JPH0669165A - Method for detecting end point of plasma dry etching - Google Patents
Method for detecting end point of plasma dry etchingInfo
- Publication number
- JPH0669165A JPH0669165A JP12839892A JP12839892A JPH0669165A JP H0669165 A JPH0669165 A JP H0669165A JP 12839892 A JP12839892 A JP 12839892A JP 12839892 A JP12839892 A JP 12839892A JP H0669165 A JPH0669165 A JP H0669165A
- Authority
- JP
- Japan
- Prior art keywords
- film
- emission spectrum
- end point
- tin
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体素子のドライエッ
チングの終点検知方法に関し、特に多層メタル配線層の
プラズマドライエッチングの終点検知方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching endpoint detection method for semiconductor devices, and more particularly to a plasma dry etching endpoint detection method for a multilayer metal wiring layer.
【0002】[0002]
【従来の技術】近年、半導体素子の製造工程で、微細パ
ターンを高精度に形成することができる薄膜のエッチン
グ方法として、ガスプラズマ中の反応成分を利用したプ
ラズマドライエッチング法が用いられている。プラズマ
ドライエチング法には種々の方法があるが、一般的な方
法として、真空容器である反応チャンバー内に配された
電極に高周波電力を印加し、反応チャンバー内に導入し
た反応気体、例えばCl2 、HBr等をガスプラズマ化
して、このガスプラズマ中の活性成分であるラジカル等
を利用して半導体ウェハー上の多層メタル配線層などを
所望のパターンに高精度にエッチングするものである。
また近年の半導体素子におけるメタル配線膜等の微細配
線化に伴い、ストレスマイグレーション等の問題が発生
しており、この対策としてメタル配線膜の多層構造化が
進んでおり、一般的にTi膜/Al−Si−Cu合金膜
/TiN−Ti膜約300オングストローム/9000
オングストローム/1000オングストロームの膜構成
をとっている。2. Description of the Related Art In recent years, a plasma dry etching method utilizing a reaction component in a gas plasma has been used as an etching method of a thin film capable of forming a fine pattern with high precision in a manufacturing process of a semiconductor device. There are various methods in the plasma dry etching method, but as a general method, high frequency power is applied to an electrode arranged in a reaction chamber which is a vacuum container, and a reaction gas introduced into the reaction chamber, for example, Cl. 2 , HBr or the like is converted into a gas plasma, and radicals or the like which are active components in the gas plasma are utilized to etch a multilayer metal wiring layer or the like on a semiconductor wafer into a desired pattern with high accuracy.
In addition, problems such as stress migration have arisen with the recent trend toward finer wiring such as metal wiring films in semiconductor elements. As a countermeasure against this, multi-layered structures of metal wiring films have been developed. -Si-Cu alloy film / TiN-Ti film About 300 angstrom / 9000
It has a film structure of angstrom / 1000 angstrom.
【0003】従来のドライエッチングの終点検知方法に
よる発生スペクトル強度曲線は、図2に示すように反応
チャンバー1内のガスプラズマ11中からの発光スペク
トルを、396nm帯域の波長を取り込み可能なフィル
ター10を通してフォトマルチプライア(photom
ultiplier)4に取り込み、感度調整回路9に
より感度を調整し、これにより電気信号に変えてアンプ
回路4により信号を増幅する。この信号にゲイン回路8
とオフセット回路7によりゲインとオフセットを加えた
あと、マイクロコンピュータ5に取り込み、図4に示す
ような発光スペクトル曲線を得ている。As shown in FIG. 2, the spectrum intensity curve generated by the conventional method for detecting the end point of dry etching shows the emission spectrum from the gas plasma 11 in the reaction chamber 1 through the filter 10 capable of capturing the wavelength of 396 nm band. Photomultiplier
Then, the sensitivity is adjusted by the sensitivity adjusting circuit 9, and the sensitivity is adjusted by the sensitivity adjusting circuit 9, whereby the signal is converted into an electric signal and the signal is amplified by the amplifier circuit 4. Gain circuit 8 for this signal
After the gain and the offset have been added by the offset circuit 7, the gain is taken into the microcomputer 5 to obtain the emission spectrum curve as shown in FIG.
【0004】この発光スペクトル曲線を用いて実際に終
点検知を行なう方法を説明する。プラズマドライエッチ
ングの終点検知方法は、発光スペクトル強度の変化が小
さい領域から大きな領域に移り、再び強度変化の大きい
領域に移るその変移点を見つけて終点判定としており、
発光スペクトルから得られる発光スペクトル曲線の変移
点をより明瞭にし、かつ終点検知を確実なものとするた
め、一次微分処理分又は二次微分処理の演算処理を行な
っている。Al−Si−Cu合金膜/TiN−Ti膜を
実際にエッチングすると、例えば図4に示すような発光
スペクトル曲線が得られ、二次微分処理を行うと図7に
示すような微分曲線となる。あらかじめプロセス条件出
しによりシュミレーションを行い、この微分曲線に対
し、Al膜からTiN膜に移る点に一次判定レベルを、
TiN膜から下地に移る点に二次判定レベルを設定して
おく。実際には半導体ウェハーをエッチングして発光ス
ペクトルが得られたとき、Al膜からTiN膜に移る際
に微分曲線が一次判定レベルを下向きに方向に通過し、
再びTiN膜から下地に移る際に二次判定レベルを上向
き方向に通過した時点をTiN−Ti膜エッチングの終
点として判定し、メタル配線層であるTi膜/Al−S
i−Cu合金膜/TiN−Ti膜のエッチングの終点と
してガスプラズマ放電を停止しエッチングをストップし
ている。A method of actually detecting the end point using this emission spectrum curve will be described. The end point detection method for plasma dry etching is to determine the end point by finding the transition point where the emission spectrum intensity changes from a small change area to a large change area and then to a large intensity change area again.
In order to make the transition point of the emission spectrum curve obtained from the emission spectrum clearer and to ensure the detection of the end point, the calculation processing of the primary differential processing or the secondary differential processing is performed. When the Al-Si-Cu alloy film / TiN-Ti film is actually etched, for example, an emission spectrum curve as shown in FIG. 4 is obtained, and when the secondary differential processing is performed, a differential curve as shown in FIG. 7 is obtained. A simulation is performed in advance by setting process conditions, and the primary judgment level is set to the point where the Al film shifts to the TiN film for this differential curve.
The secondary judgment level is set at the point where the TiN film moves to the base. Actually, when the emission spectrum is obtained by etching the semiconductor wafer, the differential curve passes through the primary judgment level downward when moving from the Al film to the TiN film,
When the TiN film is again transferred to the base, the time when the secondary judgment level is passed in the upward direction is judged as the end point of the TiN-Ti film etching, and the Ti film / Al-S which is the metal wiring layer is judged.
As the end point of the etching of the i-Cu alloy film / TiN-Ti film, the gas plasma discharge is stopped and the etching is stopped.
【0005】[0005]
【発明が解決しようとする課題】上述したような終点検
知方法に用いる発光スペクトル強度曲線は、図5に示す
発光スペクトルと波長のグラフから、Alの発光スペク
トルがピークとして現われる396nmの波長帯域の発
光スペクトルを、フィルターにより発光スペクトル強度
として取り込むことにより、Al膜のエッチングが終了
し発光スペクトル強度のピーク値が減少するとき、強度
変化がもっとも大きくなる。しかし、396nm帯域の
波長を取り込み可能なフィルターは、一定のハンチ幅を
持って発光スペクトルを取り込むため、Al膜とTiN
膜が混在してエッチングされるポイントにおいては、A
lとTiNの発光スペクトル量がほぼ同レベルか、Ti
Nの発光スペクトル量が若干少くなる。このため、39
6nm帯域のフィルターを通して発光スペクトルをフォ
トマルチプライアに取り込んだとき、図4に示すよう
に、Al膜のエッチングからTiN−Ti膜のエッチン
グに移行しはじめたところで、発光スペクトル曲線の変
移が、いわゆる「コブ」となって現われてしまう。ガス
プラズマ放電状態が不安定なときの発光スペクトルのふ
らつきや、反応チャンバーに設けられた窓の汚れによる
発光プラズマの減衰、エッチングレートのバラツキ、メ
タル配線膜の厚みのバラツキ等によりAl膜からTiN
膜にエッチングが進んだところのポイントAからポイン
トBにかけての発光スペクトル曲線に乱れが生じ、この
発光スペクトル曲線を微分処理したときの微分値の変化
量が極端に小さな変化となってしまう。このため、あら
かじめ設定した一次判定レベルを微分曲線が下向き方向
に通過せず、一次判定なされないために終点判定がかか
らない場合が生じていた。また、TiN膜から下地に移
る際の発光スペクトル曲線の変移にバラツキが生じたと
き、二次判定レベルを上向き方向に通過しないときがあ
り、二次判定がなされずにTiN−Ti膜の終点判定が
かからない場合が生じていた。このために、下地のオー
バーエッチングとなり次工程のプロセスで問題が生じた
り、TiN−Ti膜の残渣が残り、実際に半導体素子と
して動作させたときに電気的にショートとなるトラブル
が発生し、製品歩留まりを大幅に低下させていた。The emission spectrum intensity curve used in the above-described end point detection method is the emission spectrum in the wavelength band of 396 nm in which the emission spectrum of Al appears as a peak from the graph of the emission spectrum and wavelength shown in FIG. By capturing the spectrum as the emission spectrum intensity by the filter, the intensity change becomes the largest when the Al film etching is finished and the peak value of the emission spectrum intensity decreases. However, since the filter that can capture the wavelength of 396 nm band captures the emission spectrum with a certain haunch width, the Al film and TiN
At the point where the films are mixed and etched, A
l and the emission spectrum of TiN are almost at the same level,
The emission spectrum amount of N is slightly reduced. Therefore, 39
When the emission spectrum is taken into the photomultiplier through a 6 nm band filter, as shown in FIG. 4, when the etching of the Al film starts to shift to the etching of the TiN—Ti film, the shift of the emission spectrum curve is so-called “ It appears as a "hump". Fluctuation of the emission spectrum when the gas plasma discharge state is unstable, attenuation of the emission plasma due to contamination of the window provided in the reaction chamber, variation in etching rate, variation in thickness of the metal wiring film, etc.
Disturbance occurs in the emission spectrum curve from the point A to the point B where the film is etched, and the amount of change in the differential value when the emission spectrum curve is differentiated becomes an extremely small change. For this reason, there is a case where the differential curve does not pass the preset primary determination level in the downward direction and the primary determination is not performed, so that the end point determination is not applied. Further, when there is variation in the shift of the emission spectrum curve when the TiN film is transferred to the base, the secondary judgment level may not be passed in the upward direction, and the end judgment of the TiN-Ti film may not be made without making the secondary judgment. There were cases where it did not take place. As a result, overetching of the underlying layer causes a problem in the next process, and a residue of the TiN-Ti film remains, which causes an electrical short when actually operating as a semiconductor element. Yield was significantly reduced.
【0006】[0006]
【課題を解決するための手段】本発明によるプラズマド
ライエッチングの終点検知方法は、ガスプラズマ中から
の発光スペクトルをホトマルチプライアが持つ波長帯域
で全て受光し、演算処理された発光スペクトル強度曲線
のAlの発光スペクトル量とTiNの発光スペクトル量
の差をより大きなものとすることにより変移点を明瞭に
し、これにより終点検知を確実なものとするものであ
る。A method for detecting the end point of plasma dry etching according to the present invention receives all emission spectra from a gas plasma in a wavelength band possessed by a photomultiplier, and calculates emission spectrum intensity curves The transition point is clarified by making the difference between the emission spectrum amount of Al and the emission spectrum amount of TiN larger, thereby ensuring the end point detection.
【0007】[0007]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明によるプラズマドライエッチングの終
点検知方法における発光プラズマ曲線を得るための一実
施例の概略図である。反応チャンバー1内のガスプラズ
マ11中からの発光スペクトルを、波長範囲300〜6
50nmのフォトマルチプライア4に取り込み、感度調
整回路9により感度を調整し、これにより電気信号に変
えてアンプ回路4により信号を増幅する。この信号にゲ
イン回路8とオフセット回路7によりゲインとオフセッ
トを加えたあと、マイクロコンピュータ5に取り込み、
これを演算処理により処理し、図3に示すような発光ス
ペクトル強度曲線を得る。図9は、エッチングする多層
配線の一例の断面図である。多層配線の下地の絶縁膜と
して酸化膜12があり、この上に多層配線として順に、
厚さ300オングストロームのTi膜13、厚さ100
0オングストロームのバリアメタルであるTiN膜14
(TiW膜でも良い)、厚さ9000オングストローム
のAl−Si−Cu合金膜15(Al−Cu合金膜でも
良い)、厚さ250オングストロームの反射防止膜とし
てTiN膜16がある。The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an embodiment for obtaining an emission plasma curve in a plasma dry etching endpoint detection method according to the present invention. The emission spectrum from the gas plasma 11 in the reaction chamber 1 was measured in the wavelength range of 300 to 6
The signal is taken into the photomultiplier 4 of 50 nm, and the sensitivity is adjusted by the sensitivity adjusting circuit 9, whereby the electric signal is converted into an electric signal and the signal is amplified by the amplifier circuit 4. After gain and offset are added to this signal by the gain circuit 8 and the offset circuit 7, the signal is taken into the microcomputer 5,
This is processed by arithmetic processing to obtain an emission spectrum intensity curve as shown in FIG. FIG. 9 is a cross-sectional view of an example of multilayer wiring to be etched. There is an oxide film 12 as an underlying insulating film of the multi-layer wiring, and a multi-layer wiring is formed on the oxide film 12 in order.
Ti film 13 with a thickness of 300 Å, thickness 100
TiA film 14 which is a barrier metal of 0 angstrom
(Although it may be a TiW film), an Al-Si-Cu alloy film 15 having a thickness of 9000 angstroms (may be an Al-Cu alloy film), and a TiN film 16 as an antireflection film having a thickness of 250 angstroms.
【0008】図6は、Al膜のエッチング中の発光スペ
クトル強度とTi膜のエッチング中の発光スペクトル強
度及び下地の発光スペクトル強度と波長の関係をグラフ
にしたものである。Al膜とTiN膜の発光スペクトル
をホトマルチプライアの一定波長帯域である300nm
〜650nmの範囲で見た場合に、エッチング中のAl
膜と下地の発光スペクトル量よりTiNの発光スペクト
ル量が多いことがわかり、これにより、Alの発光スペ
クトル量とTiNの発光スペクトル量の差がより大きな
ものとなっている。ホトマルチプライアにより採光され
たAl発光スペクトル量とエッチング時間の関係で見る
と図3のようなグラフとなる。初め一定の安定したAl
の発光スペクトル強度曲線があり、Al膜からTiN膜
に移る時点であるポイントAから発光スペクトル曲線の
傾きは上向き方向となり、完全にTiN膜にエッチング
がかかった時点のポイントBでピーク値となる。なお、
TiN膜−Ti膜は約1000オングストロームと薄い
ために、エッチングはすぐに終了してしまうので、下地
の発光スペクトル強度レベルまでそのまま下向きに曲線
を描く。FIG. 6 is a graph showing the relationship between the emission spectrum intensity during the etching of the Al film, the emission spectrum intensity during the etching of the Ti film, and the emission spectrum intensity of the base and the wavelength. The emission spectra of the Al film and the TiN film are 300 nm, which is the constant wavelength band of the photomultiplier.
Al during etching when viewed in the range of up to 650 nm
It can be seen that the emission spectrum amount of TiN is larger than the emission spectrum amount of the film and the underlying layer, which makes the difference between the emission spectrum amount of Al and the emission spectrum amount of TiN larger. The relationship between the amount of Al emission spectrum collected by the photomultiplier and the etching time gives a graph as shown in FIG. Initially stable Al
Of the emission spectrum intensity curve, the slope of the emission spectrum curve is in the upward direction from the point A when the Al film is transferred to the TiN film, and has a peak value at the point B when the TiN film is completely etched. In addition,
Since the TiN film-Ti film is as thin as about 1000 angstroms, the etching ends immediately, so a downward curve is drawn up to the emission spectrum intensity level of the base.
【0009】本発明による終点検知方法を一実施例を図
8を用いてさらに説明する。前述のようにして得られた
発光スペクトル曲線に対しさらに二次微分処理を行い微
分曲線を得る。あらかじめプロセス条件出しによりシュ
ミレーションを行い、この微分曲線に対し、Al膜から
TiN膜に移る点に一次判定レベルを、TiN膜から下
地に移る点に二次判定レベルを設定しておく。実際に半
導体ウェハーをエッチングして発光スペクトルが得られ
たとき、Al膜からTiN膜に移る際に微分曲線が一次
判定レベルを上向きに方向に通過し、再びTiN膜から
下地に移る際に二次判定レベルを上向き方向に通過した
時点をTiN膜−Ti膜終点として判定し、メタル配線
膜であるTi膜/Al−Si−Cu合金膜/TiN膜−
Ti膜のエッチング終了としてガスプラズマ放電を停止
しエッチングをストップする。An end point detecting method according to the present invention will be further described with reference to FIG. The emission spectrum curve obtained as described above is further subjected to second-order differential processing to obtain a differential curve. A simulation is performed in advance by setting process conditions, and a primary determination level is set at the point where the Al film shifts to the TiN film, and a secondary determination level is set at the point where the TiN film shifts to the base for this differential curve. When the emission spectrum is obtained by actually etching the semiconductor wafer, the differential curve passes upward from the primary judgment level when moving from the Al film to the TiN film, and the secondary curve passes when moving from the TiN film to the base again. The time point at which the judgment level passes upward is judged as the TiN film-Ti film end point, and is a metal wiring film such as Ti film / Al-Si-Cu alloy film / TiN film-
When the etching of the Ti film is completed, the gas plasma discharge is stopped and the etching is stopped.
【0010】本発明による終点検知方法の他の実施例を
図3を用いて説明する。本発明により得られた発光スペ
クトル曲線に対し、あらかじめプロセス条件出しによる
シュミレーションにより、Alの発光スペクトル強度の
ポイントAを基準にTiNの発光スペクトル強度の立ち
上がりのピークポイントであるポイントBのレベルをA
l膜のエッチングの終点として設定しておく。また、T
iN−Ti膜の膜厚とエッチングレートからオーバーエ
ッチングタイムを計算しパラメーターとしてあらかじめ
設定しておく。これにより、実際に半導体ウェハーをエ
ッチングして発光スペクトルが得られ、発光スペクトル
強度がポイントBに達したとき、TiN−Ti膜のオー
バーエッチングタイマーをスタートさせ、タイムオーバ
ー時点をTiNの終点と判定して、メタル配線膜である
Ti膜/Al−Si−Cu合金膜/TiN膜−Ti膜の
エッチング終了として、ガスプラズマ放電を止め、エッ
チングをストップする。本実施例によると複雑な微分処
理を行なう必要がなく、簡単な終点判定機能とすること
が可能である。ホトマルチプレイアによる発光スペクト
ルの取り込み波長帯域の幅広いものを用いても、ホトマ
ルチプライアの性能である発光スペクトルを電流に変え
る効率を示す量子効率(%で示す。)があり、一定波長
帯域以上取り込んでもこれをカットしてしまうので、本
発明に合ったホトマルチプライアを選択すべきである。Another embodiment of the end point detecting method according to the present invention will be described with reference to FIG. With respect to the emission spectrum curve obtained by the present invention, the level of the point B, which is the peak point of the rise of the emission spectrum intensity of TiN, is set to A by the simulation of the emission condition intensity of Al in advance.
It is set as the end point of the etching of the l film. Also, T
The over-etching time is calculated from the film thickness of the iN-Ti film and the etching rate, and is preset as a parameter. Thereby, the semiconductor wafer is actually etched to obtain the emission spectrum, and when the emission spectrum intensity reaches the point B, the TiN-Ti film overetching timer is started, and the time-over time point is determined as the end point of TiN. When the etching of the Ti film / Al—Si—Cu alloy film / TiN film—Ti film which is the metal wiring film is completed, the gas plasma discharge is stopped and the etching is stopped. According to the present embodiment, it is not necessary to perform complicated differential processing, and it is possible to provide a simple end point determination function. Capture of emission spectrum by photomultiplier Even if a wide wavelength band is used, there is quantum efficiency (expressed in%) that is the efficiency of the photomultiplier to convert the emission spectrum into current, and capture over a certain wavelength band. However, it cuts this, so a photomultiplier suitable for the present invention should be selected.
【0011】[0011]
【発明の効果】以上説明したように本発明は、ガスプラ
ズマ中からの発光スペクトルをホトマルチプライアが持
つ波長帯域で全て受光することにより、得られた発光ス
ペクトル強度曲線のAlの発光スペクトル量とTiNの
発光スペクトル量の差がより大きなものとなり、変移点
がより明瞭になる。これにより終点検知をより確実かつ
正確なものとすることができる。これにより、被エッチ
ング物であるメタル配線膜の膜厚バラツキ、エッチング
レートのバラツキによる発光スペクトル強度曲線の傾き
の変化の影響がほとんどなくなることにより、一実施
例、他の実施例に示したような終点検知方法において、
終点が見つからない等による終点判定のバラツキがなく
なり、安定した終点判定を提供することができる。ひい
ては、プラズマドライエッチングの終点検知をより確実
なものとすることができ、従来問題となっていた下地の
オーバーエッチングによる次工程のプロセスでの問題
や、TiN膜−Ti膜の残渣による半導体素子として動
作させたとき電気的にショートとなる問題がなくなり、
製品歩留まりを大幅に向上することができる。As described above, according to the present invention, by receiving all the emission spectra from the gas plasma in the wavelength band of the photomultiplier, the emission spectrum intensity curve of Al and the emission spectrum amount of Al obtained are obtained. The difference in the emission spectrum amount of TiN becomes larger, and the transition point becomes clearer. This makes it possible to detect the end point more reliably and accurately. As a result, the influence of the change in the slope of the emission spectrum intensity curve due to the variation in the film thickness of the metal wiring film, which is the object to be etched, and the variation in the etching rate is almost eliminated, and as shown in one example and other examples. In the endpoint detection method,
It is possible to provide stable end point determination by eliminating variations in end point determination due to the fact that the end point cannot be found. As a result, the end point of plasma dry etching can be detected more reliably, and problems such as problems in the next process due to overetching of the base, which has been a problem in the past, and semiconductor elements due to residues of the TiN film-Ti film can be obtained. There is no problem of electrical short when operated,
The product yield can be significantly improved.
【0012】尚、本発明はAl−Si−Cu合金膜の下
の膜構成がTiN膜−Ti膜構造であれば、Al−Si
−Cu合金膜上の膜構成がTi膜以外のSi膜またその
他の膜構成であっても特に問題とはならない。また、T
i膜/Al−Si−Cu合金膜/TiN膜−Ti膜の膜
厚が変わっても同様に問題はない。According to the present invention, if the film structure under the Al-Si-Cu alloy film is a TiN film-Ti film structure, Al-Si
Even if the film structure on the —Cu alloy film is a Si film other than the Ti film or another film structure, there is no particular problem. Also, T
Even if the film thickness of i film / Al-Si-Cu alloy film / TiN film-Ti film changes, there is no problem.
【0013】Ti膜/Al−Si−Cu合金膜/TiN
膜−Ti膜構成のTiN膜−Ti膜にその他の膜を形成
した配線でも、発光スペクトルがAl−Si−Cu合金
の発光スペクトル強度より高ければ、本発明による終点
検知方法を用いることは可能である。Ti film / Al-Si-Cu alloy film / TiN
Even in the wiring in which the other film is formed on the TiN film-Ti film having the film-Ti film structure, if the emission spectrum is higher than the emission spectrum intensity of the Al-Si-Cu alloy, the endpoint detection method according to the present invention can be used. is there.
【図1】本発明の一実施例の概略図FIG. 1 is a schematic view of an embodiment of the present invention.
【図2】従来方法による実施例の概略図FIG. 2 is a schematic view of an embodiment according to a conventional method.
【図3】本発明による発光スペクトル強度とエッチング
時間とのグラフFIG. 3 is a graph of emission spectrum intensity and etching time according to the present invention.
【図4】従来方法による発光スペクトル強度とエッチン
グ時間とのグラフFIG. 4 is a graph of emission spectrum intensity and etching time by a conventional method.
【図5】従来方法による発光スペクトル強度とホトマル
チプライアによる受光波長とのグラフFIG. 5 is a graph of emission spectrum intensity by a conventional method and received wavelength by a photomultiplier.
【図6】本発明による発光スペクトル強度とホトマルチ
プライアによる受光波長とのグラフFIG. 6 is a graph of the emission spectrum intensity according to the present invention and the received wavelength by a photomultiplier.
【図7】従来方法による発光スペクトル強度の二次微分
曲線図FIG. 7: Second derivative curve diagram of emission spectrum intensity by the conventional method
【図8】本発明による発光スペクトル強度の二次微分曲
線図FIG. 8 is a second derivative curve diagram of emission spectrum intensity according to the present invention.
【図9】一実施例の多層配線の断面図FIG. 9 is a cross-sectional view of a multilayer wiring according to an example.
1 反応チャンバー 2 高周波電源 3 半導体ウェハー 4 フォトマルチプライア 5 マイクロコンピューター 6 アンプ回路 7 オフセット回路 8 ゲイン回路 9 感度調整回路 10 フィルター 11 ガスプラズマ 12 酸化膜 13 Ti膜 14 TiN膜 15 Al・Si・Cu膜 16 TiN膜 1 Reaction Chamber 2 High Frequency Power Supply 3 Semiconductor Wafer 4 Photomultiplier 5 Microcomputer 6 Amplifier Circuit 7 Offset Circuit 8 Gain Circuit 9 Sensitivity Adjustment Circuit 10 Filter 11 Gas Plasma 12 Oxide Film 13 Ti Film 14 TiN Film 15 Al ・ Si ・ Cu Film 16 TiN film
Claims (1)
N膜とTi膜とによる多層メタル配線層のプラズマドラ
イエッチングの終点検知方法に関し、ガスプラズマ中か
らの発光スペクトルを波長範囲300〜650nmのフ
ォトマルチプライアがもつ波長帯域で全て受光すること
により得られる発光スペクトル強度曲線を用いたことを
特徴とするプラズマドライエッチングの終点検知方法。1. A Ti film, an Al-Si-Cu alloy film, and a Ti film.
A method for detecting the end point of plasma dry etching of a multilayer metal wiring layer by an N film and a Ti film, which is obtained by receiving all emission spectra from gas plasma in the wavelength band of a photomultiplier having a wavelength range of 300 to 650 nm. A method for detecting the end point of plasma dry etching, which uses an emission spectrum intensity curve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4128398A JP2771387B2 (en) | 1992-05-21 | 1992-05-21 | End point detection method for plasma dry etching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4128398A JP2771387B2 (en) | 1992-05-21 | 1992-05-21 | End point detection method for plasma dry etching |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0669165A true JPH0669165A (en) | 1994-03-11 |
JP2771387B2 JP2771387B2 (en) | 1998-07-02 |
Family
ID=14983819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4128398A Expired - Fee Related JP2771387B2 (en) | 1992-05-21 | 1992-05-21 | End point detection method for plasma dry etching |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2771387B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160014611A (en) | 2013-06-04 | 2016-02-11 | 가부시키가이샤 사쿠라 크레파스 | Ink composition for detecting plasma treatment and indicator for detecting plasma |
US20160141192A1 (en) | 2013-08-22 | 2016-05-19 | Sakura Color Products Corporation | Indicator used in electronic device manufacturing apparatus and method for designing and/or managing the apparatus |
KR20170002463A (en) * | 2014-05-09 | 2017-01-06 | 가부시키가이샤 사쿠라 크레파스 | Plasma processing detection indicator using inorganic substance as a color-change layer |
JP2017045871A (en) * | 2015-08-27 | 2017-03-02 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device and method of detecting endpoint of dry etching |
KR20180122016A (en) | 2016-07-06 | 2018-11-09 | 가부시키가이샤 사쿠라 크레파스 | Plasma processing detection composition and plasma processing detection indicator |
US10180413B2 (en) | 2014-12-02 | 2019-01-15 | Sakura Color Products Corporation | Ink composition for plasma processing detection, and indicator for plasma processing detection using said ink composition |
US10184058B2 (en) | 2014-04-21 | 2019-01-22 | Sakura Color Products Corporation | Ink composition for detecting plasma treatment and indicator for detecting plasma treatment |
US10401338B2 (en) | 2014-02-14 | 2019-09-03 | Sakura Color Products Corporation | Plasma processing detection indicator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312927A (en) * | 1989-06-10 | 1991-01-21 | Sony Corp | Dry etching of titanium material |
-
1992
- 1992-05-21 JP JP4128398A patent/JP2771387B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312927A (en) * | 1989-06-10 | 1991-01-21 | Sony Corp | Dry etching of titanium material |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160014611A (en) | 2013-06-04 | 2016-02-11 | 가부시키가이샤 사쿠라 크레파스 | Ink composition for detecting plasma treatment and indicator for detecting plasma |
US20160141192A1 (en) | 2013-08-22 | 2016-05-19 | Sakura Color Products Corporation | Indicator used in electronic device manufacturing apparatus and method for designing and/or managing the apparatus |
US10181414B2 (en) | 2013-08-22 | 2019-01-15 | Sakura Color Products Corporation | Indicator used in electronic device manufacturing apparatus and method for designing and/or managing the apparatus |
US10401338B2 (en) | 2014-02-14 | 2019-09-03 | Sakura Color Products Corporation | Plasma processing detection indicator |
US10184058B2 (en) | 2014-04-21 | 2019-01-22 | Sakura Color Products Corporation | Ink composition for detecting plasma treatment and indicator for detecting plasma treatment |
KR20170002463A (en) * | 2014-05-09 | 2017-01-06 | 가부시키가이샤 사쿠라 크레파스 | Plasma processing detection indicator using inorganic substance as a color-change layer |
US10180392B2 (en) | 2014-05-09 | 2019-01-15 | Sakura Color Products Corporation | Plasma processing detection indicator using inorganic substance as a color-change layer |
US10180413B2 (en) | 2014-12-02 | 2019-01-15 | Sakura Color Products Corporation | Ink composition for plasma processing detection, and indicator for plasma processing detection using said ink composition |
JP2017045871A (en) * | 2015-08-27 | 2017-03-02 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device and method of detecting endpoint of dry etching |
KR20180122016A (en) | 2016-07-06 | 2018-11-09 | 가부시키가이샤 사쿠라 크레파스 | Plasma processing detection composition and plasma processing detection indicator |
Also Published As
Publication number | Publication date |
---|---|
JP2771387B2 (en) | 1998-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4227301B2 (en) | End point detection method in semiconductor plasma processing | |
US5928532A (en) | Method of detecting end point of plasma processing and apparatus for the same | |
US5739051A (en) | Method and device for detecting the end point of plasma process | |
JP3383236B2 (en) | Etching end point determining method and etching end point determining apparatus | |
JPS636845A (en) | System and method of reactive ion etching | |
JPH0669165A (en) | Method for detecting end point of plasma dry etching | |
JP2864967B2 (en) | Dry etching method for refractory metal film | |
JP4193288B2 (en) | Etching end point detection method | |
JP2944802B2 (en) | Dry etching method | |
JP3217581B2 (en) | Etching end point detection method | |
JP2002280368A (en) | Method of etching insulation film | |
JP3415074B2 (en) | X-ray mask manufacturing method and apparatus | |
JP2001267301A (en) | Method for detecting degree of etching, etching method, method of manufacturing semiconductor, device for detection of etching degree and dry etching device | |
JP3884894B2 (en) | Plasma etching processing equipment | |
JP2906752B2 (en) | Dry etching method | |
JP2001007084A (en) | Method for determining termination of etching | |
US6930049B2 (en) | Endpoint control for small open area by RF source parameter Vdc | |
JP2690900B2 (en) | Dry etching method | |
JP2977054B2 (en) | Dry etching method | |
JP3195695B2 (en) | Plasma processing method | |
JPH06318572A (en) | Method and apparatus for detecting end point of plasma treatment | |
JPH09139377A (en) | Terminal detection of dry etching and its method | |
JP2913125B2 (en) | Dry etching method | |
KR100413476B1 (en) | method for detection etch end point | |
JP3885060B2 (en) | Plasma etching processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980317 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080417 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |