JPH0668938B2 - Method for manufacturing foam insulated wire - Google Patents

Method for manufacturing foam insulated wire

Info

Publication number
JPH0668938B2
JPH0668938B2 JP5632187A JP5632187A JPH0668938B2 JP H0668938 B2 JPH0668938 B2 JP H0668938B2 JP 5632187 A JP5632187 A JP 5632187A JP 5632187 A JP5632187 A JP 5632187A JP H0668938 B2 JPH0668938 B2 JP H0668938B2
Authority
JP
Japan
Prior art keywords
weight
parts
acid
azodicarbonamide
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5632187A
Other languages
Japanese (ja)
Other versions
JPS63224119A (en
Inventor
茂 柏崎
真吉 中川
孝康 浅井
史郎 小西
正二 遠藤
裕寿 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5632187A priority Critical patent/JPH0668938B2/en
Publication of JPS63224119A publication Critical patent/JPS63224119A/en
Publication of JPH0668938B2 publication Critical patent/JPH0668938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導体と発泡絶縁電線の製造方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for manufacturing a conductor and a foam insulated wire.

[従来の技術] コンピュータ、電話通信などの高速情報回路において
は、低誘電率の電線が必要とされており、発泡ポリオレ
フィン絶縁電線が多用されてきている。発泡ポリオレフ
ィン絶縁電線の製造方法としては、化学発泡剤を含むポ
リオレフィンを押出機に供給して発泡剤の分解温度以上
の温度でもって溶融混練し、導体外周に押出被覆する方
法が一般に知られているが、この方法では、発泡剤の分
解ガスが飛散しやすく、50%以上の高発泡体を得ること
が困難な状況にある。
[Prior Art] In a high-speed information circuit such as a computer and a telephone communication, an electric wire having a low dielectric constant is required, and a foamed polyolefin insulated electric wire is often used. As a method for producing a foamed polyolefin insulated wire, a method is generally known in which a polyolefin containing a chemical foaming agent is supplied to an extruder, melt-kneaded at a temperature equal to or higher than the decomposition temperature of the foaming agent, and extrusion-coated on the outer circumference of the conductor. However, in this method, the decomposition gas of the foaming agent is easily scattered, and it is difficult to obtain a high-foamed product of 50% or more.

発泡剤の分解ガスの飛散を防止する対策として、特公昭
53-4909には、発泡剤を含むプラスチック混和物を導体
上に押出被覆した後、放射線、電子線により連続的に架
橋し、続いて加圧流体雰囲気中で加熱して発泡させる製
造方法が提案されている。
As a measure to prevent the decomposition gas of the foaming agent from scattering,
53-4909 proposes a manufacturing method in which a plastic mixture containing a foaming agent is extrusion-coated on a conductor, continuously cross-linked by radiation and electron beams, and then heated in a pressurized fluid atmosphere to foam. Has been done.

[発明が解決しようとする問題点] しかし、この方法によれば、流体加圧設備が必要である
ことから汎用性に欠け、また、圧力変動による外径の不
均一、流体による絶縁電線の汚損などの問題がある。
[Problems to be Solved by the Invention] However, this method lacks versatility because a fluid pressurizing facility is required, and the outer diameter is not uniform due to pressure fluctuation, and the insulated wire is contaminated by fluid. There are problems such as.

このため、常圧下での加熱発泡について種々検討したと
ころ、発泡剤として最も適切なアゾジカルボンアミドを
使用した場合、導体と発泡絶縁体とが粘着し、ワイヤス
トリッパを用いて発泡絶縁体を剥取る際、導体周囲に発
泡絶縁体が残り、端末処理作業性が極めて悪くなるとい
う問題がある。
For this reason, various studies were conducted on heat foaming under normal pressure. When the most suitable azodicarbonamide was used as a foaming agent, the conductor and the foamed insulation adhered to each other, and the foamed insulation was peeled off using a wire stripper. In this case, there is a problem that the foamed insulator remains around the conductor and the workability of the terminal treatment is extremely deteriorated.

導体と発泡絶縁体との粘着を抑制して端末処理作業性を
改善する方法として、ステアリン酸亜鉛等の亜鉛石鹸、
ステアリン酸鉛等の鉛石鹸を少量添加することが効果的
であることが確認されている。しかし、このような化合
物を添加することによって、アゾジカルボンアミドの分
解温度が低下して分解しやすくなることから、コンパウ
ンドの押出条件が厳しくなり、均一な発泡絶縁電線を長
尺にわたって製造することが難しくなるという問題が新
たに指摘される至った。
As a method of suppressing the adhesion between the conductor and the foamed insulator to improve the workability of the terminal treatment, zinc soap such as zinc stearate,
It has been confirmed that adding a small amount of lead soap such as lead stearate is effective. However, the addition of such a compound lowers the decomposition temperature of azodicarbonamide and makes it easier to decompose, so the extrusion conditions of the compound become strict, and it is possible to produce a uniform foam insulated wire over a long length. The problem of becoming difficult has come to the fore.

本発明は、上記に基づいてなされたもので、高発泡化が
可能で、導体と発泡絶縁体との粘着を抑制して発泡絶縁
体の剥離が容易であり、しかも長尺にわたって均一な発
泡絶縁体が得られる発泡絶縁電線の製造方法の提供を目
的とするものである。
The present invention has been made based on the above, high foaming is possible, the adhesion of the conductor and the foamed insulation is suppressed, and the foamed insulation is easily peeled off, and the foamed insulation is uniform over a long length. It is an object of the present invention to provide a method for producing a foam insulated wire from which a body is obtained.

[問題点を解決するための手段] 本発明の発泡絶縁電線の製造方法は、ポリオレフィン10
0重量部に対してアゾジカルボンアミド0.5〜15重量部、
有機亜鉛化合物0.1〜10重量部および脂肪酸0.05〜5重
量部含有するコンパウンドをアゾジカルボンアミドの分
解温度以下の温度で導体外周に押出被覆してから電離性
放射線の照射により架橋せしめ、しかる後アゾジカルボ
ンアミドの分解温度以上に加熱して発泡絶縁体を形成す
ることを特徴とするものである。
[Means for Solving Problems] The method for producing a foam insulated wire according to the present invention is a polyolefin 10
0.5 to 15 parts by weight of azodicarbonamide to 0 parts by weight,
A compound containing 0.1 to 10 parts by weight of an organozinc compound and 0.05 to 5 parts by weight of a fatty acid is extrusion-coated on the outer circumference of a conductor at a temperature not higher than the decomposition temperature of azodicarbonamide, and then crosslinked by irradiation with ionizing radiation, and then azodicarbonate. It is characterized in that the foamed insulator is formed by heating at a temperature equal to or higher than the decomposition temperature of the amide.

本発明におけるポリオレフィンとしては、低密度ポリエ
チレン、中高密度ポリエチレン、リニア低密度ポリエチ
レン、超低密度ポリエチレン、ポリプロピレンなどが例
示されるが、これに限るものではない。
Examples of the polyolefin in the present invention include, but are not limited to, low density polyethylene, medium and high density polyethylene, linear low density polyethylene, ultra low density polyethylene, polypropylene and the like.

アゾジカルボンアミドは、分解温度が200〜210℃の粉末
物質であり、分解によって発生するガスにより、発泡体
が形成される。アゾジカルボンアミドの添加量は、ポリ
オレフィン100重量部に対して0.5〜15重量部の範囲とす
る必要があり、0.5重量部未満では発泡が不十分であ
り、15重量部を越えると発泡状態のコントロールが難し
くなる。
Azodicarbonamide is a powder substance having a decomposition temperature of 200 to 210 ° C., and a gas generated by the decomposition forms a foam. The amount of azodicarbonamide added should be in the range of 0.5 to 15 parts by weight with respect to 100 parts by weight of the polyolefin.If it is less than 0.5 parts by weight, the foaming is insufficient. Becomes difficult.

本発明においては、有機亜鉛化合物と脂肪酸の併用によ
り、導体と発泡絶縁体との粘着を抑制でき、しかも長尺
にわたり均一な発泡絶縁体を形成できる。すなわち、コ
ンパウンドの押出時においては、有機亜鉛化合物と脂肪
酸は単に分散状態にあるためにアゾジカルボンアミドの
分解温度を低下させることは殆どなく、加熱発泡時は有
機亜鉛化合物と脂肪酸とが反応し、これによって導体と
発泡絶縁体との粘着に寄与するアゾジカルボンアミドの
分解残渣の生成を抑止するものと考えられる。
In the present invention, the combined use of the organozinc compound and the fatty acid can suppress the adhesion between the conductor and the foamed insulation, and can form a foamed insulation that is uniform over a long length. That is, when the compound is extruded, the organozinc compound and the fatty acid rarely lower the decomposition temperature of the azodicarbonamide because they are simply in a dispersed state, and the organozinc compound and the fatty acid react during the heat foaming, It is considered that this suppresses the generation of decomposition residues of azodicarbonamide, which contributes to the adhesion between the conductor and the foamed insulator.

有機亜鉛化合物および脂肪酸の添加量はそれぞれ、ポリ
オレフィン100重量部に対して0.1〜10重量部および0.05
〜5重量部の範囲である。有機亜鉛化合物が0.1重量部
あるいは脂肪酸が0.05重量部未満では導体と発泡絶縁体
との粘着防止に効果がない。また、有機亜鉛化合物が10
重量部あるいは脂肪酸が5重量部を越えるとアゾジカル
ボンアミドの分解温度を著しく低下させるため、押出成
形時に発泡して長尺にわたって均一な発泡絶縁体を得る
ことが困難になると共に、低誘電率の発泡絶縁体を得る
ことが難しくなる。
The addition amount of the organic zinc compound and the fatty acid is 0.1 to 10 parts by weight and 0.05 parts by weight, respectively, relative to 100 parts by weight of the polyolefin.
Is in the range of 5 parts by weight. If the organozinc compound is less than 0.1 parts by weight or the fatty acid is less than 0.05 parts by weight, the effect of preventing the adhesion between the conductor and the foamed insulator is ineffective. In addition, the organozinc compound is 10
If the weight part or the fatty acid exceeds 5 parts by weight, the decomposition temperature of azodicarbonamide is remarkably lowered, so that it becomes difficult to obtain a foamed insulator which is foamed during extrusion molding and is uniform over a long length. It is difficult to obtain a foam insulation.

有機亜鉛化合物としては、2−メルカプトベンゾチアゾ
ールの亜鉛塩、ジメチルジチオカルバミン酸亜鉛、ジエ
チルジチオカルバミン酸亜鉛、N−エチル−N−フェニ
ルジチオカルバミン酸亜鉛、ブチルキサントゲン酸亜
鉛、2−メルカプトベンズイミダゾールの亜鉛塩、2−
ベンズアミドチオフェノールの亜鉛塩、ジ−n−ブチル
ジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン
酸亜鉛、酢酸亜鉛、塩基性酢酸亜鉛等があげられる。
As the organic zinc compound, a zinc salt of 2-mercaptobenzothiazole, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc butylxanthate, a zinc salt of 2-mercaptobenzimidazole, 2-
Examples thereof include zinc salt of benzamide thiophenol, zinc di-n-butyldithiocarbamate, zinc dibenzyldithiocarbamate, zinc acetate, and basic zinc acetate.

脂肪酸としては、ステアリン酸、ラウリン酸、リシノー
ル酸、ナフテン酸、2−エチルヘキソイン酸、オクチル
酸、ヒドロキシステアリン酸、フタル酸、リンデル酸、
エライジン酸、ツズ酸、ガドレン酸、フィセトレイン
酸、ゴンドウ酸、ミリストレイン酸、鯨油酸、ゾーマリ
ン酸、エルカ酸、ペトロセリン酸、プランジン酸、オレ
イン酸、セラコイレン酸、リノール酸、リノエライジン
酸、リノレン酸、エレオステアリン酸、モロクチ酸、バ
リナリン酸、アラキドン酸、イワシ酸、ヒラガシラ酸、
ニシン酸などがあげられる。
As the fatty acid, stearic acid, lauric acid, ricinoleic acid, naphthenic acid, 2-ethylhexoic acid, octylic acid, hydroxystearic acid, phthalic acid, lindelic acid,
Elaidic acid, tudzuic acid, gadrenic acid, ficetrain acid, gondoic acid, myristoleic acid, whale oil acid, zomarinic acid, erucic acid, petroselinic acid, planzic acid, oleic acid, serracoylenic acid, linoleic acid, linoelaidic acid, linolenic acid Acid, eleostearic acid, moloctic acid, vinalinaric acid, arachidonic acid, sardine acid, hiragashilaic acid,
Examples include nisinic acid.

ポリオレフィン、アゾジカルボンアミド、有機亜鉛化合
物および脂肪酸を必須成分として含有するコンパウンド
は、アゾジカルボンアミドの分解温度以下の温度、例え
ば160℃以下の温度で溶融混練を行い、導体外周に押出
被覆する。続いて、電子線などの電離性放射線を0.5〜
5Mradの範囲で照射して架橋し、常圧下でアゾジカルボ
ンアミドの分解温度以上に加熱して発泡絶縁体を形成す
る。この加熱は、電気炉などを用いて連続的に行うのが
好ましく、設定温度は、アゾジカルボンアミドの分解温
度よりも数十度高くすることが好ましい。当然ではある
が、ポリオレフィンが分解してしまうような高温は避け
るべきである。
The compound containing polyolefin, azodicarbonamide, organozinc compound and fatty acid as essential components is melt-kneaded at a temperature not higher than the decomposition temperature of azodicarbonamide, for example at a temperature not higher than 160 ° C., and extrusion-coated on the outer periphery of the conductor. Next, 0.5 to 0.5
Irradiation is performed in the range of 5 Mrad to crosslink, and the foamed insulator is formed by heating under normal pressure to a temperature above the decomposition temperature of azodicarbonamide. This heating is preferably performed continuously using an electric furnace or the like, and the set temperature is preferably several tens of degrees higher than the decomposition temperature of azodicarbonamide. Of course, the high temperatures at which the polyolefin decomposes should be avoided.

ポリオレフィン、アゾジカルボンアミド、有機亜鉛化合
物および脂肪酸を含有するコンパウンドを得る方法とし
ては、ポリオレフィンにアゾジカルボンアミド、有機
亜鉛化合物および脂肪酸をそれぞれ添加して混合する方
法、ポリオレフィンにアゾジカルボンアミドと有機亜
鉛化合物を添加して混合したものと、ポリオレフィンに
アゾジカルボンアミドと脂肪酸を添加して混合したもの
とを混合する方法、ポリオレフィンに有機亜鉛化合物
または脂肪酸のいずれか一方を添加して混合したもの
と、ポリオレフィンにアゾジカルボンアミドと残された
有機亜鉛化合物または脂肪酸どちらか一方を添加して混
合したものとを混合する方法、等があげられるが、これ
らに限定されるものではない。
As a method for obtaining a compound containing a polyolefin, an azodicarbonamide, an organozinc compound and a fatty acid, azodicarbonamide, an organozinc compound and a fatty acid are added to a polyolefin and mixed, respectively, and an azodicarbonamide and an organozinc compound are added to the polyolefin. A method of mixing a mixture obtained by adding azodicarbonamide and a fatty acid to a polyolefin, a mixture obtained by adding one of an organozinc compound or a fatty acid to a polyolefin, and a polyolefin Examples of the method include, but are not limited to, a method of mixing azodicarbonamide with the remaining organozinc compound or a mixture of fatty acids and a mixture thereof.

[発明の実施例] 実施例1 低密度ポリエチレン(宇部興産UBEC-400)100重量部にア
ゾジカルボンアミド3重量部および2−メルカプトベン
ズイミダゾールの亜鉛塩(大内新興ノクラックMBZ)1
重量部を添加し、これを135℃に設定した8インチロー
ルで混練してからステアリン酸0.5重量部添加してコン
パウンドとした。このコンパウンドを28mm押出機(設定
温度140℃)に導入して溶融混練を行い、外径0.45mmの
スズメッキ銅線外周に厚さ0.2mmに押出被覆した。続い
て、電子線照射装置により1.5Mrad照射して架橋を行
い、300℃に設定した内径70mmφ、炉長2.5mの筒型電気
炉中を常圧下で通過させることにより発泡絶縁電線を製
造した。
[Examples of the invention] Example 1 100 parts by weight of low-density polyethylene (UBE-400, Ube Industries) and 3 parts by weight of azodicarbonamide and zinc salt of 2-mercaptobenzimidazole (Ouchi Shinko Nocrac MBZ) 1
1 part by weight was added, and this was kneaded with an 8-inch roll set at 135 ° C., and then 0.5 parts by weight of stearic acid was added to obtain a compound. This compound was introduced into a 28 mm extruder (set temperature 140 ° C.) and melt-kneaded, and the outer circumference of a tin-plated copper wire having an outer diameter of 0.45 mm was extrusion-coated to a thickness of 0.2 mm. Then, 1.5 Mrad was irradiated by an electron beam irradiation device to perform cross-linking, and the product was passed through a tubular electric furnace having an inner diameter of 70 mmφ and a furnace length of 2.5 m set at 300 ° C. under normal pressure to manufacture a foam insulated wire.

この絶縁電線の発泡度は約73%であり、しかも、発泡絶
縁体のワイヤストリッパによる剥取りは極めて容易であ
った。また、発泡が長さ方向に均一に行われていること
から、長さ方向の外径変動は殆どなかった。
The degree of foaming of this insulated wire was about 73%, and it was extremely easy to peel off the foamed insulation with a wire stripper. Further, since the foaming was performed uniformly in the length direction, there was almost no fluctuation in the outer diameter in the length direction.

実施例2 低密度ポリエチレン(三井石油化学ミラソン3530)100重
量部にアゾジカルボンアミド4重量部および2−メルカ
プトベンゾチアゾールの亜鉛塩(大内新興ノクセラーM
Z)2重量部を130℃に設定した8インチロールで混練し
てからリシノール酸0.5重量部添加してコンパウンドと
した。続いて28mm押出機(設定温度135℃)を用い、実
施例1と同様にして発泡絶縁電線を製造した。
Example 2 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530), 4 parts by weight of azodicarbonamide and zinc salt of 2-mercaptobenzothiazole (Ouchi Shinko Noxcellar M
Z) 2 parts by weight was kneaded with an 8-inch roll set at 130 ° C., and then 0.5 part by weight of ricinoleic acid was added to obtain a compound. Subsequently, using a 28 mm extruder (set temperature 135 ° C.), a foam insulated wire was manufactured in the same manner as in Example 1.

この絶縁電線の発泡度は約75%であり、しかも、発泡絶
縁体のワイヤストリッパによる剥取りは極めて容易であ
った。また、発泡が長さ方向に均一に行われていること
から、長さ方向の外径変動は殆どなかった。
The degree of foaming of this insulated wire was about 75%, and it was extremely easy to peel off the foamed insulator with a wire stripper. Further, since the foaming was performed uniformly in the length direction, there was almost no fluctuation in the outer diameter in the length direction.

実施例3 2−メルカプトベンズイミダゾールの亜鉛塩に代えて酢
酸亜鉛を使用した以外は実施例1と同様にして発泡絶縁
電線を製造した。
Example 3 A foam insulated wire was produced in the same manner as in Example 1 except that zinc acetate was used instead of the zinc salt of 2-mercaptobenzimidazole.

この絶縁電線の発泡度は約73%であり、しかも、発泡絶
縁体のワイヤストリッパによる剥取りは極めて容易であ
った。また、発泡が長さ方向に均一に行われていること
から、長さ方向の外径変動は殆どなかった。
The degree of foaming of this insulated wire was about 73%, and it was extremely easy to peel off the foamed insulation with a wire stripper. Further, since the foaming was performed uniformly in the length direction, there was almost no fluctuation in the outer diameter in the length direction.

実施例4 低密度ポリエチレン(三井石油化学ミラソン3530)100重
量部にアゾジカルボンアミド3重量部およびジメチルジ
チオカルバミン酸亜鉛(大内新興ノクセラーPZ)1.5重量
部を添加し、135℃に設定した8インチロールで混練し
て組成物を得た。また、低密度ポリエチレン(三井石油
化学ミラソン3530)100重量部にアゾジカルボンアミド3
重量部およびステアリン酸0.8重量部を添加し、135℃に
設定した8インチロールで混練して組成物を得た。上記
2種の組成物をそれぞれペレット化してから50:50の割
合でドライブレンドして28mm押出機(設定温度140℃)
に導入し、実施例1と同様にして発泡絶縁電線を製造し
た。
Example 4 An 8-inch roll set to 135 ° C. by adding 3 parts by weight of azodicarbonamide and 1.5 parts by weight of zinc dimethyldithiocarbamate (Ouchi Shinko Nocceller PZ) to 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530). And kneaded to obtain a composition. In addition, 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530) was added to azodicarbonamide 3
1 part by weight and 0.8 part by weight of stearic acid were added and kneaded with an 8-inch roll set at 135 ° C. to obtain a composition. 28 mm extruder (set temperature 140 ° C) after pelletizing each of the above two compositions and dry blending at a ratio of 50:50
And the foam insulated wire was manufactured in the same manner as in Example 1.

この絶縁電線の発泡度は約72%であり、しかも、発泡絶
縁体のワイヤストリッパによる剥取りは極めて容易であ
った。また、発泡が長さ方向に均一に行われていること
から、長さ方向の外径変動は殆どなかった。
The degree of foaming of this insulated wire was about 72%, and it was extremely easy to peel off the foamed insulation with a wire stripper. Further, since the foaming was performed uniformly in the length direction, there was almost no fluctuation in the outer diameter in the length direction.

比較例1 低密度ポリエチレン(宇部興産UBEC-400)100重量部にア
ゾジカルボンアミド3重量部を添加したコンパウンドを
用いた以外は実施例1と同様にして発泡絶縁電線を製造
した。
Comparative Example 1 A foam insulated wire was produced in the same manner as in Example 1 except that a compound obtained by adding 3 parts by weight of azodicarbonamide to 100 parts by weight of low-density polyethylene (UBEC-400 manufactured by Ube Industries) was used.

この絶縁電線の発泡度は約70%であったが、導体と発泡
絶縁体が粘着し、発泡絶縁体のワイヤストリッパによる
剥取りを行ったところ、導体上に発泡絶縁体が残った。
The degree of foaming of this insulated wire was about 70%, but the conductor and the foamed insulator adhered to each other, and when the foamed insulation was stripped with a wire stripper, the foamed insulation remained on the conductor.

比較例2 低密度ポリエチレン(三井石油化学ミラソン3530)100重
量部にアゾジカルボンアミド4重量部およびステアリン
酸亜鉛0.5重量部を添加したコンパウンドを用いた以外
は実施例1と同様にして発泡絶縁電線を製造した。
Comparative Example 2 A foamed insulated electric wire was prepared in the same manner as in Example 1 except that 4 parts by weight of azodicarbonamide and 0.5 parts by weight of zinc stearate were added to 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530). Manufactured.

この絶縁電線の発泡度は約73%であり、発泡絶縁体のワ
イヤストリッパによる剥取りは極めて容易であった。し
かし、発泡が不均一に行われており、長さ方向の外径変
動が大きかった。
The degree of foaming of this insulated wire was about 73%, and it was extremely easy to peel off the foamed insulation with a wire stripper. However, the foaming was non-uniform, and the variation of the outer diameter in the length direction was large.

比較例3 低密度ポリエチレン(三井石油化学ミラソン3530)100重
量部にアゾジカルボンアミド3重量部および2−メルカ
プトベンズイミダゾールの亜鉛塩(大内新興ノクラック
MBZ)2重量部を添加したコンパウンドを用いた以外は
実施例1と同様にして発泡絶縁電線を製造した。
Comparative Example 3 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530), 3 parts by weight of azodicarbonamide and zinc salt of 2-mercaptobenzimidazole (Ouchi Shinko Nokrac
A foam insulated wire was produced in the same manner as in Example 1 except that the compound containing 2 parts by weight of MBZ) was used.

この絶縁電線の発泡度は約76%であったが、導体と発泡
絶縁体が粘着し、発泡絶縁体のワイヤストリッパによる
剥取りを行ったところ、導体上に発泡絶縁体が残った。
The degree of foaming of this insulated wire was about 76%, but the conductor and the foamed insulation adhered to each other, and when the foamed insulation was stripped off with a wire stripper, the foamed insulation remained on the conductor.

比較例4 低密度ポリエチレン(三井石油化学ミラソン3530)100重
量部にアゾジカルボンアミド3重量部およびステアリン
酸0.5重量部を添加したコンパウンドを用いた以外は実
施例1と同様にして発泡絶縁電線を製造した。
Comparative Example 4 A foam insulated wire was produced in the same manner as in Example 1 except that a compound obtained by adding 3 parts by weight of azodicarbonamide and 0.5 part by weight of stearic acid to 100 parts by weight of low-density polyethylene (Mitsui Petrochemical Mirason 3530) was used. did.

この絶縁電線の発泡度は約75%であったが、導体と発泡
絶縁体が粘着し、発泡絶縁体のワイヤストリッパによる
剥取りを行ったところ、導体上に発泡絶縁体が残った。
The degree of foaming of this insulated wire was about 75%, but when the conductor and the foamed insulation adhered and the foamed insulation was stripped off with a wire stripper, the foamed insulation remained on the conductor.

[発明の効果] 以上説明してきた通り、本発明によれば高発泡化が可能
となり、また導体と発泡絶縁体との粘着を防止して端末
処理作業性を向上でき、しかも長尺にわたって均一な外
径を有する発泡絶縁電線を実現できるようになる。
[Effects of the Invention] As described above, according to the present invention, it is possible to achieve high foaming, prevent the adhesion between the conductor and the foamed insulating material, and improve the workability of the terminal treatment, and moreover, it is uniform over a long length. It becomes possible to realize a foam insulated wire having an outer diameter.

フロントページの続き (72)発明者 小西 史郎 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (72)発明者 遠藤 正二 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (72)発明者 大窪 裕寿 茨城県日立市日高町5丁目1番1号 日立 電線株式会社電線研究所内 (56)参考文献 特開 昭63−304533(JP,A)Front Page Continuation (72) Inventor Shiro Konishi 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Hitachi Cable Electric Wire Co., Ltd. (72) Inventor Shoji Endo 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture No. Hitachi Cable Co., Ltd. Electric Wire Research Laboratory (72) Inventor Hirotoshi Okubo 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Electric Cable Research Laboratory (56) Reference JP-A-63-304533 A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリオレフィン100重量部に対してアゾジ
カルボンアミド0.5〜15重量部、有機亜鉛化合物0.1〜10
重量部および脂肪酸0.05〜5重量部含有するコンパウン
ドをアゾジカルボンアミドの分解温度以下の温度で導体
外周に押出被覆してから電離性放射線の照射により架橋
せしめ、しかる後アゾジカルボンアミドの分解温度以上
に加熱して発泡絶縁体を形成することを特徴とする発泡
絶縁電線の製造方法。
1. Azodicarbonamide 0.5 to 15 parts by weight, organozinc compound 0.1 to 10 relative to 100 parts by weight of polyolefin.
Parts by weight and a compound containing 0.05 to 5 parts by weight of fatty acids are extrusion-coated on the outer circumference of the conductor at a temperature not higher than the decomposition temperature of azodicarbonamide, and then crosslinked by irradiation with ionizing radiation, and then at a temperature not lower than the decomposition temperature of azodicarbonamide. A method for producing a foam insulated wire, which comprises heating to form a foam insulator.
JP5632187A 1987-03-11 1987-03-11 Method for manufacturing foam insulated wire Expired - Fee Related JPH0668938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5632187A JPH0668938B2 (en) 1987-03-11 1987-03-11 Method for manufacturing foam insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5632187A JPH0668938B2 (en) 1987-03-11 1987-03-11 Method for manufacturing foam insulated wire

Publications (2)

Publication Number Publication Date
JPS63224119A JPS63224119A (en) 1988-09-19
JPH0668938B2 true JPH0668938B2 (en) 1994-08-31

Family

ID=13023905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5632187A Expired - Fee Related JPH0668938B2 (en) 1987-03-11 1987-03-11 Method for manufacturing foam insulated wire

Country Status (1)

Country Link
JP (1) JPH0668938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652294B2 (en) * 1992-02-18 1997-09-10 矢崎総業株式会社 Manufacturing method of foam insulated coaxial cable

Also Published As

Publication number Publication date
JPS63224119A (en) 1988-09-19

Similar Documents

Publication Publication Date Title
US6335490B1 (en) Insulating material for coaxial cable, coaxial cable and method for producing coaxial cable
JPH0668938B2 (en) Method for manufacturing foam insulated wire
JP3049218B2 (en) Foamable resin composition for covering foamed insulated polyethylene and foamed insulated polyethylene covered wire manufactured by covering the same
JPH0668939B2 (en) Method for manufacturing foam insulated wire
JP2571570B2 (en) Manufacturing method of foam insulated wire
JPH0743971B2 (en) Method for manufacturing foam insulated wire
JP4694225B2 (en) Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable
JPH0824013B2 (en) Method for manufacturing foam insulated wire
JPH0824014B2 (en) Method for manufacturing foam insulated wire
JPH0668940B2 (en) Method for manufacturing foam insulated wire
JPH0824015B2 (en) Method for manufacturing foam insulated wire
JPH06128403A (en) Insulated cable of highly expanded polyethylene having fine diameter and its production
JPS598216A (en) Polyolefin insulated power cable with semiconductive layer
JPH07145288A (en) Resin composition and thermally shrinkable tube therefrom
JP2939565B2 (en) Foamable resin composition for highly foamed insulating polyethylene and method for producing the same
JP3026755B2 (en) Foamable resin composition for covering foamed insulated polyethylene and foamed insulated polyethylene covered wire manufactured by covering the same
JPS59196512A (en) Method of producing high foamable plastic cable
JPS6137828A (en) Production of electroconductive plastic foam
JP3193209B2 (en) Method for producing high-expansion foam
JP2921091B2 (en) Electric wires and cables
JP3763879B2 (en) Polyolefin resin cross-linked foam
EP0412172A1 (en) Heat-shrinkable, tubular foam
JP2001131351A (en) Crosslinked polyolefin resin composition
JPH07109730B2 (en) Highly foamed insulated wire manufacturing method
JPH07173316A (en) Expandable resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees