され
た立体硬化樹脂像を取り出し、洗浄処理溶液等で付着す
る前記液状光硬化型樹脂材を洗い流して除去することに
よって、第3図(f)に示すように所望とする3次元的
な立体情報を表示する立体模型形状8を作成している。
After repeating the same steps, the third layer of the liquid photo-curable resin material 7 as shown in FIG. 3 (e) is selectively exposed and cured to form the third cured resin layer 7a. , Finally taking out the three-dimensional cured resin image formed in a laminate from the unexposed liquid photocurable resin material, by washing away the liquid photocurable resin material adhered with a cleaning treatment solution or the like, As shown in FIG. 3 (f), a three-dimensional model shape 8 for displaying desired three-dimensional three-dimensional information is created.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで従来の立体形状の形成方法により、全厚さ(全
高さ)がHである立体形状を形成する場合、光硬化させ
る各一層の樹脂層の層厚をx,該一層の樹脂層をビーム照
射により露光硬化するに要する露光時間をt,全厚さHの
立体形状を形成するに必要な光硬化層の層数をn,及び全
厚さHを立体形状を形成するに要する全露光硬化時間を
Tとすると、これらの間には次式に示す関係が成立す
る。
By the way, when a three-dimensional shape having a total thickness (total height) of H is formed by a conventional three-dimensional shape forming method, the layer thickness of each resin layer to be photocured is x, and the one resin layer is irradiated with a beam. T is the exposure time required for exposure curing, the number of photo-curable layers required for forming a three-dimensional shape having a total thickness H is n, and the total exposure curing time required for forming a three-dimensional shape having a total thickness H is Let T be the relationship shown in the following equation between them.

n・x=H ・・・・(1) n・t=T ・・・・(2) 即ち、上記全厚さ(全高さ)がHである立体形状を形成
するについては、光硬化させる各一層の樹脂層の層厚x
を厚くすると、その一層の光硬化に要する露光時間tは
大きくなるが、全層数nは少なくなり、また逆に前記層
厚xを薄くすると、その光硬化に要する露光時間tは少
なくなるが、全層数nを増加する必要がある。
n · x = H ··· (1) n · t = T ··· (2) That is, for forming a three-dimensional shape having a total thickness (total height) of H, each is photocured. Layer thickness of one resin layer x
If the thickness is increased, the exposure time t required for the photo-curing of one layer is increased, but the total number n of layers is decreased, and conversely, if the layer thickness x is decreased, the exposure time t required for the photo-curing is decreased. , It is necessary to increase the total number of layers n.

しかし従来の立体形状の形成においては、該形成に用い
られる光硬化型樹脂材の硬化特性を効果的に利用して、
形成するに要する全露光硬化時間Tを短縮するといった
考慮が払われていなかったために、該全露光硬化時間T
に長時間を費やすといった問題があった。
However, in the conventional formation of a three-dimensional shape, by effectively utilizing the curing characteristics of the photocurable resin material used for the formation,
Since no consideration was given to shortening the total exposure curing time T required for forming, the total exposure curing time T
There was a problem of spending a long time on.

本発明は上記従来の実情に鑑み、立体形状の形成に用い
られる光硬化型樹脂材の硬化特性を最大限に利用した露
光硬化条件により、形成に要する全露光硬化時間Tを最
小に短縮し得る立体形状の形成方法を提供することを目
的とするものである。
In view of the above conventional circumstances, the present invention can shorten the total exposure curing time T required for formation to the minimum by the exposure curing conditions that maximize the curing characteristics of the photocurable resin material used for forming a three-dimensional shape. It is an object of the present invention to provide a method for forming a three-dimensional shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、樹脂材収容容器に液
状光硬化型樹脂材を順次層状に供給する毎に該光硬化樹
脂材にレーザビーム光学系によるビーム照射により露光
走査を行って選択的に光硬化せしめ、積層状の硬化樹脂
像からなる立体形状を形成する際に、前記ビーム照射に
より露光走査を行う液状光硬化型樹脂材からなる各一層
の層厚を、該液状光硬化樹脂材の光吸収係数の逆数と等
しくし、体積当たりの露光エネルギーを最小となるよう
にする。
In order to achieve the above object, the present invention selectively performs exposure scanning by beam irradiation by a laser beam optical system to the photocurable resin material every time the liquid photocurable resin material is sequentially supplied in layers to the resin material container. When a three-dimensional shape composed of a laminated cured resin image is formed by photo-curing the liquid photo-curable resin material, the layer thickness of each layer is made of the liquid photo-curable resin material that is exposed and scanned by the beam irradiation. And the reciprocal of the light absorption coefficient of (3) to minimize the exposure energy per volume.

即ち、光硬化型樹脂材の照射ビームに対する光吸収係数
をα,該樹脂材の光硬化の始まる単位面積当たりの露光
エネルギー、所謂閾値露光エネルギーをEth,単位面積当
たりの露光エネルギーをE,その時の一層の光硬化型樹脂
層の層厚をxとし、eを自然対数の底とすると、次の関
係式が成立する。
That is, the light absorption coefficient of the photocurable resin material with respect to the irradiation beam is α, the exposure energy per unit area where the photocuring of the resin material starts, the so-called threshold exposure energy is Eth, the exposure energy per unit area is E, and the When the layer thickness of one photocurable resin layer is x and e is the base of natural logarithm, the following relational expression holds.

Eth=Ee- αx ・・・・(3) 従って、本発明の露光硬化条件としては、光硬化型樹脂
材の光硬化特性が(3)式で与えられることを利用する
ことによって、立体形状を形成するための全露光硬化時
間Tを最小に短縮するようにする。
Eth = Ee α x (3) Therefore, as the exposure-curing condition of the present invention, the fact that the photo-curing property of the photo-curing resin material is given by the formula (3) is used to obtain a three-dimensional shape. The total exposure curing time T for forming the film is shortened to the minimum.

〔作用〕[Action]

本発明の立体形状の形成方法では、照射ビームのパワー
をP,光硬化型樹脂材の一層の走査領域の全面積をSとす
ると、単位面積当たりの露光エネルギーEと一層を光硬
化させるに要する時間tとの間には、次式の関係があ
る。
In the method for forming a three-dimensional shape of the present invention, when the irradiation beam power is P and the total area of one scanning region of the photocurable resin material is S, the exposure energy E per unit area and one layer are required for photocuring. There is a relation of the following equation with the time t.

E=P・t/S ・・・・(4) これを前記(3)式に代入し、更に(1),(2)式を
用いることにより、立体形状を形成するに要する全露光
時間Tと露光硬化する一層の樹脂層の層厚xとの関係を
求めると、 T=(S・H・Eth/P)・(eαx/x) ・・(5) (5)式から明らかなように、該全露光時間Tは、P,S,
H,Ethを一定とした時、x=1/αで、最小値S・H・Eth
・α/Pをとる。
E = P · t / S (4) By substituting this into the equation (3) and using the equations (1) and (2), the total exposure time T required to form a three-dimensional shape The relationship between the layer thickness x and the layer thickness x of one resin layer to be exposed to curing is calculated as follows: T = (SH · Eth / P) · (e α x / x) ··· (5) (5) Thus, the total exposure time T is P, S,
When H and Eth are constant, x = 1 / α and the minimum value S ・ H ・ Eth
・ Take α / P.

一層の光硬化型樹脂層の層厚xを、x=1/αとするため
には(3),(4)式より、 P・t/S=e・Eth ・・・・(6) となるような露光硬化条件とする。
In order to set the layer thickness x of the single photo-curable resin layer to x = 1 / α, from the formulas (3) and (4), P · t / S = e · Eth (6) The exposure and curing conditions are set as follows.

また前記(5)式を次式のように変換すると、 P・T/(S・H)=Eth・eαx/x ・・・(7) 左辺は立体形状の形成に要する単位面積当たりの露光エ
ネルギー、即ち体積露光エネルギー密度であり、全露光
硬化時間Tを最小に短縮すると、該(7)式の右辺も最
小となり、照射ビームの露光エネルギーが最も有効に利
用される。
Further, when the above equation (5) is converted into the following equation, P · T / (S · H) = Eth · e α x / x (7) The left side is per unit area required to form a three-dimensional shape. The exposure energy, that is, the volume exposure energy density. When the total exposure curing time T is shortened to the minimum, the right side of the equation (7) is also minimized, and the exposure energy of the irradiation beam is most effectively used.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例では立体形状の形成に用いる液状の紫外線硬化
型樹脂材として5種類の試料について単位面積当たりの
露光エネルギーEと、樹脂硬化厚さxとの関係を実測し
た結果、第1図に示すように何れの試料においても、樹
脂硬化厚さxと単位面積当たりの露光エネルギーEの対
数との間には直線関係があり、Eth=Ee- αxの(3)式
が成立している。
In this example, the relationship between the exposure energy E per unit area and the resin cured thickness x was measured for five types of liquid ultraviolet curable resin materials used to form a three-dimensional shape, and the result is shown in FIG. As described above, in any of the samples, there is a linear relationship between the resin cured thickness x and the logarithm of the exposure energy E per unit area, and the equation (3) of Eth = Ee α x is established.

なお、上記5種類の紫外線硬化型樹脂材からなる試料と
しては、例えばエポキシアクリレート樹脂とアクリレー
トモノマーとを主成分とする松下電工の製品のCV−7016
−3(試料1)、同じくCV−7307−6(試料2)、同じ
くCV−7809−4(試料3)と、主成分がメーカーのノー
ハウより明らかにされない帝人の製品のPI−170(試料
4)と、不飽和ポリウレタン樹脂を主成分とする旭化成
の製品のFP−70(試料5)を用いている。
The sample composed of the above-mentioned five kinds of ultraviolet curable resin materials is, for example, CV-7016 manufactured by Matsushita Electric Works, which contains an epoxy acrylate resin and an acrylate monomer as main components.
-3 (Sample 1), CV-7307-6 (Sample 2), CV-7809-4 (Sample 3), and PI-170 (Sample 4), a Teijin product whose main component is not revealed by the manufacturer's Knowhow. ) And FP-70 (Sample 5), a product of Asahi Kasei containing unsaturated polyurethane resin as the main component.

そしてこの第1図より前記5種類の試料における光吸収
係数αと該樹脂材の光硬化の始まる単位面積当たりの露
光エネルギー、所謂閾値露光エネルギーEthを求めると
別表に示すようになる。
Then, from FIG. 1, the light absorption coefficient α and the exposure energy per unit area where the photo-curing of the resin material starts, that is, the so-called threshold exposure energy Eth, are obtained from the above-mentioned five kinds of samples, and the results are shown in a separate table.

更にこれらの各値と前記(7)式から照射ビームの体積
露光エネルギー密度と光硬化させる一層の樹脂層の層厚
との関係を前記各試料について求めると第2図に示すよ
うになる。
Furthermore, the relationship between the volume exposure energy density of the irradiation beam and the layer thickness of one resin layer to be photocured for each sample is obtained from each of these values and the equation (7), and the relationship is shown in FIG.

従って、本発明の立体形状の形成方法では、従来と同様
に樹脂材収容容器に液状の紫外線光硬化型樹脂材を順次
層状に供給する毎に該樹脂材にレーザビーム光学系によ
るビーム照射により露光走査を行って選択的に光硬化せ
しめ、積層状の硬化樹脂像からなる立体形状を形成する
に際し、該形成に用いる紫外線硬化型樹脂材からなる各
一層の層厚を、第2図の所定樹脂材の関係曲線より最小
値となる厚さ、即ち、別表に示すように該紫外線硬化型
樹脂材の光吸収係数の逆数と等しい最適層厚1/αを採用
し、かつ与えられた照射ビームのパワーPと該樹脂材の
一層の走査領域の全面積Sのもとで、該樹脂材の一層を
露光硬化する時間が(6)式のP・t/S=e・Ethにより
定められるt値による走査速度で露光硬化を行うように
すれば、露光エネルギーを最も効率よく活用され、積層
状に立体形状を形成するに要する全露光硬化時間Tが最
小に短縮され、立体形状の形成が短時間となる。
Therefore, in the method for forming a three-dimensional shape of the present invention, as in the conventional case, every time the liquid ultraviolet light curable resin material is sequentially supplied in layers to the resin material container, the resin material is exposed by beam irradiation by the laser beam optical system. When a three-dimensional shape composed of laminated cured resin images is formed by scanning and selectively photocuring, the layer thickness of each layer of the ultraviolet curable resin material used for the formation is set to the predetermined resin shown in FIG. The minimum thickness from the relation curve of the material, that is, the optimum layer thickness 1 / α equal to the reciprocal of the light absorption coefficient of the ultraviolet curable resin material is adopted as shown in the attached table, and the irradiation beam Based on the power P and the total area S of the scanning region of one layer of the resin material, the time for exposing and curing one layer of the resin material is a t value determined by P · t / S = e · Eth in the equation (6). If exposure curing is performed at the scanning speed of Is used most efficiently, the total exposure curing time T required to form a three-dimensional shape in a laminated form is shortened to the minimum, and the formation of the three-dimensional shape is shortened.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明に係る立体形状
の形成方法によれば、積層状の硬化樹脂像からなる立体
形状を形成するための光硬化型樹脂材の各一層の厚さ
を、その樹脂材の光吸収係数の逆数と等しい値とし、照
射ビームの露光エネルギーを最小にして最も効率良く活
用した露光硬化条件を用いることにより立体形状を形成
するに要する全露光硬化時間を最小に短縮することがで
き、所望とする立体形状を効率よく短時間に形成するこ
とが可能となる優れた利点を有する。
As is clear from the above description, according to the method for forming a three-dimensional shape according to the present invention, the thickness of each layer of the photo-curable resin material for forming a three-dimensional shape composed of a cured resin image in a laminate, Set the value equal to the reciprocal of the light absorption coefficient of the resin material and minimize the exposure energy of the irradiation beam to use the most efficient exposure and curing conditions to minimize the total exposure and curing time required to form a three-dimensional shape. It has an excellent advantage that a desired three-dimensional shape can be efficiently formed in a short time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の立体形状の形成方法に用いる各種光硬
化型樹脂材の光硬化厚特性の一例を示す図、 第2図は本発明の立体形状の形成方法に用いる各種光硬
化型樹脂材の体積エネルギー密度の一例を示す図、 第3図は従来の立体形状の形成方法を工程順に示す要部
断面図である。
FIG. 1 is a diagram showing an example of photo-curing thickness characteristics of various photo-curable resin materials used in the method for forming a three-dimensional shape of the present invention, and FIG. 2 is various photo-curable resins used in the method for forming a three-dimensional shape of the present invention. FIG. 3 is a diagram showing an example of the volumetric energy density of a material, and FIG. 3 is a cross-sectional view of essential parts showing a conventional method for forming a three-dimensional shape in the order of steps.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】樹脂材収容容器に液状光硬化型樹脂材を順
次層状に供給する毎に、該樹脂材にレーザビーム光学系
によるビーム照射により露光走査を行って選択的に光硬
化せしめ、積層状の硬化樹脂像からなる立体形状を形成
する方法において、 上記ビーム照射により露光走査を行う液状光硬化型樹脂
材からなる各一層の層厚を、該樹脂材の光吸収係数の逆
数と等しくなるようにし、かつその体積当たりの露光エ
ネルギーを最小にして全露光硬化時間を短縮するように
したことを特徴とする立体形状の形成方法。
1. Whenever a liquid photocurable resin material is successively supplied in layers to a resin material container, the resin material is exposed to light by beam irradiation by a laser beam optical system to selectively perform photocuring, and laminated. In the method for forming a three-dimensional shape including a cured resin image, the layer thickness of each layer of the liquid photocurable resin material that is exposed and scanned by the beam irradiation is equal to the reciprocal of the light absorption coefficient of the resin material. In addition, the method for forming a three-dimensional shape is characterized in that the exposure energy per volume is minimized to shorten the total exposure curing time.
JP62028425A 1987-02-09 1987-02-09 3D shape formation method Expired - Lifetime JPH0669725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028425A JPH0669725B2 (en) 1987-02-09 1987-02-09 3D shape formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028425A JPH0669725B2 (en) 1987-02-09 1987-02-09 3D shape formation method

Publications (2)

Publication Number Publication Date
JPS63194931A JPS63194931A (en) 1988-08-12
JPH0669725B2 true JPH0669725B2 (en) 1994-09-07

Family

ID=12248305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028425A Expired - Lifetime JPH0669725B2 (en) 1987-02-09 1987-02-09 3D shape formation method

Country Status (1)

Country Link
JP (1) JPH0669725B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435229A (en) * 2018-11-21 2019-03-08 厦门达天电子科技有限公司 A kind of test block and its Method of printing of 3D printing photosensitive resin
CN113524688B (en) * 2021-08-18 2022-12-02 广州黑格智造信息科技有限公司 3D printing data processing method, 3D printing method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHOTOGRAPHIC ENGINEERING=1982 *
REVIEW OF SCIENTIFIC INSTRUMENTS52-11=1981 *

Also Published As

Publication number Publication date
JPS63194931A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
US6048188A (en) Stereolithographic curl reduction
EP0362982B1 (en) Stereolithographic curl reduction
US5104592A (en) Method of and apparatus for production of three-dimensional objects by stereolithography with reduced curl
CN1038069C (en) Solid imaging system
US5076974A (en) Methods of curing partially polymerized parts
KR100257034B1 (en) Cad/cam stereolithographic data conversion
CN104956672B (en) Three dimensional object is constructed
EP0250121B1 (en) Three-dimensional modelling apparatus
US5164128A (en) Methods for curing partially polymerized parts
US20180141268A1 (en) Method for Making an Object
JPH0278531A (en) Three-dimensional model automatic forming system and method
JPH0320315A (en) Donative additives for minimized contraction to photocuring compounds
CN205185315U (en) Three -dimensional duplicator of 3D
JPS61114817A (en) Apparatus for forming solid configuration
CN1031115C (en) Improved solid imaging method and apparatus
JPH0669725B2 (en) 3D shape formation method
JPS61225012A (en) Formation of three-dimensional configuration
CN105216318A (en) 3D Xograph machine
JPS63141725A (en) Apparatus for forming three dimensional shape
JP3641276B2 (en) 3D image forming method
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JP3458593B2 (en) Method for forming a three-dimensional shape
JPH10249943A (en) Apparatus for stereo lithography
JPS61217219A (en) Three-dimensional configuration forming device
JPS61116320A (en) Three-dimensional shape forming device