JPH0668467B2 - Photometric device for emission spectroscopy - Google Patents

Photometric device for emission spectroscopy

Info

Publication number
JPH0668467B2
JPH0668467B2 JP6030386A JP6030386A JPH0668467B2 JP H0668467 B2 JPH0668467 B2 JP H0668467B2 JP 6030386 A JP6030386 A JP 6030386A JP 6030386 A JP6030386 A JP 6030386A JP H0668467 B2 JPH0668467 B2 JP H0668467B2
Authority
JP
Japan
Prior art keywords
photomultiplier tube
output
applied voltage
amplification degree
photomultiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6030386A
Other languages
Japanese (ja)
Other versions
JPS62215850A (en
Inventor
直樹 今村
勲 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6030386A priority Critical patent/JPH0668467B2/en
Publication of JPS62215850A publication Critical patent/JPS62215850A/en
Publication of JPH0668467B2 publication Critical patent/JPH0668467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高周波プラズマ発光のような発光分光分析に用
いる測光装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a photometric device used for emission spectroscopic analysis such as high-frequency plasma emission.

(従来技術) 高周波誘導プラズマ等で試料を発光させ、試料中に含有
されている元素の定量分析を行う場合、各元素の発光強
度が異なっているので、各元素毎に推定含有量に合わせ
てそれぞれ異なった測定感度を設定する必要がある。例
えば特開昭59−99336号で提案された装置は、標準試料
における各元素の測定出力の目標値をあらかじめメモリ
に記憶させておき、順次プログラムによってメモリから
読み出したデータに基づいて光電子増倍管の感度を自動
調整するものであり、オペレータの作業負担を軽減する
という利点があるが、あらかじめ各試料について目標推
定値を設定しておく必要がある上に、実際の含有量が推
定範囲を超えると分析ができなくなるという欠点があ
る。
(Prior Art) When a sample is caused to emit light by high-frequency induction plasma or the like and quantitative analysis of the elements contained in the sample is performed, the emission intensity of each element is different. It is necessary to set different measurement sensitivities. For example, in the device proposed in Japanese Patent Laid-Open No. 59-99336, the target value of the measurement output of each element in a standard sample is stored in a memory in advance, and the photomultiplier tube is sequentially read based on the data read from the memory by a program. The sensitivity is automatically adjusted, which has the advantage of reducing the work load on the operator, but it is necessary to set the target estimated value for each sample in advance and the actual content exceeds the estimated range. And there is a drawback that you can not analyze.

(発明が解決しようとする問題点) 本発明は、上述のようにあらかじめ目標値を設定してお
かなくても、常に光電子増倍管を最適感度に自動調整で
きる発光分光分析用測光装置を提供することを目的とす
るものである。
(Problems to be Solved by the Invention) The present invention provides a photometric device for emission spectroscopic analysis, which can always automatically adjust the photomultiplier tube to the optimum sensitivity without setting a target value in advance as described above. The purpose is to do.

(問題点を解決するための手段) 上記の目的を達成するために本発明による測光装置は、
光電子増倍管の検出出力を一定値または一定範囲の値と
比較し、該比較出力を光電子増倍管の印加電圧にフィー
ドバックして光電子増倍管の増幅度を変化させる手段
と、上記印加電圧を検出し、これをあらかじめ記憶して
ある印加電圧と増幅度の相関データにより増幅度に変換
して、上記検出出力と増幅度の比として測光値を算出す
る手段を備えたものである。
(Means for Solving the Problems) In order to achieve the above object, the photometric device according to the present invention is
Means for comparing the detection output of the photomultiplier tube with a constant value or a value in a predetermined range, and feeding back the comparison output to the applied voltage of the photomultiplier tube to change the amplification factor of the photomultiplier tube; Is detected and converted into an amplification degree based on the correlation data of the applied voltage and the amplification degree which are stored in advance, and a photometric value is calculated as a ratio of the detection output and the amplification degree.

(作用) 上記の構成によれば、光電子増倍管の増幅度が無段階に
制御されて、光入力に対して常に最適の感度に維持され
るので、従来のように入力レベルに応じて測定レンジを
切り替える必要がなく、またSN比も向上する。
(Operation) According to the above configuration, the amplification factor of the photomultiplier tube is controlled steplessly, and the optimum sensitivity to the light input is always maintained. It is not necessary to switch the range, and the SN ratio is also improved.

(実施例) 第1図は本発明の一実施例を示したもので、光電子増倍
管1の出力を抵抗RとコンデンサCとの並列回路により
電圧信号に変換したのち増幅器2で増幅し、得られた検
出出力Vaを差動増幅器3により基準電圧Vbと比較して、
差動増幅器3の出力を負高圧電源回路4に入力すること
により、光電子増倍管1の印加電圧Vdを制御して光電子
増倍管1の増幅度f(V)を変化させている。また光電
子増倍管1の印加電圧Vdは、A/D変換器5でディジタ
ル値に変換されてマイクロプロセッサ6に読み込まれ、
これがあらかじめメモリに記憶させてある印加電圧Vdと
増幅度f(V)との相関データを用いて増幅度f(V)
に変換され、この増幅度f(V)で上記検出出力Vaが割
り算されて測光値が算出される。こうして得られた測光
値はCRTやペンレコーダ等の出力装置7に出力される。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which the output of the photomultiplier tube 1 is converted into a voltage signal by a parallel circuit of a resistor R and a capacitor C and then amplified by an amplifier 2, The obtained detection output Va is compared with the reference voltage Vb by the differential amplifier 3,
By inputting the output of the differential amplifier 3 to the negative high-voltage power supply circuit 4, the applied voltage Vd of the photomultiplier tube 1 is controlled to change the amplification factor f (V) of the photomultiplier tube 1. The applied voltage Vd to the photomultiplier tube 1 is converted into a digital value by the A / D converter 5 and read by the microprocessor 6,
This is the amplification factor f (V) using the correlation data between the applied voltage Vd and the amplification factor f (V) stored in the memory in advance.
And the detected output Va is divided by the amplification factor f (V) to calculate a photometric value. The photometric value thus obtained is output to the output device 7 such as a CRT or a pen recorder.

第2図は印加電圧Vdと増幅度f(V)との相関特性を示
したもので、この特性を関数式または換算テーブルとし
て、あらかじめマイクロプロセッサ6のメモリ内に記憶
させておくのである。
FIG. 2 shows the correlation characteristic between the applied voltage Vd and the amplification degree f (V), and this characteristic is stored in advance in the memory of the microprocessor 6 as a functional expression or a conversion table.

このように構成すれば、光入力の大きさに合わせて常に
検出出力Vaが一定となるように光電子増倍管1の感度が
連続的に制御されるので、従来のようにあらかじめ標準
試料によって各元素毎に測定レンジを定めておいたり、
あるいは検出出力のスケールオーバーを検出して測定レ
ンジを段階的に切り替えたりする必要がなく、またSN比
も常に最高の状態に保たれるという利点がある。
According to this structure, the sensitivity of the photomultiplier tube 1 is continuously controlled so that the detection output Va is always constant in accordance with the magnitude of the light input, so that the standard sample is used in advance as in the conventional case. The measurement range is set for each element,
Alternatively, there is no need to detect the scale-up of the detection output and switch the measurement range stepwise, and the S / N ratio is always kept at the highest level.

第3図は他の実施例を示したもので、光電子増倍管1の
出力をA/D変換器8を介してマイクロプロセッサ6に
入力し、光電子増倍管1に電圧を供給する負高圧電源4
にマイクロプロセッサ6からの出力データDoをD/A変
換器9を介して入力し、更に上記出力データDoと光電子
増倍管1の増幅度f(V)との相関テーブルをマイクロ
プロセッサ6に記憶させ、マイクロプロセッサ6におい
てA/D変換器8からの入力データDiが所定範囲に入る
まで出力データDoを変化させて、この時の光電子増倍管
1の増幅度f(V)で上記入力データDiを割り算して測
光値を算出するようにしたものである。
FIG. 3 shows another embodiment in which the output of the photomultiplier tube 1 is input to the microprocessor 6 via the A / D converter 8 to supply a voltage to the photomultiplier tube 1 at a negative high voltage. Power supply 4
Input data Do from the microprocessor 6 via the D / A converter 9 and store a correlation table between the output data Do and the amplification factor f (V) of the photomultiplier tube 1 in the microprocessor 6. Then, the output data Do is changed in the microprocessor 6 until the input data Di from the A / D converter 8 falls within a predetermined range, and the above-mentioned input data is obtained at the amplification degree f (V) of the photomultiplier tube 1 at this time. It is the one in which the photometric value is calculated by dividing Di.

このように構成すれば、測光値としてA/D変換器8と
D/A変換器9とを加えたビット数の分解能が得られる
上に、光入力の大小に拘わらず常に同一の有効桁数でダ
イナミックレンジの広い測定ができるという利点があ
る。
With this configuration, the resolution of the number of bits obtained by adding the A / D converter 8 and the D / A converter 9 as the photometric value can be obtained, and the number of effective digits is always the same regardless of the size of the optical input. Has the advantage that it can measure a wide dynamic range.

(発明の効果) 上記のように本発明によれば、光電子増倍管の検出出力
を一定に保つように電子増倍管の印加電圧にフィードバ
ックをかけて、光電子増倍管の感度を制御すると共に、
この印加電圧を検出し、これを印加電圧と増幅度との相
関データを用いて増幅度に変換して、検出出力と増幅度
から測光値を算出するようにしたものであるから、従来
のように試料中の各元素の量を推定して、各元素毎にあ
らかじめ感度を設定しておく必要がなく、感度調整が完
全に自動化できる上に、広いダイナミックレンジで良好
なSN比を維持できるという利点がある。
As described above, according to the present invention, the sensitivity of the photomultiplier tube is controlled by feeding back the voltage applied to the photomultiplier tube so as to keep the detection output of the photomultiplier tube constant. With
This applied voltage is detected, converted into an amplification degree using the correlation data between the applied voltage and the amplification degree, and the photometric value is calculated from the detection output and the amplification degree. It is said that there is no need to estimate the amount of each element in the sample and set the sensitivity for each element in advance, the sensitivity adjustment can be completely automated, and a good SN ratio can be maintained in a wide dynamic range. There are advantages.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
同上の動作を示す特性図、第3図は本発明の他の実施例
を示すブロック図である。 1……光電子増倍管、2……増幅器、3……差動増幅
器、4……負高圧電源、5……A/D変換器、6……マ
イクロプロセッサ、7……出力装置、8……A/D変換
器、9……D/A変換器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the operation of the same, and FIG. 3 is a block diagram showing another embodiment of the present invention. 1 ... Photomultiplier tube, 2 ... Amplifier, 3 ... Differential amplifier, 4 ... Negative high voltage power supply, 5 ... A / D converter, 6 ... Microprocessor, 7 ... Output device, 8 ... ... A / D converter, 9 ... D / A converter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光電子増倍管の検出出力を基準値と比較
し、該比較出力を光電子増倍管の印加電圧にフィードバ
ックして光電子増倍管の増幅度を変化させる手段と、上
記印加電圧を検出し、これをあらかじめ記憶してある印
加電圧と増幅度との相関データにより増幅度に変換し
て、上記検出出力と増幅度の比として測光値を算出する
手段を備えて成ることを特徴とする発光分光分析用測光
装置。
1. A means for comparing the detection output of the photomultiplier with a reference value and feeding back the comparison output to the applied voltage of the photomultiplier to change the amplification factor of the photomultiplier, and the applied voltage. Is detected, and is converted into an amplification degree according to the correlation data between the applied voltage and the amplification degree stored in advance, and a photometric value is calculated as a ratio of the detection output and the amplification degree. A photometric device for emission spectral analysis.
JP6030386A 1986-03-18 1986-03-18 Photometric device for emission spectroscopy Expired - Lifetime JPH0668467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030386A JPH0668467B2 (en) 1986-03-18 1986-03-18 Photometric device for emission spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030386A JPH0668467B2 (en) 1986-03-18 1986-03-18 Photometric device for emission spectroscopy

Publications (2)

Publication Number Publication Date
JPS62215850A JPS62215850A (en) 1987-09-22
JPH0668467B2 true JPH0668467B2 (en) 1994-08-31

Family

ID=13138261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030386A Expired - Lifetime JPH0668467B2 (en) 1986-03-18 1986-03-18 Photometric device for emission spectroscopy

Country Status (1)

Country Link
JP (1) JPH0668467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184267A (en) * 2014-03-26 2015-10-22 株式会社日立ハイテクサイエンス ICP emission spectrometer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351049A3 (en) * 2002-04-01 2004-02-25 Central Iron & Steel Research Institute Analyzer for metal
JP4612518B2 (en) * 2005-10-07 2011-01-12 株式会社日立国際電気 Electron multiplication type imaging apparatus and sensitivity adjustment method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184267A (en) * 2014-03-26 2015-10-22 株式会社日立ハイテクサイエンス ICP emission spectrometer
US9726611B2 (en) 2014-03-26 2017-08-08 Hitachi High-Tech Science Corporation Stabilized ICP emission spectrometer and method of using

Also Published As

Publication number Publication date
JPS62215850A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
US5596414A (en) Solid state spectroflourimeter and method of using the same
JPS54158288A (en) Spectroscopic fluorescent photometer
US3696399A (en) Range expansion method and apparatus for multichannel pulse analysis
JPH0668467B2 (en) Photometric device for emission spectroscopy
JP3960256B2 (en) Atomic absorption spectrophotometer
JPH043492B2 (en)
US3428814A (en) Photoelectric system for measuring optical density
US4957366A (en) Fluorescence spectrophotometer and wavelength setting method therefor
GB1484742A (en) Mass spectrometric system for rapid automatic and specific identification and quantification of compounds
US5194916A (en) Fluorescence spectrophotometer
JP2003232681A (en) Spectrophotometer
Dryzek et al. Planck’s constant determination from black-body radiation
US3568054A (en) Pulse height spectrum analysis method and means
JPS59125043A (en) Spectro photofluorometer
US3653763A (en) Apparatus for the measurement of ultra-violet, visible and/or infra-red radiation
JP2569500B2 (en) X-ray analyzer
JPH05264352A (en) Spectorophotometer
JPH04248423A (en) Apparatus for measuring luminescence
JPH0230659B2 (en)
JPS6352040A (en) Spectrum display method for icp emission analysis instrument
GB2071844A (en) Spectrophotometer
SU545943A1 (en) Ionizing energy spectrometer
SU525873A1 (en) Device for measuring aerosol content
SU1386942A1 (en) Method of determining width of photodetector single-electron pulse
SU1105834A1 (en) Method of determination of photodetector gain