JPH0667998B2 - Method for producing phenol resin - Google Patents

Method for producing phenol resin

Info

Publication number
JPH0667998B2
JPH0667998B2 JP61035266A JP3526686A JPH0667998B2 JP H0667998 B2 JPH0667998 B2 JP H0667998B2 JP 61035266 A JP61035266 A JP 61035266A JP 3526686 A JP3526686 A JP 3526686A JP H0667998 B2 JPH0667998 B2 JP H0667998B2
Authority
JP
Japan
Prior art keywords
phenol resin
producing
inert gas
aldehydes
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035266A
Other languages
Japanese (ja)
Other versions
JPS62195009A (en
Inventor
隆一 岡崎
善康 伊藤
文雄 立島
望博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP61035266A priority Critical patent/JPH0667998B2/en
Publication of JPS62195009A publication Critical patent/JPS62195009A/en
Publication of JPH0667998B2 publication Critical patent/JPH0667998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、色相が淡色であるフェノール樹脂の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a phenolic resin having a light hue.

(従来の技術) フェノール樹脂は,成形品,接着剤,塗料,含浸材料な
どとして、その特徴である耐熱性,耐食性,耐水性など
をいかして電機部品,機械部品,耐酸器具,電気絶縁材
料,木工用接着剤,耐食塗料などとして広く用いられて
いる。
(Prior Art) Phenolic resin is used as molded products, adhesives, paints, impregnating materials, etc. by taking advantage of its characteristics such as heat resistance, corrosion resistance, and water resistance, electrical parts, machine parts, acid resistant equipment, electrical insulating materials, It is widely used as an adhesive for woodworking and as a corrosion resistant paint.

しかしながら,フェノール樹脂には,その生成反応時あ
るいは熱や酸による硬化反応時に,色相が黄色ないし黒
褐色になるという大きな欠点があり,成形品,接着剤,
塗料など色相を重視する分野においては用途が限定され
ていた。
However, phenolic resin has a major drawback that its hue becomes yellow or blackish brown during its formation reaction or curing reaction by heat or acid.
Applications were limited in fields such as paints where hue is important.

この色相が黄色ないし黒褐色になるという現象の解明
は,従来から種々行われてきた。原料となるフェノール
類,アルデヒド類または触媒の種類によって,あるいは
生成反応や硬化反応の進み具合によってその発色機構は
異なりきわめて複雑であるが,大きな原因の1つとし
て,フェノールが酸化により芳香族キノイドになること
が挙げられている。
Various clarifications have been made to clarify the phenomenon that the hue changes from yellow to blackish brown. The color development mechanism differs depending on the type of raw materials such as phenols, aldehydes or catalysts, or the progress of formation reaction or curing reaction, and it is extremely complicated. One of the major causes is that phenol is converted into an aromatic quinoid by oxidation. It is mentioned that it will become.

このような色相の変化という欠点を改良するために,種
々の試みが行われてきた。
Various attempts have been made to remedy the drawback of such hue change.

例えば,1)無水酢酸によるアセチル化,トリメチルクロ
ルシランによるシリル化,酢酸メチルによるエステル化
などの方法によって,フェノール性水酸基をマスキング
する方法,2)フェノール類および尿素類をアルデヒドで
共縮合する方法,あるいはフェノール・アルデヒド樹脂
と尿素・アルデヒド樹脂とを併用する方法,3)メラミ
ン,ベンゾグアナミンなどトリアジン類およびフェノー
ル類をアルデヒドで共縮合する方法,あるいはトリアジ
ン類とアルデヒドを縮合した樹脂と,フェノール・アル
デヒド樹脂とを併用する方法などがある。
For example, 1) acetylation with acetic anhydride, silylation with trimethylchlorosilane, esterification with methyl acetate, etc. to mask phenolic hydroxyl groups, 2) co-condensation of phenols and ureas with aldehydes, Alternatively, a method of using a phenol / aldehyde resin and a urea / aldehyde resin together, 3) a method of co-condensing triazines and phenols such as melamine and benzoguanamine with an aldehyde, or a resin obtained by condensing a triazine and an aldehyde, and a phenol / aldehyde resin There is a method of using and together.

しかしながら,1)のマスキングする方法では,硬化速度
がおそく,十分な硬化状態を得るには高温を必要とし,
エネルギー的に不利であり,塗料,接着剤などへ応用す
る場合には基材が限定されるという欠点があった。ま
た,この方法では反応装置や反応工程が複雑であり,結
果として得られたフェノール樹脂が高価になるという欠
点があった。
However, in the masking method of 1), the curing speed is slow, and high temperature is required to obtain a sufficient cured state,
It is disadvantageous in terms of energy and has a drawback that the base material is limited when applied to paints, adhesives, etc. In addition, this method has a drawback in that the reaction device and the reaction process are complicated and the resulting phenol resin is expensive.

2)および3)の方法では,フェノール樹脂硬化物本来
の特長である耐水性,耐熱性,耐食性などが低下し,ま
た塗料や接着剤として用いた場合に基材との接着性が低
くなるという欠点があった。
According to the methods 2) and 3), water resistance, heat resistance, corrosion resistance, etc., which are the original characteristics of the cured phenolic resin, are reduced, and when used as a paint or adhesive, the adhesion to the base material is reduced. There was a flaw.

(発明が解決しようとする問題点) 本発明は,上記の種々の欠点を改良し,耐水性,耐熱
性,耐食性などフェノール樹脂が本来有する特性を阻害
することなく,その色相が淡色ないし無色であるフェノ
ール樹脂の製造法を提供するものである。
(Problems to be Solved by the Invention) The present invention has improved the above-mentioned various drawbacks and has a light or colorless hue without impairing the inherent properties of a phenolic resin such as water resistance, heat resistance and corrosion resistance. A method for producing a phenolic resin is provided.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明は,フェノール類とアルデヒド類とを塩基性触媒
の存在下で反応させてフェノール樹脂を製造する方法に
おいて,減圧および不活性ガス導入をくりかえして溶存
酸素量を減少させたフェノール類およびアルデヒド類の
混合物の溶液に,減圧および不活性ガス導入をくりかえ
して溶存酸素量を減少させた塩基性触媒溶液を加え、必
要に応じて,さらに減圧および不活性ガス導入をくりか
えして反応系中の溶存酸素量を300ppm未満とした後,不
活性ガス雰囲気中で反応させることを特徴とするフェノ
ール樹脂の製造方法である。
(Means for Solving Problems) The present invention relates to a method for producing a phenol resin by reacting phenols and aldehydes in the presence of a basic catalyst, wherein dissolved oxygen is repeatedly supplied by repeatedly reducing pressure and introducing an inert gas. To the mixed solution of phenols and aldehydes with reduced amount, add basic catalyst solution with reduced dissolved oxygen content by repeating depressurization and introduction of inert gas, and further depressurize and inert gas as necessary. This is a method for producing a phenol resin, which is characterized in that the amount of dissolved oxygen in the reaction system is made less than 300 ppm by repeating the introduction and then the reaction is carried out in an inert gas atmosphere.

本発明において,フェノール類としては何でもよいが,p
−位に炭素数1〜18の飽和アルキル基を有するフェノー
ル類,p−位にフェニル基を有するフェノール類,ビスフ
ェノールF,ビスフェノールAおよびビスフェノールBか
らなる群から選ばれる1種または2種以上が好ましく,
さらに好ましくはp−イソプロピルフェノール,p−tert
−ブチルフェノール,またはビスフェノールAである。
また,純度の高いフェノール類,例えばカーボネートグ
レードのフェノール類を用いることが好ましい。
In the present invention, any phenol may be used, but p
One or more selected from the group consisting of phenols having a saturated alkyl group having 1 to 18 carbon atoms at the -position, phenols having a phenyl group at the p-position, bisphenol F, bisphenol A and bisphenol B are preferable. ,
More preferably p-isopropylphenol, p-tert
-Butylphenol or bisphenol A.
Further, it is preferable to use highly pure phenols, for example, carbonate grade phenols.

本発明において、アルデヒド類としてはホルムアルデヒ
ド,アセトアルデヒド,ベンズアルデヒド,パラホルム
アルデヒドなどを用いることができるが,これらの中で
は,安価で,反応生成物の酸または熱による硬化も速
く,変色性も少ないことから,ホルムアルデヒドおよび
パラアルデヒドを用いることが好ましい。ホルムアルデ
ヒドは水溶液またはブタノール溶液として用いられる。
In the present invention, formaldehyde, acetaldehyde, benzaldehyde, paraformaldehyde and the like can be used as the aldehydes, but among these, because they are inexpensive, the reaction products cure rapidly with acid or heat, and have little discoloration. , Formaldehyde and paraaldehyde are preferably used. Formaldehyde is used as an aqueous solution or butanol solution.

p−アルキルフェノール類やp−フェニルフェノール類
などの2官能フェノール1モルに対してアルデヒド類0.
6〜6.0モルの割合で,ビスフェノールF,ビスフェノール
A,ビスフェノールBなどの4官能フェノール1モルに対
してアルデヒド類1.2〜12.0モルの割合でそれぞれ反応
させられる。アルデヒド類の反応割合がこれにより少な
いと保存安定性が悪くなったり生成したフェノール樹脂
と他の樹脂との相溶性が悪くなる傾向があり,アルデヒ
ド類の反応割合がこれより多くても工業的に格別利点が
ない。
Aldehydes are added to 1 mol of bifunctional phenol such as p-alkylphenols and p-phenylphenols.
Bisphenol F, bisphenol at a ratio of 6 to 6.0 mol
The aldehydes are reacted in a ratio of 1.2 to 12.0 mol with respect to 1 mol of the tetrafunctional phenol such as A and bisphenol B. If the reaction rate of the aldehydes is small, the storage stability tends to be poor, or the compatibility of the generated phenolic resin with other resins tends to be poor. There is no particular advantage.

フェノール類およびアルデヒド類,水および(または)
有機溶剤に溶解して用いられる。
Phenols and aldehydes, water and / or
It is used by dissolving it in an organic solvent.

本発明において塩基性触媒としては,フェノール樹脂の
製造に用いられる従来公知の塩基性触媒,例えばアルカ
リ金属やアルカリ土類金属の水酸化物やアルコキサイ
ド,アンモニア,アルカノールアミン類,芳香族アミン
類などがあるが,その中でも,リチウム,ナトリウム,
カリウムの水酸化物およびアルコキサイド,およマグネ
シウム,カルシウムの水酸化物からなる群から選ばれる
1種または2種以上が好ましい。反応を円滑に進めるた
めには,塩基性触媒は,フェノール類,アルデヒド類お
よび塩基性触媒の総計に対して200ppm以上用いることが
好ましい。塩基性触媒は水および(または)有機溶剤に
溶解して用いられる。塩基性触媒は水酸化物の場合に
は,水,または水と少量の有機溶剤との混合物に,アル
コキサイドの場合は有機溶剤とりわけ一価アルコール
類,またはこれと少量の水との混合物に,それぞれ溶解
して用いられる。常温においても,フェノール類とアル
コール類との混合物の溶液は,それに塩基性触媒が添加
される前には空気中や溶液中の酸素によって酸化されに
くいが,塩基性触媒が添加されると空気中や溶液中の酸
素によって容易に酸化され変色は急速に進む。このため
本発明では,減圧および不活性ガス導をくりかえして溶
存酸素量を減少させたフェノール類とアルデヒド類との
混合物の溶液に,減圧および不活性ガス導入をくりかえ
して溶存酸素量を減少させた塩基性触媒溶液を加え,必
要に応じて,さらに減圧および不活性ガス導をくりかえ
して反応系中の溶存酸素量を300ppm未満,好ましくは10
0ppm未満とした後,不活性ガス雰囲気中で反応が行われ
る。反応系中の溶存酸素量は,少なければ少ないほどよ
い。
As the basic catalyst in the present invention, a conventionally known basic catalyst used in the production of a phenol resin, for example, a hydroxide or alkoxide of an alkali metal or an alkaline earth metal, ammonia, an alkanolamine, an aromatic amine or the like can be used. However, among them, lithium, sodium,
One or more selected from the group consisting of potassium hydroxide and alkoxide, and magnesium and calcium hydroxide are preferable. In order to promote the reaction smoothly, it is preferable to use the basic catalyst in an amount of 200 ppm or more based on the total amount of phenols, aldehydes and basic catalysts. The basic catalyst is used by dissolving it in water and / or an organic solvent. In the case of hydroxide, the basic catalyst is water or a mixture of water and a small amount of an organic solvent, and in the case of alkoxide, an organic solvent, especially a monohydric alcohol, or a mixture thereof with a small amount of water, respectively. Used by dissolving. Even at room temperature, a solution of a mixture of phenols and alcohols is not easily oxidized by oxygen in the air or in the solution before the basic catalyst is added to it, but when the basic catalyst is added, the solution is not oxidized in the air. It is easily oxidized by the oxygen in the solution or the solution and the discoloration proceeds rapidly. Therefore, in the present invention, the dissolved oxygen amount is reduced by repeating the reduced pressure and the introduction of the inert gas to the solution of the mixture of phenols and aldehydes in which the reduced oxygen amount is reduced by repeating the reduced pressure and the inert gas conduction. Add a basic catalyst solution, and if necessary, further reduce the pressure and conduct inert gas to reduce the amount of dissolved oxygen in the reaction system to less than 300 ppm, preferably 10
After adjusting the amount to less than 0 ppm, the reaction is performed in an inert gas atmosphere. The smaller the amount of dissolved oxygen in the reaction system, the better.

本発明において,不活性ガスとは,ちっ素ガス,二酸化
炭素ガス,ヘリウムガス,アルゴンガスなどがあるが,
安価なちっ素ガスが好んで用いられる。
In the present invention, the inert gas includes fluorine gas, carbon dioxide gas, helium gas, argon gas, etc.
Inexpensive nitrogen gas is preferably used.

本発明においては,減圧および不活性ガス導入をくりか
えして溶存酸素量を減少させたフェノール類とアルデヒ
ド類との混合物の溶液に,減圧および不活性ガス導入を
くりかえして溶存酸素量を減少させた塩基性触媒溶液を
加え,必要に応じて,さらに減圧および不活性ガス導入
をくりかえして結果として反応系中の溶存酸素量が300p
pm未満,好ましくは100ppm未満となっていればよいが、
上記フェノール類とアルデヒド類との混合物の溶液,お
よび塩基性触媒溶液両方の溶存酸素量が300ppm未満,好
ましくは100ppm未満である方が局部的一時的にも酸素濃
度が高くなることがなく,好ましい。このようにして反
応系中の溶存酸素量を300ppm未満,好ましくは100ppm未
満とした後,不活性ガス雰囲気中で反応が行われる。不
活性ガスは,反応器上部の空間を流しても,反応系中に
吹き込んでもよいが,反応系中に吹き込む方が変色防止
効果が高く好ましい。
In the present invention, a solution of a mixture of phenols and aldehydes, in which the amount of dissolved oxygen is reduced by repeatedly reducing the pressure and introducing an inert gas, is added to a base in which the amount of dissolved oxygen is reduced by repeatedly reducing the pressure and introducing the inert gas. A reactive catalyst solution was added, and pressure reduction and inert gas introduction were repeated as necessary, resulting in a dissolved oxygen content in the reaction system of 300 p
less than pm, preferably less than 100 ppm,
It is preferable that the amount of dissolved oxygen in both the solution of the above-mentioned mixture of phenols and aldehydes and the basic catalyst solution is less than 300 ppm, preferably less than 100 ppm, because the oxygen concentration does not increase locally even temporarily. . In this way, the amount of dissolved oxygen in the reaction system is set to less than 300 ppm, preferably less than 100 ppm, and then the reaction is performed in an inert gas atmosphere. The inert gas may flow through the space above the reactor or may be blown into the reaction system, but it is preferable to blow it into the reaction system because the discoloration preventing effect is high.

このように減圧および不活性ガス導入をくりかえすこと
により,本発明では,単に不活性ガスを吹き込む場合に
比べてはるかに短時間で反応系中の溶存酸素量をきわめ
て少ないものとすることができる。
By repeating the depressurization and the introduction of the inert gas in this manner, in the present invention, the dissolved oxygen amount in the reaction system can be made extremely small in a much shorter time than in the case of simply blowing the inert gas.

また,本発明において,フェノール類とアルデヒド類と
の反応が進み分子量が大きくなると変色が著しくなる傾
向がある。また,溶剤や他の樹脂に対する溶解性の低い
高分子量物が生じ,塗料や接着剤などに用いた場合に,
物性の低下を生じる場合がある。このため,得られるフ
ェノール樹脂の分子量は200〜150が好ましい。得られる
フェノール樹脂の分子量が200未満の場合には,成形
品,塗料,接着剤などに用いる場合に,十分な物性が得
られない場合がある。得られるフェノール樹脂の分子量
を200〜1500にコントロールするために,一価アルコー
ルを併用することが好ましい。これらの一価アルコール
には,メタノール,エタノール,イソプロピルアルコー
ル,ブタノール,エチレングリコールモノエチルエーテ
ル,エチレングリコールモノエチルエーテルアセテート
などがある。これらの一価アルコールは,フェノール類
およびアルデヒド類を溶解する有機溶剤の一部または全
部として,および(または)塩基性触媒を溶解する有機
溶剤の一部または全部として反応系に加えることもでき
る。減圧および不活性ガス導入をくりかえして溶存酸素
量を300ppm未満,好ましくは100ppm未満とした一価アル
コールを反応前あるいは反応中に加えることもできる。
あるいはこれらの方法を適宜組合せることもできる。イ
ソプロピルアルコール,エタノールなど減圧下水と共沸
する一価アルコールは,それらを水とともに用い,減圧
および不活性ガス導入をくりかえしてそれらと水とを含
む系の溶存酸素量を減少させる場合には,大過剰に加え
られなければならない。
Further, in the present invention, when the reaction between phenols and aldehydes progresses and the molecular weight increases, discoloration tends to become remarkable. In addition, when a high molecular weight substance with low solubility in a solvent or other resin is generated, and it is used for paints or adhesives,
It may cause deterioration of physical properties. Therefore, the molecular weight of the obtained phenol resin is preferably 200 to 150. If the molecular weight of the resulting phenol resin is less than 200, it may not be possible to obtain sufficient physical properties when used in molded products, paints, adhesives, etc. In order to control the molecular weight of the obtained phenol resin to 200 to 1500, it is preferable to use a monohydric alcohol together. These monohydric alcohols include methanol, ethanol, isopropyl alcohol, butanol, ethylene glycol monoethyl ether and ethylene glycol monoethyl ether acetate. These monohydric alcohols can also be added to the reaction system as part or all of the organic solvent that dissolves the phenols and aldehydes, and / or as part or all of the organic solvent that dissolves the basic catalyst. A monohydric alcohol whose dissolved oxygen amount is less than 300 ppm, preferably less than 100 ppm by repeating reduced pressure and introduction of an inert gas can be added before or during the reaction.
Alternatively, these methods can be combined appropriately. Monohydric alcohols that azeotrope with water under reduced pressure, such as isopropyl alcohol and ethanol, are used in large amounts when they are used together with water and the amount of dissolved oxygen in the system containing them is reduced by repeating reduced pressure and introduction of an inert gas. Must be added in excess.

(実施例) 以下,実施例により本発明を説明する。例中,部とは重
量部を,%とは重量%をそれぞれ表わす, 実施例1 p−tert−ブチルフェノール(カーボネートグレード)
150部,35%ホルムアルデヒド水溶液429部およびブタノ
ール300部を反応器に仕込んだ。次に,反応器内を減圧
し,12mmHgで5分間保持した後,反応器中にちっ素を導
入して大気圧にまでもどした。この減圧およびちっ素導
入の操作を再度くりかえした。
(Examples) Hereinafter, the present invention will be described with reference to Examples. In the examples, “part” means “part by weight” and “%” means “% by weight”. Example 1 p-tert-butylphenol (carbonate grade)
A reactor was charged with 150 parts, 429 parts of 35% aqueous formaldehyde solution and 300 parts of butanol. Next, the inside of the reactor was depressurized and kept at 12 mmHg for 5 minutes, and then nitrogen was introduced into the reactor to return it to atmospheric pressure. The operation of depressurizing and introducing nitrogen was repeated again.

一方,滴下タンクに水酸化ナトリウム(純度93%)21.5
部と水150部を仕込み,滴下タンク内を減圧し,20mmHgで
5分間保持した後,滴下タンク中にちっ素を導入して大
気圧までもどした。この減圧およびちっ素導入の操作を
再度くりかえした。
On the other hand, sodium hydroxide (purity 93%) 21.5 was added to the dropping tank.
And 150 parts of water were charged, the inside of the dropping tank was depressurized and kept at 20 mmHg for 5 minutes, and then nitrogen was introduced into the dropping tank to return to atmospheric pressure. The operation of depressurizing and introducing nitrogen was repeated again.

次に,滴下タンクから反応器中に水酸化ナトリウム水溶
液171.5部を徐々に滴下した。次いで,反応器内を減圧
し,8mmHgで3分間保持した後,ちっ素を導入して大気圧
にまでもどし,反応系中の溶存酸素量を93ppmとした。
反応器中に,ちっ素を流しながら,反応系を30分で60℃
にまで昇温させ,60℃で1時間,続いて90℃で3時間反
応させた。反応生成物を冷却した後,りん酸(純度85
%)19.2部および水150部を加え中和し,次に,水500部
で4回洗浄した。
Next, 171.5 parts of aqueous sodium hydroxide solution was gradually dropped from the dropping tank into the reactor. Then, the inside of the reactor was depressurized and kept at 8 mmHg for 3 minutes, and then nitrogen was introduced to return it to atmospheric pressure, and the amount of dissolved oxygen in the reaction system was adjusted to 93 ppm.
While flowing nitrogen in the reactor, the reaction system was heated to 60 ° C in 30 minutes.
The temperature was raised to 60 ° C., and the reaction was carried out at 60 ° C. for 1 hour and then at 90 ° C. for 3 hours. After cooling the reaction product, phosphoric acid (purity 85
%) 19.2 parts and 150 parts of water were added to neutralize, and then washed with 500 parts of water four times.

次に,40℃15mmHgで脱水を行い,無色透明なフェノール
樹脂(平均分子量約450)の溶液を得た。
Next, dehydration was performed at 40 ° C and 15 mmHg to obtain a colorless transparent phenol resin solution (average molecular weight: 450).

比較例1 減圧およびちっ素導入の操作,および反応時のちっ素流
入を行わなかった以外は,実施例1と同様にして,黒褐
色に着色したフェノール樹脂(平均分子量約600)の溶
液を得た。
Comparative Example 1 A black-brown colored phenol resin solution (average molecular weight of about 600) was obtained in the same manner as in Example 1 except that the operation of depressurization and introduction of fluorine and the introduction of fluorine during the reaction were not carried out. .

実施例2 p−tert−ブチルフェノール(カーボネートグレード)
150部,40%ホルムアルデヒドブタノール溶液225部およ
びエチレングリコールモノエチルエーテルアセテート15
0部をフラスコに仕込み,次にフラスコ内を減圧し,12mm
Hgに5分間保った後,ちっ素を導入して大気圧にもどし
た。減圧およびちっ素導入の操作をもう一度くりかえし
た。
Example 2 p-tert-butylphenol (carbonate grade)
150 parts, 225 parts of 40% formaldehyde butanol solution and ethylene glycol monoethyl ether acetate 15
Charge 0 parts into the flask, then depressurize the inside of the flask to 12 mm.
After maintaining at Hg for 5 minutes, nitrogen was introduced and the pressure was returned to atmospheric pressure. The operation of depressurization and introduction of nitrogen was repeated once again.

一方,滴下ろうとに28%ナトリウムメチラートメタノー
ル溶液38.6部を仕込み,滴下ろうと内を減圧し,20mmHg
で5分間保持した後,滴下ろうと内にちっ素を導入して
大気圧にまでもどした。この減圧およびちっ素導入の操
作を再度くりかえした。
On the other hand, the dropping funnel was charged with 38.6 parts of 28% sodium methylate methanol solution, and the pressure inside the dropping funnel was reduced to 20 mmHg.
After holding for 5 minutes, nitrogen was introduced into the dropping funnel and the pressure was returned to atmospheric pressure. The operation of depressurizing and introducing nitrogen was repeated again.

次に,滴下ろうとからフラスコ中にナトリウムメチラー
トのメタール溶液を徐々に滴下し,滴下終了後,フラス
コ内を減圧し,8mmHgで3分間保持し,次いで,ちっ素を
導入してフラスコ内を大気圧にまでもどし,反応系中の
溶存酸素量を78ppmとした。反応系中に,ちっ素を吹き
込みながら,反応系を30分にて90℃まで昇温させ,90℃
で6時間反応させた。反応生成物を冷却した後,りん酸
(純度85%)7.7部および水60部を加え中和し,次に水3
00部で4回洗浄した。続いて,30℃15mmHgで脱水し,無
色透明なフェノール樹脂(平均分子量300)の溶液を得
た。
Next, a methacrylic solution of sodium methylate was gradually dropped into the flask from the dropping funnel, and after the dropping was completed, the inside of the flask was depressurized and kept at 8 mmHg for 3 minutes, and then nitrogen was introduced to increase the inside of the flask. The pressure was returned to atmospheric pressure and the amount of dissolved oxygen in the reaction system was adjusted to 78 ppm. While blowing nitrogen into the reaction system, the temperature of the reaction system was raised to 90 ° C in 30 minutes, and the temperature was raised to 90 ° C.
And reacted for 6 hours. After cooling the reaction product, it was neutralized by adding 7.7 parts of phosphoric acid (purity 85%) and 60 parts of water, and then adding 3 parts of water.
It was washed 4 times with 00 parts. Then, dehydration was performed at 30 ° C and 15 mmHg to obtain a colorless transparent phenol resin solution (average molecular weight 300).

比較例2 フラスコにp−tert−ブチルフェノール150部,40%ホル
ムアルデヒドブタノール溶液およびエチレングリコール
モノエチルエーテルアセテート150部を仕込み,これら
の混合物にちっ素を吹き込みながら,滴下ろうとから28
%ナトリウムメチラートメタノール溶液を徐々に滴下し
た。滴下終了後,ちっ素吹き込みを40分間続行した。こ
の時の反応系中の溶存酸素量はおよそ800ppmであった。
次に,実施例2と同様にして,ちっ素を吹き込みながら
反応させ,中和,洗浄および脱水を行って,褐色のフェ
ノール樹脂(平均分子量約400)の溶液を得た。
Comparative Example 2 A flask was charged with 150 parts of p-tert-butylphenol, a 40% formaldehyde butanol solution and 150 parts of ethylene glycol monoethyl ether acetate, and the mixture was blown with nitrogen to prevent dropping.
A% sodium methylate methanol solution was gradually added dropwise. After the dropping was completed, blowing of nitrogen was continued for 40 minutes. At this time, the amount of dissolved oxygen in the reaction system was about 800 ppm.
Then, in the same manner as in Example 2, the reaction was carried out while blowing in nitrogen, and neutralization, washing and dehydration were carried out to obtain a solution of a brown phenol resin (average molecular weight about 400).

実施例3 p−tert−ブチルフェノール120部,ビスフェノールA
(カーボネートグレード)45.6部,40%ホルムアルデヒ
ドブタノール溶液225部およびエチレングリコールモノ
エチルエーテルアセテート150部を反応器に仕込み,次
に反応器内を減圧し,12mmHgで5分間保持した後,ちっ
素を反応器内に導入して大気圧にまでもどした。この減
圧およびちっ素導入の操作を再度くりかえした。
Example 3 120 parts of p-tert-butylphenol, bisphenol A
(Carbonate grade) 45.6 parts, 225 parts of 40% formaldehyde butanol solution and 150 parts of ethylene glycol monoethyl ether acetate were charged into the reactor, and then the pressure inside the reactor was reduced and kept at 12 mmHg for 5 minutes, and then reacted with nitrogen. It was introduced into the vessel and returned to atmospheric pressure. The operation of depressurizing and introducing nitrogen was repeated again.

一方,滴下タンクに28%ナトリウムメチラートメタノー
ル溶液38.6部を仕込み,滴下タンク内を減圧し,20mmHg
で5間保持した後,ちっ素を導入して滴下タンク内を大
気圧にまでもどした。この減圧およびちっ素導入の操作
をもう一度くりかえした。
On the other hand, the dropping tank was charged with 38.6 parts of 28% sodium methylate methanol solution, and the pressure inside the dropping tank was reduced to 20 mmHg.
After maintaining for 5 minutes, nitrogen was introduced to return the inside of the dropping tank to atmospheric pressure. The depressurization and the introduction of nitrogen were repeated once again.

次に,滴下タンクから反応器中にナトリウムメチラート
メタノール溶液を徐々に滴下し,滴下終了後,反応器内
を減圧し,8mmHgで3分間保持し,ちっ素を導入して反応
器内を大気圧にまでもどした。この時の反応系中の溶存
酸素量は75ppmであった。反応系中に,ちっ素を吹き込
みながら,反応系を30分で90℃に昇温させ,90℃で6時
間反応させた。得られた反応生成物を冷却し,りん酸
(純度85%)7.7部および水60部を加え中和し,次に水3
00部で4回洗浄した。次に,50℃15mmHgで脱水し,無色
透明なフェノール樹脂(平均分子量約700)の溶液を得
た。
Next, the sodium methylate methanol solution was gradually dropped from the dropping tank into the reactor, and after the dropping was completed, the inside of the reactor was depressurized and kept at 8 mmHg for 3 minutes, and nitrogen was introduced to increase the inside of the reactor. It returned to atmospheric pressure. At this time, the amount of dissolved oxygen in the reaction system was 75 ppm. While blowing nitrogen into the reaction system, the reaction system was heated to 90 ° C. in 30 minutes and reacted at 90 ° C. for 6 hours. The obtained reaction product is cooled, neutralized by adding 7.7 parts of phosphoric acid (purity 85%) and 60 parts of water, and then water 3
It was washed 4 times with 00 parts. Next, dehydration was performed at 50 ° C and 15 mmHg to obtain a colorless transparent solution of phenol resin (average molecular weight: 700).

比較例3 p−tert−ブチルフェノール120部,ビスフェノールA
(カーボネートグレード)45.6部,40%ホルムアルデヒ
ドブタノール溶液225部,エチレングリコールモノエチ
ルエーテルアセテート150部および28%ナトリウムメチ
ラートメタノール溶液38.6部を反応器に仕込み,反応系
にちっ素を40分間吹き込んだ。この時の反応系中の溶存
酸素量は約700ppmであった。次に、実施例3と同様にし
て,ちっ素を吹き込みながら反応させ3中和,洗浄およ
び脱水を行って,黒褐色のフェノール樹脂(平均分子量
1300)の溶液を得た。
Comparative Example 3 p-tert-butylphenol 120 parts, bisphenol A
(Carbonate grade) 45.6 parts, 40% formaldehyde butanol solution 225 parts, ethylene glycol monoethyl ether acetate 150 parts and 28% sodium methylate methanol solution 38.6 parts were charged into the reactor, and nitrogen was blown into the reaction system for 40 minutes. At this time, the amount of dissolved oxygen in the reaction system was about 700 ppm. Next, in the same manner as in Example 3, the reaction was carried out while blowing in nitrogen to carry out 3 neutralization, washing and dehydration to obtain a blackish brown phenol resin (average molecular weight).
1300) solution was obtained.

〔発明の効果〕〔The invention's effect〕

本発明により,耐水性,耐熱性,耐食性など本来フェノ
ール樹脂が有するすぐれた性能を損なうことなく,簡略
で短時間の操作で,その色相が淡色ないし無色であるフ
ェノール樹脂が得られるようになった。
INDUSTRIAL APPLICABILITY According to the present invention, a phenol resin whose hue is pale or colorless can be obtained by a simple and short-time operation without deteriorating the excellent performance of phenol resin such as water resistance, heat resistance, and corrosion resistance. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−262815(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-262815 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】フェノール類とアルデヒド類とを塩基性触
媒の存在下で反応させてフェノール樹脂を製造する方法
において,減圧および不活性ガス導入をくりかえして溶
存酸素量を減少させたフェノール類およびアルデヒド類
の混合物の溶液に,減圧および不活性ガス導入をくりか
えして溶存酸素量を減少させた塩基性触媒溶液を加え、
必要に応じて,さらに減圧および不活性ガス導入をくり
かえして反応系中の溶存酸素量を300ppm未満とした後,
不活性ガス雰囲気中で反応させることを特徴とするフェ
ノール樹脂の製造方法。
1. A method for producing a phenol resin by reacting phenols and aldehydes in the presence of a basic catalyst, wherein phenols and aldehydes having reduced dissolved oxygen content by repeatedly reducing pressure and introducing an inert gas. The basic catalyst solution, in which the amount of dissolved oxygen is reduced by repeating reduced pressure and introduction of an inert gas, is added to the solution of the mixture of kinds,
If necessary, further reduce the pressure and introduce an inert gas to reduce the amount of dissolved oxygen in the reaction system to less than 300 ppm.
A method for producing a phenol resin, which comprises reacting in an inert gas atmosphere.
【請求項2】フェノール類が,p−位に炭素数1〜18の飽
和アルキル基を有するフェノール類,p−位にフェニル基
を有するフェノール類,ビスフェノールF,ビスフェノー
ルAおよびビスフェノールBからなる群から選ばれる1
種または2種以上である特許請求の範囲第1項記載のフ
ェノール樹脂の製造方法。
2. A phenol is selected from the group consisting of a phenol having a saturated alkyl group having 1 to 18 carbon atoms at the p-position, a phenol having a phenyl group at the p-position, bisphenol F, bisphenol A and bisphenol B. 1 chosen
The method for producing a phenol resin according to claim 1, wherein the phenol resin is one kind or two or more kinds.
【請求項3】アルデヒド類が,ホルムアルデヒドおよび
(または)パラホルムアルデヒドである特許請求の範囲
第1項または第2項記載のフェノール樹脂の製造方法。
3. The method for producing a phenol resin according to claim 1 or 2, wherein the aldehydes are formaldehyde and / or paraformaldehyde.
【請求項4】塩基性触媒が,リチウム,ナトリウム,カ
リウムの水酸化物およびアルコキサイド,およびマグネ
シウム,カルシウムの水酸化物からなる群から選ばれる
1種または2種以上である特許請求の範囲第1項ないし
第3項いずれか記載のフェノール樹脂の製造方法。
4. The basic catalyst is one or more selected from the group consisting of lithium, sodium and potassium hydroxides and alkoxides, and magnesium and calcium hydroxides. Item 4. A method for producing a phenolic resin according to any one of Items 3 to 3.
【請求項5】フェノール類,アルデヒド類および塩基性
触媒の他に,一価アルコールを用い,得られるフェノー
ル樹脂の分子量を200〜1500とする特許請求の範囲第1
項ないし第4項いずれか記載のフェノール樹脂の製造方
法。
5. In addition to phenols, aldehydes and basic catalysts, a monohydric alcohol is used, and the resulting phenol resin has a molecular weight of 200 to 1500.
Item 5. A method for producing a phenolic resin according to any one of Items 4 to 4.
JP61035266A 1986-02-21 1986-02-21 Method for producing phenol resin Expired - Lifetime JPH0667998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035266A JPH0667998B2 (en) 1986-02-21 1986-02-21 Method for producing phenol resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035266A JPH0667998B2 (en) 1986-02-21 1986-02-21 Method for producing phenol resin

Publications (2)

Publication Number Publication Date
JPS62195009A JPS62195009A (en) 1987-08-27
JPH0667998B2 true JPH0667998B2 (en) 1994-08-31

Family

ID=12436997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035266A Expired - Lifetime JPH0667998B2 (en) 1986-02-21 1986-02-21 Method for producing phenol resin

Country Status (1)

Country Link
JP (1) JPH0667998B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635575B2 (en) 2014-04-25 2020-01-29 日鉄ケミカル&マテリアル株式会社 Phenolic compound having good stability and method for producing the same
JP6996306B2 (en) * 2017-01-16 2022-02-04 三菱ケミカル株式会社 Method for producing bisphenol compound
JP7045169B2 (en) * 2017-11-22 2022-03-31 旭化成建材株式会社 Phenol resin foam laminated board and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262815A (en) * 1984-06-11 1985-12-26 Sumitomo Deyurezu Kk Production of novolak resin

Also Published As

Publication number Publication date
JPS62195009A (en) 1987-08-27

Similar Documents

Publication Publication Date Title
US4197174A (en) Method for producing bis-[4-(diphenylsulfonio) phenyl] sulfide bis-MX6
US4238587A (en) Heat curable compositions
JPH02166115A (en) Curable polyphenylene ether
CN110643007B (en) Preparation method of phenolic resin wood toughening adhesive
KR20040029118A (en) High nitrogen containing triazine-phenol-aldehyde condensate
TW201040203A (en) Olefin resin, epoxy resin, curable resin composition, and material resulting from curing same
JP4971601B2 (en) Vinylbenzyl ether compound and resin composition containing the compound as an essential component
JPH0667998B2 (en) Method for producing phenol resin
US4518788A (en) Aromatic polyvinyl ethers and heat curable molding compositions obtained therefrom
US3429851A (en) Silicate resins
KR100248535B1 (en) Polyglycidyl compounds
WO1991011467A1 (en) Alkenyl ethers and radiation curable compositions
TW202239744A (en) Method for producing (meth)acyrlic acid ester compound
WO2022000088A1 (en) Catalysts for crosslinking epoxy resins
US4293693A (en) Hemiacetals of adducts of acrolein and isocyanuric acid
US4326057A (en) Adducts of acrolein and isocyanuric acid
JPH02248417A (en) Production of high-molecular weight phenol resin
JPH0627276B2 (en) Coating composition for inner surface of can
US4130550A (en) Phenol-formaldehyde composition useful as a raw material for the preparation of phenolic resins
US5227533A (en) Alk-1-enyl ethers
US4321375A (en) Acetals of adducts of acrolein and isocyanuric acid
JPS59138218A (en) Curable epoxy resin mixture
Chao et al. Poly (2, 6‐dimethyl‐1, 4‐phenylene ether)(PPO®) capping and its significance in the preparation of PPO®/epoxy laminate
US5200437A (en) Coating compositions containing alk-1-enyl ethers
KR100313663B1 (en) Sulfonylhydrazinium salts, and cationically polymerizable composit containing them