JPH0669000A - Radiation absorber of particle accelerator vacuum chamber - Google Patents

Radiation absorber of particle accelerator vacuum chamber

Info

Publication number
JPH0669000A
JPH0669000A JP15981792A JP15981792A JPH0669000A JP H0669000 A JPH0669000 A JP H0669000A JP 15981792 A JP15981792 A JP 15981792A JP 15981792 A JP15981792 A JP 15981792A JP H0669000 A JPH0669000 A JP H0669000A
Authority
JP
Japan
Prior art keywords
vacuum chamber
absorber
cooling water
wall
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15981792A
Other languages
Japanese (ja)
Inventor
Yasuaki Suzuki
康明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15981792A priority Critical patent/JPH0669000A/en
Publication of JPH0669000A publication Critical patent/JPH0669000A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To improve thermal conductivity of a welding part and eliminate the possibility that a radiation absorber is removed from a vacuum chamber. CONSTITUTION:The radiation light absorber of a particle accelerator vacuum chamber is provided on the inner wall 22a of a vacuum chamber 22 to absorb radiation 25 generated from particles passing inside the vacuum chamber 22 and formed by means of build up welding and a cooling water passage part 26 through the inside of which cooling water passes is provided on the wall part of the vacuum chamber 22 adjacent to the radiation absorber 21. Thus, the radiation absorber is firmly fixed in its condition of close contact with the predetermined position of the inside wall of the vacuum chamber and effectively cooled by the cooling water passage part 26. Since the radiation absorber itself includes no pressure boundary, it is not subjected to thermal fatigue and can be miniaturized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シンクロトロン等の粒
子加速器真空チェンバーの放射光吸収体に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation absorber for a particle accelerator vacuum chamber such as a synchrotron.

【0002】[0002]

【従来の技術】近年、超LSIの製造、医療分野におけ
る診断、分子解析、構造解析等様々な分野において、シ
ンクロトロン放射(Synchrotron Orbital Radiatio
n)光(略してSOR光)を用いたSORリソグラフィ
ー技術が有望視されている。このSOR光は、線型加速
装置(ライナック)により光速近くまで加速された電子
ビームを蓄積リング内に入射し、該電子ビームにエネル
ギーを与えながら該電子ビームを加速する間に、該電子
ビームを偏向電磁石で偏向する際に発生するもので、高
いビーム出力を有ししかも指向性が強く高輝度である等
の優れた特徴を有する。そして、超LSI等の半導体工
業においては、この発生したSOR光をビームチャンネ
ルを通して露光装置等の半導体微細加工装置に送り、超
LSIの微細加工用光源として用いる。前記蓄積リング
は、アルミニウム製の真空チェンバーをフランジで順次
連結して全体をリング状に構成したもので、図3に示す
ような断面楕円状のビームチェンバー1と、断面略矩形
状のゲッタポンプチェンバー2と、ビームチェンバー1
とゲッタポンプチェンバー2とを連通するスリット3と
から構成される二槽式の真空チェンバー4が好適に用い
られる。
2. Description of the Related Art In recent years, in various fields such as manufacturing of VLSI, diagnosis in the medical field, molecular analysis, structural analysis, etc., synchrotron radiation (Synchrotron Radial Ratio)
n) The SOR lithography technique using light (abbreviated as SOR light) is considered promising. This SOR light impinges on an electron beam accelerated to near the speed of light by a linear accelerator (linac) into a storage ring, and deflects the electron beam while accelerating the electron beam while giving energy to the electron beam. It is generated when deflected by an electromagnet, and has excellent features such as high beam output, strong directivity and high brightness. Then, in the semiconductor industry such as VLSI, the generated SOR light is sent to a semiconductor fine processing apparatus such as an exposure apparatus through a beam channel and used as a light source for fine processing of VLSI. The storage ring is formed by sequentially connecting aluminum vacuum chambers with a flange to form a ring shape. A beam chamber 1 having an elliptical cross section and a getter pump chamber having a substantially rectangular cross section as shown in FIG. 2 and beam chamber 1
A two-chamber type vacuum chamber 4 composed of a slit 3 communicating with the getter pump chamber 2 is preferably used.

【0003】前記蓄積リングにおいては、ベローズ、ゲ
ートバルブ、セラミックチェンバー等冷却機能を備える
ことのできない箇所があり、これらの箇所にSOR光を
当てないためにビームチェンバー1のSOR光の入射側
の内壁1aの冷却水管(冷却水路部)5に隣接してSO
R光を吸収するアブソーバー(放射光吸収体)6が設置
されている。図4はアブソーバーの他の一例を示すもの
で、真空チェンバー7の内壁7aの所定位置にアブソー
バー8を溶接し、該内壁7aに冷却水管9を設けたもの
である。また、アブソーバーの他の例としては、図5に
示すように、真空チェンバー7の内壁7aにアブソーバ
ー取り付け用の穴10を形成し、この穴10に、冷却水
管11が設けられたアブソーバー12を溶接したものも
ある。
In the storage ring, there are parts such as a bellows, a gate valve, and a ceramic chamber that cannot be provided with a cooling function. Since the SOR light is not applied to these parts, the inner wall of the beam chamber 1 on the SOR light incident side is provided. SO adjacent to the cooling water pipe (cooling water passage part) 5 of 1a
An absorber (radiant light absorber) 6 that absorbs R light is installed. FIG. 4 shows another example of the absorber, in which the absorber 8 is welded to a predetermined position of the inner wall 7a of the vacuum chamber 7 and the cooling water pipe 9 is provided on the inner wall 7a. Further, as another example of the absorber, as shown in FIG. 5, a hole 10 for attaching the absorber is formed in the inner wall 7a of the vacuum chamber 7, and the absorber 12 provided with the cooling water pipe 11 is welded to the hole 10. Some have been done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
アブソーバー6,8では、溶接にて固定しているため
に、溶接部の熱伝導度が低下するという欠点があった。
また、SOR光を吸収しこの熱により溶融したアブソー
バー6,8がビームチェンバー1や真空チェンバー7か
ら欠落する虞があるという欠点もあった。また、アブソ
ーバー12では、穴10にアブソーバー12を溶接して
いるために、大気と真空の圧力境界があり、しかも、S
OR光照射の有無による昇降温の熱サイクルがこの圧力
境界に加わり熱疲労が起るという問題点がある。また、
アブソーバー12内に冷却水管11を設けるためにアブ
ソーバー12が大きくなってしまうという問題点もあっ
た。
However, since the conventional absorbers 6 and 8 are fixed by welding, there is a drawback that the thermal conductivity of the welded portion is lowered.
Further, there is a drawback that the absorbers 6 and 8 that absorb the SOR light and are melted by the heat may be missing from the beam chamber 1 and the vacuum chamber 7. Further, in the absorber 12, since the absorber 12 is welded to the hole 10, there is a pressure boundary between the atmosphere and the vacuum, and S
There is a problem that a thermal cycle of temperature increase / decrease depending on the presence or absence of OR light irradiation is applied to this pressure boundary to cause thermal fatigue. Also,
Since the cooling water pipe 11 is provided inside the absorber 12, there is a problem that the absorber 12 becomes large.

【0005】本発明は、上記の事情に鑑みてなされたも
のであって、従来の欠点や問題点を解決することのでき
る粒子加速器真空チェンバーの放射光吸収体を提供する
ことにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a synchrotron radiation absorber for a particle accelerator vacuum chamber which can solve the conventional drawbacks and problems.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な粒子加速器真空チェンバーの放射
光吸収体を採用した。すなわち、真空チェンバーの内壁
に設けられ、該真空チェンバー内を通過する粒子が発生
する放射光を吸収する粒子加速器真空チェンバーの放射
光吸収体であって、前記放射光吸収体は肉盛溶接により
形成され、該放射光吸収体に隣接する真空チェンバーの
壁部に、内部に冷却水が通される冷却水路部を設けてな
ることを特徴としている。
In order to solve the above-mentioned problems, the present invention employs the following radiation absorber of a particle accelerator vacuum chamber. That is, a radiant light absorber of a particle accelerator vacuum chamber provided on the inner wall of the vacuum chamber and absorbing radiant light generated by particles passing through the vacuum chamber, the radiant light absorber being formed by overlay welding. In addition, a cooling water passage portion through which cooling water passes is provided in a wall portion of the vacuum chamber adjacent to the radiant light absorber.

【0007】[0007]

【作用】本発明の粒子加速器真空チェンバーの放射光吸
収体では、前記放射光吸収体は肉盛溶接により真空チェ
ンバーの内壁に密着した状態で強固に固定される。ま
た、冷却水路部は放射光吸収体を効果的に冷却する。こ
れより、従来の放射光吸収体と比較して溶接部の熱伝導
度が向上し、したがって、充分な冷却効果が得られ、放
射光吸収体が真空チェンバーから欠落する虞もなくな
る。また、圧力境界がないために熱疲労の心配もなく、
小型化も可能となる。
In the radiant light absorber of the particle accelerator vacuum chamber of the present invention, the radiant light absorber is firmly fixed to the inner wall of the vacuum chamber by overlay welding. Further, the cooling water passage portion effectively cools the radiant light absorber. As a result, the thermal conductivity of the welded portion is improved as compared with the conventional radiation absorption body, and therefore, a sufficient cooling effect is obtained, and the radiation absorption body is not likely to drop from the vacuum chamber. Also, because there is no pressure boundary, there is no worry of thermal fatigue,
It can be downsized.

【0008】[0008]

【実施例】図1は、本発明のシンクロトロン(粒子加速
器)真空チェンバーのアブソーバー(放射光吸収体)の
一実施例を示す縦断面図であり、図2は図1のA−A線
に沿う横断面図である。このアブソーバー21は、真空
チェンバー22,22間にアルミニウム板23,23に
より固定されたセラミックチェンバー24をSOR光2
5から保護するために、真空チェンバー22の内壁22
aに肉盛溶接した後、機械加工を施すことにより形成さ
れている。そして、このアブソーバー21に隣接する真
空チェンバー22の壁部には冷却水管(冷却水路部)2
6が設けられている。
1 is a vertical sectional view showing an embodiment of an absorber (radiation light absorber) of a synchrotron (particle accelerator) vacuum chamber of the present invention, and FIG. 2 is a line AA of FIG. FIG. The absorber 21 includes a ceramic chamber 24 fixed between the vacuum chambers 22 and 22 by aluminum plates 23 and 23.
In order to protect from 5, the inner wall 22 of the vacuum chamber 22
It is formed by carrying out machining after overlay welding on a. A cooling water pipe (cooling water passage portion) 2 is provided on the wall of the vacuum chamber 22 adjacent to the absorber 21.
6 is provided.

【0009】このアブソーバー21は、肉盛溶接により
真空チェンバー22の内壁22aに密着した状態で強固
に固定される。また、このアブソーバー21は冷却水管
26により効果的に冷却される。これにより、従来のア
ブソーバー6,8,12と比較して溶接部の熱伝導度が
向上し、したがって、充分な冷却効果が得られる。
The absorber 21 is firmly fixed in a state of being in close contact with the inner wall 22a of the vacuum chamber 22 by overlay welding. Further, the absorber 21 is effectively cooled by the cooling water pipe 26. As a result, the thermal conductivity of the welded portion is improved as compared with the conventional absorbers 6, 8 and 12, and therefore a sufficient cooling effect is obtained.

【0010】本実施例のアブソーバー21によれば、真
空チェンバー22の内壁22aに肉盛溶接により形成
し、このアブソーバー21に隣接する真空チェンバー2
2の壁部に冷却水管26を設けることとしたので、真空
チェンバー22の内壁22aの所定位置に密着した状態
で強固に固定することができ、また、冷却水管26によ
り効果的に冷却することができる。したがって、従来の
アブソーバー6,8,12と比較して溶接部の熱伝導度
を向上させることができ、アブソーバー21が真空チェ
ンバー22から欠落する虞もなくなる。また、圧力境界
がないために熱疲労の心配もなく、小型化も可能とな
る。
According to the absorber 21 of this embodiment, the vacuum chamber 2 is formed by overlay welding on the inner wall 22a of the vacuum chamber 22 and is adjacent to the absorber 21.
Since the cooling water pipe 26 is provided in the second wall portion, the cooling water pipe 26 can be firmly fixed to the inner wall 22a of the vacuum chamber 22 in a close contact with a predetermined position, and the cooling water pipe 26 can effectively cool. it can. Therefore, the thermal conductivity of the welded portion can be improved as compared with the conventional absorbers 6, 8 and 12, and there is no fear that the absorber 21 will be missing from the vacuum chamber 22. Further, since there is no pressure boundary, there is no fear of thermal fatigue and miniaturization is possible.

【0011】[0011]

【発明の効果】以上説明した様に、本発明の粒子加速器
真空チェンバーの放射光吸収体によれば、真空チェンバ
ーの内壁に設けられ、該真空チェンバー内を通過する粒
子が発生する放射光を吸収する粒子加速器真空チェンバ
ーの放射光吸収体であって、前記放射光吸収体は肉盛溶
接により形成され、該放射光吸収体に隣接する真空チェ
ンバーの壁部に、内部に冷却水が通される冷却水路部を
設けてなることとしたので、真空チェンバーの内壁の所
定位置に密着した状態で強固に固定することができ、ま
た、冷却水路部により効果的に冷却することができる。
したがって、従来の放射光吸収体と比較して溶接部の熱
伝導度を向上させることができ、放射光吸収体が真空チ
ェンバーから欠落する虞もなくなる。また、圧力境界が
ないために熱疲労の心配もなく、小型化も可能となる。
As described above, according to the radiant light absorber of the particle accelerator vacuum chamber of the present invention, the radiant light generated by the particles provided on the inner wall of the vacuum chamber and passing through the vacuum chamber is absorbed. Radiation absorber of a particle accelerator vacuum chamber, wherein the radiation absorber is formed by overlay welding, and cooling water is internally passed through a wall of the vacuum chamber adjacent to the radiation absorber. Since the cooling water passage portion is provided, it can be firmly fixed to the predetermined position of the inner wall of the vacuum chamber in a close contact state, and cooling can be effectively performed by the cooling water passage portion.
Therefore, it is possible to improve the thermal conductivity of the welded portion as compared with the conventional synchrotron radiation absorber, and there is no fear that the radiant light absorber will be missing from the vacuum chamber. Further, since there is no pressure boundary, there is no fear of thermal fatigue and miniaturization is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粒子加速器真空チェンバーのアブソー
バーの一実施例を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of an absorber of a particle accelerator vacuum chamber of the present invention.

【図2】図1のA−A線に沿う横断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】従来の粒子加速器の真空チェンバーを示す横断
面図である。
FIG. 3 is a cross-sectional view showing a vacuum chamber of a conventional particle accelerator.

【図4】従来の粒子加速器真空チェンバーのアブソーバ
ーを示す縦断面図である。
FIG. 4 is a vertical sectional view showing an absorber of a conventional particle accelerator vacuum chamber.

【図5】従来の粒子加速器真空チェンバーのアブソーバ
ーを示す縦断面図である。
FIG. 5 is a vertical sectional view showing an absorber of a conventional particle accelerator vacuum chamber.

【符号の説明】[Explanation of symbols]

21 アブソーバー(放射光吸収体) 22 真空チェンバー 22a 内壁 24 セラミックチェンバー 25 SOR光 26 冷却水管(冷却水路部) 21 Absorber (Radiation Absorber) 22 Vacuum Chamber 22a Inner Wall 24 Ceramic Chamber 25 SOR Light 26 Cooling Water Pipe (Cooling Water Channel)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空チェンバーの内壁に設けられ、該真
空チェンバー内を通過する粒子が発生する放射光を吸収
する粒子加速器真空チェンバーの放射光吸収体であっ
て、 前記放射光吸収体は肉盛溶接により形成され、 該放射光吸収体に隣接する真空チェンバーの壁部に、内
部に冷却水が通される冷却水路部を設けてなることを特
徴とする粒子加速器真空チェンバーの放射光吸収体。
1. A radiant light absorber of a particle accelerator vacuum chamber, which is provided on an inner wall of a vacuum chamber and absorbs radiant light generated by particles passing through the vacuum chamber, wherein the radiant light absorber is built up. A radiant light absorber for a particle accelerator vacuum chamber, characterized in that a cooling water passage portion, through which cooling water is passed, is provided in a wall portion of the vacuum chamber formed by welding and adjacent to the radiant light absorber.
JP15981792A 1992-06-18 1992-06-18 Radiation absorber of particle accelerator vacuum chamber Withdrawn JPH0669000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15981792A JPH0669000A (en) 1992-06-18 1992-06-18 Radiation absorber of particle accelerator vacuum chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15981792A JPH0669000A (en) 1992-06-18 1992-06-18 Radiation absorber of particle accelerator vacuum chamber

Publications (1)

Publication Number Publication Date
JPH0669000A true JPH0669000A (en) 1994-03-11

Family

ID=15701899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15981792A Withdrawn JPH0669000A (en) 1992-06-18 1992-06-18 Radiation absorber of particle accelerator vacuum chamber

Country Status (1)

Country Link
JP (1) JPH0669000A (en)

Similar Documents

Publication Publication Date Title
US4692934A (en) X-ray lithography system
JPH0669000A (en) Radiation absorber of particle accelerator vacuum chamber
JPH065400A (en) Emitted light absorbent for vacuum chamber of particle accelerator
JP3070085B2 (en) Light extraction line of SOR optical device
JP2000346998A (en) Electron beam irradiator
JP2003307598A (en) Electron beam emission tube
JPH07119839B2 (en) Irradiation window
JPH065394A (en) Coupling structure for coolant path of particle accelerator
JPH02199800A (en) Radiated light absorber
JPH11166476A (en) Cryopump of differential exhaust type
JPH0495396A (en) Synchrotron radiation absorber
JPH03187141A (en) X-ray generator
JPH0729800U (en) X-ray irradiation device
JPS62296516A (en) X-ray exposure device
JPH0945500A (en) Beam duct and its manufacture
SU582708A1 (en) Device for guiding-out electron beam
JPH065391A (en) Heater fixing structure for vacuum chamber of particle accelerator
JPH0676996A (en) Deflection chamber for particle accelerator
JP2854235B2 (en) Method and apparatus for irradiating plasma emitted light
JPH06176900A (en) Synchrotron radiation light absorbent of particle accelerator
JPH04123799A (en) Ring-type charged particle accelerator
JPH08145257A (en) Flange for vacuum and duct coupling method using the flange
JPH0696897A (en) Temperature control passage structure for particle accelerator vacuum chamber
JPH06160596A (en) Emitted light masking device for particle accelerator
JPH065392A (en) Thermocouple fixing structure for vacuum chamber of particle accelerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831