JPH066723B2 - A method for manufacturing a carrier based on a porous sintered body of A type - Google Patents

A method for manufacturing a carrier based on a porous sintered body of A type

Info

Publication number
JPH066723B2
JPH066723B2 JP63284227A JP28422788A JPH066723B2 JP H066723 B2 JPH066723 B2 JP H066723B2 JP 63284227 A JP63284227 A JP 63284227A JP 28422788 A JP28422788 A JP 28422788A JP H066723 B2 JPH066723 B2 JP H066723B2
Authority
JP
Japan
Prior art keywords
sintered body
porous sintered
carrier
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63284227A
Other languages
Japanese (ja)
Other versions
JPH02129302A (en
Inventor
俊輔 鈴木
裕夫 脇山
宏佳 菊地
弘人 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Original Assignee
NDC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd filed Critical NDC Co Ltd
Priority to JP63284227A priority Critical patent/JPH066723B2/en
Publication of JPH02129302A publication Critical patent/JPH02129302A/en
Publication of JPH066723B2 publication Critical patent/JPH066723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産 業 上 の 利 用 分 野 本発明はAl系多孔質焼結体を基体とする担体の製造方
法に係り、詳しくは、Pt、Co、Cr等の金属触媒や芳香
剤、消嗅剤、抗菌剤等を均質に分散担持させるAl系多
孔質焼結体を基体とする担体の製造方法に係る。
TECHNICAL FIELD The present invention relates to a method for producing a carrier having an Al-based porous sintered body as a base, and more specifically, a metal catalyst such as Pt, Co, Cr, or an aroma. The present invention relates to a method for producing a carrier based on an Al-based porous sintered body on which an agent, an odorant, an antibacterial agent and the like are uniformly dispersed and carried.

従 来 の 技 術 従来から、例えば、自動車の排ガスの有害成分をはじ
め、各種の燃焼ガスの浄化を行なうために触媒が用いら
れている。
Conventional Technology Conventionally, for example, catalysts have been used to purify various combustion gases including harmful components of automobile exhaust gas.

自動車排ガス浄化用触媒はコージライト、ムライト等を
蜂の巣状(ハニカム型)等に成形した構造体に比表面積
20〜80m2/gをもつγ−Al2O3が表層にコーティングさ
れ、そのγ−Al2O3がもつ微細孔にPt、Co、Cr等の金属
触媒が担持されたものである。
The catalyst for automobile exhaust gas purification has a specific surface area on a structure formed by forming cordierite, mullite, etc. into a honeycomb shape.
Γ-Al 2 O 3 having 20 to 80 m 2 / g is coated on the surface layer, and the fine pores of γ-Al 2 O 3 carry a metal catalyst such as Pt, Co and Cr.

この触媒はコージライト、ムライト等の基体を蜂の巣状
に成形した構造体をγ−Al2O3粉末、水、硝酸アルミニ
ウム、界面活性剤等を混合した粘性を有するウオッシュ
コートに浸漬若しくは吹付けした後、乾燥、焼成し、表
面にγ−Al2O3を薄く被覆した担体を触媒金属塩の溶液
を入れた撹拌容器に浸し、触媒金属塩を担体表面に付着
させ、乾燥、焼成し、触媒金属を還元状態で担体表面に
分布させるようにして製造したものである。
This catalyst was obtained by immersing or spraying a honeycomb body-shaped structure of cordierite, mullite or the like in a viscous washcoat mixed with γ-Al 2 O 3 powder, water, aluminum nitrate, a surfactant, etc. After that, it is dried and calcined, and the carrier whose surface is thinly coated with γ-Al 2 O 3 is immersed in a stirring vessel containing a solution of the catalytic metal salt, the catalytic metal salt is attached to the surface of the carrier, dried and calcined, and the catalyst It is produced by distributing the metal in a reduced state on the surface of the carrier.

しかしながら、この触媒の担体製造において、γ−Al2O
3のコーティングは硝酸アルミニウム混入量、粘度等の
極めて微妙な調整が必要とすることに併せ、コーティン
グ作業の際に基体のコージライトやムライトに均等肉厚
でコーティングすることがむづかしく、また、乾燥養生
等に日数を要し、更に、この乾燥養生したものを焼成す
る工程においても、焼成条件等を厳密に管理することが
必要である。
However, in the support production of this catalyst, γ-Al 2 O
In addition to the need for extremely delicate adjustment of the amount of aluminum nitrate mixed, the viscosity, etc., the coating of 3 is difficult to coat cordierite or mullite of the substrate with a uniform thickness during the coating work, and also It takes several days to dry and cure, and it is also necessary to strictly control the firing conditions and the like in the step of firing the dried and cured material.

従って、担体製造のコストが高くなり、高価とならざる
を得ない。
Therefore, the cost of producing the carrier becomes high and it is inevitably expensive.

以上のことから、Al系多孔質焼結体を基体とする触媒
担体の表面をγ−Al2O3等のウオッシュコートを用いる
ことなく、基体表面にγ−Al2O3層の形成することがで
きれば、コーティング作業が省略でき、コストが低下
し、しかも、均質肉厚のγ−Al2O3が表面に形成され、
品質が一定となることからこのような触媒担体の製造法
の出現が要望されている。
From the above, it is possible to form a γ-Al 2 O 3 layer on the surface of a substrate without using a washcoat such as γ-Al 2 O 3 on the surface of a catalyst carrier having an Al-based porous sintered body as a substrate. If it is possible, the coating work can be omitted, the cost is reduced, and moreover, a uniform thickness of γ-Al 2 O 3 is formed on the surface,
Since the quality is constant, the advent of such a method for producing a catalyst carrier is desired.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、表面
に高比表面積の活性アルミナからなる被覆層を有する多
孔質Al系焼結体を基体とする触媒担体を簡単な方法
で、しかも、均質なものを効率よく製造する方法を提案
することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to solve the above problems, and specifically, a catalyst carrier based on a porous Al-based sintered body having a coating layer made of activated alumina having a high specific surface area on its surface. It is an object of the present invention to propose a method for efficiently producing a homogeneous product by a simple method.

課題を解決するための 手段ならびにその作用 すなわち、本発明は、Al若しくはAl合金若しくはA
lとAl合金の混合粉末を無加圧下焼結して成る連通孔
を有する多孔質焼結体を沸騰水中若しくは水蒸気中に曝
露し、その表面にベーマイト層を生成させた後、これを
多孔質焼結体の融点未満の基体が溶融しない温度に加熱
し、ベーマイト層を微細孔の有するγ−Al2O3又はγ′
−Al2O3(疑似γ結晶構造)の層に変質させることを特
徴とし、また、更に、この製造方法によって得られた焼
結体をγ−Al2O3を含有するウオッシュコートに浸漬し
た後、乾燥、焼成し、前記焼結体の表面にγ−Al2O3
コートすることを特徴とする。
Means for Solving the Problem and Its Action That is, the present invention relates to Al or Al alloy or A
A porous sintered body having continuous pores formed by sintering a mixed powder of 1 and an Al alloy without pressure is exposed to boiling water or water vapor, and a boehmite layer is formed on the surface of the porous sintered body. The temperature below the melting point of the sintered body is heated to a temperature at which the substrate does not melt, and the boehmite layer has γ-Al 2 O 3 or γ ′ having fine pores.
-Al 2 O 3 (pseudo γ crystal structure) is characterized by changing the layer, and further, the sintered body obtained by this production method was dipped in a wash coat containing γ-Al 2 O 3 . After that, it is dried and fired to coat the surface of the sintered body with γ-Al 2 O 3 .

そこで、これら手段たる構成ならびにその作用について
更に具体的に説明すると、次の通りである。
Therefore, the configuration and operation of these means will be described more specifically as follows.

本発明者等は、触媒担体の基体表面にγ−Al2O3等をウ
オッシュコートせずにγ−Al2O3の層を形成させる方法
について検討した。Al金属は酸素との親和性が高く、
大気中でも最表面層は容易にAl2O3となるが、大気酸化
ではγ−Al2O3とはならないことから、Al系焼結体の
表面を一担ベーマイト(Al2O3・H2O)化させ、これを加熱
すると、活性アルミナ(γ−Al2O3、又はγ′−Al2O3
となることに着目し、これに適する条件を求めたとこ
ろ、次の通りである。
The present inventors have studied a method of forming a γ-Al 2 O 3 layer without washcoating γ-Al 2 O 3 or the like on the substrate surface of a catalyst carrier. Al metal has a high affinity for oxygen,
Although the outermost surface layer easily becomes Al 2 O 3 even in the atmosphere, it does not become γ-Al 2 O 3 by atmospheric oxidation, so the surface of the Al-based sintered body is supported by boehmite (Al 2 O 3 · H 2 When converted to O) and heated, activated alumina (γ-Al 2 O 3 or γ′-Al 2 O 3 )
Focusing on that, the conditions suitable for this are as follows.

(1)連通孔を有するAl系焼結体を用いること、 (2)Al系焼結体の表面をベーマイト化させた後、加熱
して含水分を除去し活性アルミナとすること、 (3)γ−Al2O3を含有するウオッシュコートによりγ−Al
2O3の被覆が容易にできること、 等であった。
(1) Use of an Al-based sintered body having communication holes, (2) Boehmite the surface of the Al-based sintered body, and then heat to remove water content to obtain activated alumina. (3) γ-Al with a washcoat containing γ-Al 2 O 3
2 O 3 can be easily coated, and so on.

更に研究を進め、本発明はこの研究に基づいて成立した
ものである。
Further research was conducted, and the present invention was established based on this research.

以下、更に本発明を詳しく説明する。Hereinafter, the present invention will be described in more detail.

本発明はAl若しくはAl合金若しくはAlとAl合金
の粉末を無加圧状態で所望の形状に焼結し、この焼結し
たAl系焼結体を用いる。このAl系焼結体は連通孔を
有するため、基体、液体等を透過させることができ、ま
た、目的とするγ−Al2O3又はγ′−Al2O3を表面に形成
することができる機能を有することから本発明の出発原
料として好適なものである。
In the present invention, Al or Al alloy or Al and Al alloy powder is sintered into a desired shape in a non-pressurized state, and the sintered Al-based sintered body is used. Since this Al-based sintered body has communicating holes, it can allow a substrate, liquid, etc. to pass therethrough, and can form the desired γ-Al 2 O 3 or γ′-Al 2 O 3 on the surface. It is suitable as a starting material of the present invention because it has the function of being capable.

まず、本発明者等は上記Al基焼結体を沸騰水中又は水
蒸気中で処理したところ、その表層部が容易にベーマイ
ト(Al2O3・H2O)、すなわち、水和アルミナになることが
確認された。更に、これを大気中でAl基焼結体の融点
未満の温度好ましくは400〜660℃未満に加熱すると、水
和分が揮散し、微細孔をもつγ−Al2O3又はγ′−Al2O3
が得られることが確認された。このような手段によって
得られたγ−Al2O3又はγ′−Al2O3は、ウオッシュコー
トで利用される活性アルミナ(γ−Al2O3)と全く遜色
のない高比表面積を有するものであることがわかった。
First, the present inventors treated the above Al-based sintered body in boiling water or steam, and the surface layer thereof was easily boehmite (Al 2 O 3 .H 2 O), that is, hydrated alumina. Was confirmed. Furthermore, when this is heated in the air to a temperature lower than the melting point of the Al-based sintered body, preferably 400 to less than 660 ° C., hydrated components are volatilized, and γ-Al 2 O 3 or γ′-Al having fine pores. 2 O 3
It was confirmed that Γ-Al 2 O 3 or γ′-Al 2 O 3 obtained by such means has a high specific surface area comparable to that of activated alumina (γ-Al 2 O 3 ) used in washcoats. It turned out to be a thing.

また、上記のγ−Al2O3またはγ′−Al2O3の最表層構成
を有するAl系焼結体からなる基体が、所謂ウオッシュ
コートが極めて簡便に形成しやすいことが確認された。
It was also confirmed that a so-called washcoat can be formed very easily on the base body made of the Al-based sintered body having the outermost surface layer structure of γ-Al 2 O 3 or γ′-Al 2 O 3 .

なお、ウオッシュコートとは別途精製されたγ−Al2O3
粉末を水、硝酸アルミニウム及び界面活性剤等の混合液
に添加し、混練した混合液である。通常、自動車用触媒
担体はハニカム型構造体のコージライトやムライト等の
焼結体からなる基体をこのウオッシュコートに含浸さ
せ、γ−Al2O3を塗着させ焼成したものである。しか
し、一般に触媒担体が金属ハニカムであると、ウオッシ
ュコートが付着しにくいという側面もあり、このことは
金属担体の普及を妨げる技術的問題点の一つでもあっ
た。後述の評価試験例3で示すようにAl系焼結体のま
まウオッシュコートを施した試料と、ベーマイト処理後
加熱処理を行なったウオッシュコートを施した試料では
ウオッシュコートの耐剥離性に著しい差が認められる。
すなわち、本発明による一連の工程を経た後、ウオッシ
ュコートを塗着した担体は加熱−冷却繰返しを施しても
すぐれた耐久性を示すため、高温の排気ガスの浄化に好
適なものである。
It should be noted that γ-Al 2 O 3 purified separately from the wash coat
This is a mixed solution in which the powder is added to a mixed solution of water, aluminum nitrate, a surfactant and the like and kneaded. Usually, a catalyst carrier for automobiles is obtained by impregnating this washcoat with a substrate made of a sintered body such as cordierite or mullite having a honeycomb structure, applying γ-Al 2 O 3 and firing it. However, in general, when the catalyst carrier is a metal honeycomb, the washcoat is less likely to adhere, which is one of the technical problems that prevent the spread of the metal carrier. As shown in Evaluation Test Example 3 to be described later, there is a significant difference in the peel resistance of the washcoat between the sample to which the washcoat was applied as it was as the Al-based sintered body and the sample to which the washcoat which was subjected to the heat treatment after the boehmite treatment was applied. Is recognized.
That is, the carrier coated with the wash coat after the series of steps according to the present invention exhibits excellent durability even after repeated heating-cooling, and is therefore suitable for purification of high-temperature exhaust gas.

以下、更に本発明の方法の手段たる構成について説明す
る。
The constitution of the method of the present invention will be described below.

本発明に使用するAl系焼結体は基体、液体を透過させ
る必要があることから三次元的に連通している空孔を具
えたものであることが必須の要件である。このため、本
件特許出願人が提案した特公昭56-11375公報に記載され
た方法により得られるAl系焼結体の無加圧焼結体はこ
の要件を満足するものである。すなわち、この方法は実
質的にAl系粉末を無加圧でかつ非酸化性雰囲気中で、
その粉末の融点より低い温度で焼結することにより連通
孔を有する多孔質Al系焼結体とするものである。この
方法によれば、粉末の粒径、焼結条件(温度、時間)及
びバインダーの種類等変えることにより所望の空孔率30
〜70%の焼結体が得られる。
Since the Al-based sintered body used in the present invention is required to allow the substrate and the liquid to pass therethrough, it is essential that the Al-based sintered body has pores that are three-dimensionally communicated with each other. For this reason, the pressureless sintered body of the Al-based sintered body obtained by the method described in Japanese Patent Publication No. 56-11375 proposed by the applicant of the present invention satisfies this requirement. That is, in this method, the Al-based powder is substantially pressureless and in a non-oxidizing atmosphere,
By sintering at a temperature lower than the melting point of the powder, a porous Al-based sintered body having communicating holes is obtained. According to this method, the desired porosity can be adjusted to 30 by changing the particle size of the powder, the sintering conditions (temperature, time), and the type of binder.
~ 70% sintered body is obtained.

次に、ベーマイト層の形成方法について述べる。Next, a method for forming the boehmite layer will be described.

上記Al系焼結体を前述の通り熱水処理または水蒸気処
理を行なうことにより、最表層に数μm厚のベーマイト
層が一様に形成される。工業的には熱水処理では10〜30
分、または水蒸気処理では数分で均質なベーマイト層が
形成されるが、この層厚さは必要とする担体性能に併せ
決定すべきである。このようにAl系焼結体を熱水処理
または水蒸気処理をする理由はその処理温度により、異
なる水和物を形成するからである。すなわち、熱水また
は水蒸気処理すると、ベーマイト(Al2O3・H2O)の形態と
なる。
By subjecting the above Al-based sintered body to hot water treatment or steam treatment as described above, a boehmite layer having a thickness of several μm is uniformly formed on the outermost layer. Industrially 10 to 30 for hot water treatment
Minutes, or steam treatment, a uniform boehmite layer is formed in a few minutes, and this layer thickness should be determined in accordance with the required carrier performance. The reason why the Al-based sintered body is subjected to hot water treatment or steam treatment in this way is that different hydrates are formed depending on the treatment temperature. That is, when treated with hot water or steam, it becomes a form of boehmite (Al 2 O 3 .H 2 O).

また、60〜70℃以下の低温の温水等で処理すると、バイ
ヤライト(Al2O3・3H2O)の形態のアルミナ水和物となり、
水和量が多いため、次の高温加熱処理では安定したγ−
Al2O3またはγ′−Al2O3(疑似γ結晶構造)を得ること
は困難であるからである。
When treated with low temperature hot water such as 60 to 70 ° C. or less, it becomes an alumina hydrate in the form of bayerite (Al 2 O 3 .3H 2 O),
Due to the large amount of hydration, stable γ-
This is because it is difficult to obtain Al 2 O 3 or γ′-Al 2 O 3 (pseudo γ crystal structure).

次に、このAl系焼結体のベーマイト層にγ−Al2O3
形成させる方法について述べる。
Next, a method for forming γ-Al 2 O 3 on the boehmite layer of this Al-based sintered body will be described.

ベーマイトは通常の大気中の加熱で水和分を放出する。
本発明者等の実験によると示差熱天秤装置にベーマイト
処理を行なった試片を挿入し、毎分10℃の昇温速度で加
熱したところ、温度が100℃及び400℃の2点に重量減少
のピーク回線が得られた。このことは水和分が温度100
℃及び400℃で分解揮散したことを示すものである。同
時に、温度500℃、30分加熱保持した試料をX線解析で
その結晶構造を求めたところ、γ−Al2O3及びγ′−Al2
O3の混在する構造として同定された。ところで、Al焼
系結体はその含有成分によって融点は異なるが、通常、
純Alの融点が660℃であることから、この温度以上に
加熱することは基体を溶融させてしまうため不可であ
る。好ましくは先の実験より得られた結果に示されるよ
うに第二次水和分放出の温度が400℃であることから、
温度400℃以上でかつ基体の融点未満であることが好ま
しい。
Boehmite releases hydrates when heated in normal air.
According to the experiments of the present inventors, when a boehmite-treated sample was inserted into a differential thermal balance apparatus and heated at a heating rate of 10 ° C./min, the weight decreased to two points of 100 ° C. and 400 ° C. I got the peak line. This means that the hydrated temperature is 100
It shows that the substance was decomposed and volatilized at ℃ and 400 ℃. At the same time, when the crystal structure of a sample heated and held at a temperature of 500 ° C. for 30 minutes was determined by X-ray analysis, γ-Al 2 O 3 and γ′-Al 2
It was identified as a mixed structure of O 3 . By the way, although the melting point of an Al-calcined compound differs depending on the contained components,
Since the melting point of pure Al is 660 ° C., heating above this temperature is not possible because it melts the substrate. Preferably, as shown in the results obtained from the previous experiment, the temperature of the secondary hydrated release is 400 ° C,
The temperature is preferably 400 ° C. or higher and lower than the melting point of the substrate.

次いで、上記工程を経た試料をBET法、すなわち、N
ガス吸着法により比表面積を測定した結果を第1表に示
す。なお、第1表は800℃水蒸気処理5分、次いで、加
熱温度を変化させ、その加熱保持時間をいずれも30分
とした試料の比表面積測定結果である。
Then, the sample that has undergone the above steps is subjected to BET method, that is, N 2
The results of measuring the specific surface area by the gas adsorption method are shown in Table 1. In addition, Table 1 shows the specific surface area measurement results of the sample in which the steam treatment at 800 ° C. was performed for 5 minutes, the heating temperature was changed, and the heating and holding time was 30 minutes in all cases.

第1表から加熱温度を200℃から上昇されるに従って比
表面積が大となることがわかる。
It can be seen from Table 1 that the specific surface area increases as the heating temperature is increased from 200 ° C.

以上本発明の触媒担体の製造法について説明したが、本
発明法は触媒担体として用いられるだけでなく、表面の
γ−Al2O3層は微細孔を有しかつ基体が連通孔を有する
ため、芳香剤、消嗅剤、抗菌材等を多量に含浸させるこ
とができるため、これらの担体として用いることができ
る。
Although the method for producing the catalyst carrier of the present invention has been described above, the method of the present invention is not only used as a catalyst carrier, but also because the surface γ-Al 2 O 3 layer has fine pores and the substrate has continuous pores. Since it can be impregnated with a large amount of a fragrance, an odorant, an antibacterial material, etc., it can be used as a carrier for these.

本発明に係る担体を用いると、従来例の芳香剤、消嗅
剤、抗菌剤等を含浸させる担体(フェルト、木綿等)に
比べて効続時間が一段と延長される効果がある。
Use of the carrier according to the present invention has the effect of further extending the duration of effect as compared with conventional carriers (felt, cotton, etc.) impregnated with an aromatic agent, an odorant, an antibacterial agent, and the like.

実 施 例 実施例1. 純Al粉(99.7%純度、40〜150メッシュ)にAl
−60%Cu合金粉(100〜150メッシュ)を5%混合した粉
体を黒鉛製トレイ上に無加圧で散布した。これをN2+H2
混合ガス中635℃×20分焼結したところ、空孔率45%、
流れ抵抗150dyne.sec/cm4の三次元連通孔をもつAl焼
結体が得られた。
Examples Example 1. Pure Al powder (99.7% purity, 40-150 mesh) with Al
Powder obtained by mixing 5% of -60% Cu alloy powder (100 to 150 mesh) was sprayed on a graphite tray without pressure. This is N 2 + H 2
When sintered in a mixed gas at 635 ° C for 20 minutes, the porosity is 45%,
An Al sintered body having a three-dimensional communication hole with a flow resistance of 150 dyne.sec / cm 4 was obtained.

このAl焼結体を180℃、水蒸気圧2.2kg/cm2のオー
トクレーブに投入し約5分間保持した。こののち600℃
×5分間の条件下で大気中加熱処理を行ない、評価用試
料(1)を得た。
This Al sintered body was put into an autoclave having a steam pressure of 2.2 kg / cm 2 at 180 ° C. and held for about 5 minutes. After this 600 ℃
Heat treatment was performed in the atmosphere for 5 minutes to obtain a sample (1) for evaluation.

γ−Al2O3粉、水、硝酸アルミニウムを混合し、良く撹
拌した粘度300cpsのウオッシュコートに評価用試料(1)
を浸漬し、圧縮空気で余液を吹払ったのち、600℃×30
分で焼成した。
γ-Al 2 O 3 powder, water, aluminum nitrate were mixed and well stirred into a wash coat with a viscosity of 300 cps Sample for evaluation (1)
After immersing in, and blowing off the residual liquid with compressed air, 600 ℃ × 30
Baked in minutes.

次に、塩化白金酸溶液に浸漬して白金触媒を担持させた
評価用試料(2)を得た。
Next, an evaluation sample (2) having a platinum catalyst supported thereon was obtained by immersing in a chloroplatinic acid solution.

評価試験例1. 実施例1で作製した評価用試料(1)をBET法によりその比
表面積を測定した結果、15m2/gであった。次いで、これ
に芳香剤(高砂香料社製 商品名「ROSE RS-6631」)を含
浸し、芳香剤の揮散量を測定した。比較例としてプレス
にて固形化したフェルトを担体として用いた例もあわ
せ、第1図のグラフにその揮散量変化を示す。本発明に
よる担体は従来担体が約4週間で完全揮散してしまうの
に対し、全く同一の条件下で18週間以上含浸保有してい
ることがわかる。
Evaluation Test Example 1. The specific surface area of the evaluation sample (1) produced in Example 1 was measured by the BET method, and the result was 15 m 2 / g. Next, this was impregnated with an aromatic agent (trade name "ROSE RS-6631" manufactured by Takasago International Co., Ltd.), and the volatilization amount of the aromatic agent was measured. As a comparative example, the change in the amount of volatilization is shown in the graph of FIG. 1, including an example in which felt solidified by pressing is used as a carrier. It can be seen that the carrier according to the present invention is impregnated and retained under exactly the same conditions for 18 weeks or more, whereas the conventional carrier completely vaporizes in about 4 weeks.

なお、含浸に供したサンプル形状は30mmφ×2.5tに
統一して用いた。
The shape of the sample used for the impregnation was unified to 30 mmφ × 2.5 t.

評価試験例2. 実施例1で作製した評価用試料(1)をジニトロジアミン
白金溶液に浸漬して白金触媒を担持させた。HC、CO、NO
x混合標準ガスを準備し、この混合ガスを400℃に加熱
し、50mmφ×2.5tの担持ずみ試片2枚を組込んだ触
媒容器内に導入する実験装置にて触媒浄化性能を測定し
た。なお、耐久時間は300時間である。第2表に浄化率
を示した。また、比較のために蒸気処理及び加熱処理を
行なっていない焼結体のままの試料を用いて同様に試験
を行なった。その結果を比較品として第2表に示した。
第2表から明らかに触媒が本発明の担体に収率よく担持
されていることがわかると同時に、300時間耐久でもそ
の劣化がほとんどないことがわかる。
Evaluation Test Example 2. The evaluation sample (1) prepared in Example 1 was immersed in a dinitrodiamine platinum solution to support a platinum catalyst. HC, CO, NO
x Mixed standard gas was prepared, the mixed gas was heated to 400 ° C., and the catalyst purification performance was measured with an experimental device that was introduced into a catalyst container incorporating two 50 mmφ × 2.5 t supported sample pieces. . The durability time is 300 hours. The purification rate is shown in Table 2. Further, for comparison, the same test was performed using a sample of the sintered body which was not subjected to steam treatment and heat treatment. The results are shown in Table 2 as a comparative product.
It can be seen from Table 2 that the catalyst is clearly supported on the carrier of the present invention in good yield, and at the same time, there is almost no deterioration even after 300 hours of durability.

評価試験例3. 実施例1で作成した評価用試料(2)、すなわち、ウオッ
シュコート層内に塩化白金酸を担持させた評価用試料
(2)を500℃混合標準ガス中5分間、空冷5分間の繰返し
熱衝撃試験を300時間実施した。この結果、目視でウオ
ッシュコート層の剥離は何ら認められなかった。
Evaluation Test Example 3. Evaluation sample (2) prepared in Example 1, that is, an evaluation sample in which chloroplatinic acid was supported in the washcoat layer.
(2) was repeatedly subjected to a thermal shock test for 300 hours in a mixed standard gas at 500 ° C. for 5 minutes and air cooling for 5 minutes. As a result, no peeling of the washcoat layer was visually observed.

〈発 明 の 効 果〉 以上詳しく説明したように、本発明法は、Al若しくは
Al合金若しくはAlとAl合金の混合粉末を無加圧下
焼結して成る連通孔を有する多孔質焼結体を沸騰水中若
しくは水蒸気中に曝露し、その表面にベーマイト層を生
成させた後、これを多孔質焼結体の融点未満の基体が溶
融しない温度に加熱し、ベーマイト層を微細孔の有する
γ−Al2O3又はγ−Al2O3の層に変質させることを特徴と
する。
<Effect of the Development> As described in detail above, the method of the present invention provides a porous sintered body having communicating holes formed by sintering Al or Al alloy or a mixed powder of Al and Al alloy without pressure. After exposing to boiling water or water vapor to form a boehmite layer on the surface of the boehmite layer, the boehmite layer is heated to a temperature at which the substrate below the melting point of the porous sintered body does not melt, and the boehmite layer has γ-Al It is characterized in that it is transformed into a layer of 2 O 3 or γ-Al 2 O 3 .

従って、本発明の方法によれば基体表面に微細孔を有す
るγ−Al2O3又はγ′−Al2O3を有する担体が極めて簡便
に製造でき、また、表面に活性アルミナからなる高比表
面積層を有するため、直接その表層に触媒を効率よく担
持させることができる。また、Al系焼結体の基体のγ
−Al2O3又はγ′−Al2O3面にγ−Al2O3のウオッシュコ
ートを強固に形成させることができ、層厚を調整するこ
とができる。
Therefore, according to the method of the present invention, a carrier having γ-Al 2 O 3 or γ'-Al 2 O 3 having fine pores on the surface of the substrate can be very easily produced, and a high ratio of activated alumina on the surface is obtained. Since it has a surface layer, the catalyst can be efficiently supported directly on the surface layer. In addition, γ of the Al-based sintered body substrate
A washcoat of γ-Al 2 O 3 can be firmly formed on the −Al 2 O 3 or γ′-Al 2 O 3 surface, and the layer thickness can be adjusted.

また、本発明法によって得られる担体は、連通孔を有す
るAl焼結体の表面に微細孔のγ−Al2O3又はγ′−Al2
O3を有するものであるため、多量の消嗅剤、芳香剤を含
浸でき、その効続時間を従来例に増し延長しうる。
Further, the carrier obtained by the method of the present invention has a fine pore γ-Al 2 O 3 or γ′-Al 2 on the surface of an Al sintered body having a communicating hole.
Since it contains O 3 , it can be impregnated with a large amount of deodorant and fragrance, and the duration of effect can be extended to the conventional example.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る触媒担体中に芳香剤を含浸せしめ
るときの効続時間を示すグラフ、第2図は本発明に係る
触媒担体をガス浄化用触媒担体としての性能を評価する
評価試験用装置の説明図である。
FIG. 1 is a graph showing the duration of time when a catalyst carrier according to the present invention is impregnated with an aromatic, and FIG. 2 is an evaluation test for evaluating the performance of the catalyst carrier according to the present invention as a gas purification catalyst carrier. FIG.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B01J 23/89 A 8017−4G 35/04 331 B 7821−4G Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // B01J 23/89 A 8017-4G 35/04 331 B 7821-4G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Al若しくはAl合金若しくはAlとAl
合金の混合粉末を無加圧下焼結して成る連通孔を有する
多孔質焼結体を沸騰水中若しくは水蒸気中に曝露し、そ
の表面にベーマイト層を生成させた後、これを前記多孔
質焼結体の融点未満の基体が溶融しない温度に加熱し、
前記ベーマイト層を微細孔の有するγ−Al2O3又はγ′
−Al2O3の層に変質させることを特徴とするAl系多孔
質焼結体を基体とする担体の製造方法。
1. Al or Al alloy or Al and Al
A porous sintered body having communicating pores formed by sintering a mixed powder of an alloy without pressure is exposed to boiling water or steam, and a boehmite layer is formed on the surface of the porous sintered body. Heat to a temperature below the melting point of the body that does not melt the substrate,
Γ-Al 2 O 3 or γ ′ having fine pores in the boehmite layer
Method for producing a carrier for the substrate an Al-based porous sintered body characterized by changing the nature of the layer of -Al 2 O 3.
【請求項2】前記請求項1記載の製造方法によって得ら
れた焼結体をγ−Al2O3を含有するウオッシュコートに
浸漬若しくは吹付けした後、乾燥、焼成し、前記焼結体
の表面にγ−Al2O3をコートすることを特徴とするAl
系多孔質焼結体を基体とする担体の製造方法。
2. A sintered body obtained by the manufacturing method according to claim 1 is dipped or sprayed in a wash coat containing γ-Al 2 O 3 and then dried and fired to obtain the sintered body. Al whose surface is coated with γ-Al 2 O 3
A method for producing a carrier having a porous porous sintered body as a substrate.
【請求項3】前記多孔質焼結体の空孔率が30〜70%であ
る請求項1又は2記載のAl系多孔質焼結体を基体とす
る担体の製造方法。
3. The method for producing a carrier based on an Al-based porous sintered body according to claim 1, wherein the porosity of the porous sintered body is 30 to 70%.
【請求項4】前記多孔質焼結体の加熱温度が400℃以上6
60℃未満である請求項1又は2記載のAl系多孔質焼結
体を基体とする担体の製造方法。
4. The heating temperature of the porous sintered body is 400 ° C. or higher 6
The method for producing a carrier based on the Al-based porous sintered body according to claim 1, which has a temperature of less than 60 ° C.
JP63284227A 1988-11-10 1988-11-10 A method for manufacturing a carrier based on a porous sintered body of A type Expired - Lifetime JPH066723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284227A JPH066723B2 (en) 1988-11-10 1988-11-10 A method for manufacturing a carrier based on a porous sintered body of A type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284227A JPH066723B2 (en) 1988-11-10 1988-11-10 A method for manufacturing a carrier based on a porous sintered body of A type

Publications (2)

Publication Number Publication Date
JPH02129302A JPH02129302A (en) 1990-05-17
JPH066723B2 true JPH066723B2 (en) 1994-01-26

Family

ID=17675823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284227A Expired - Lifetime JPH066723B2 (en) 1988-11-10 1988-11-10 A method for manufacturing a carrier based on a porous sintered body of A type

Country Status (1)

Country Link
JP (1) JPH066723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719919B2 (en) * 2005-03-24 2011-07-06 学校法人近畿大学 Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating
JP2010214366A (en) * 2009-02-17 2010-09-30 Tokyo Univ Of Agriculture & Technology Carrier for toxic gas decomposition catalyst and method of producing the same
JP5657275B2 (en) * 2009-10-31 2015-01-21 株式会社Uacj Porous metal and method for producing the same

Also Published As

Publication number Publication date
JPH02129302A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US3767453A (en) Method of depositing a high surface area alumina film on a relatively low surface area support
US4231900A (en) Method for forming activated alumina coating on refractory article and article thereby produced
US3956186A (en) Alumina coating for solid carriers for catalysts
US4469816A (en) Palladium on alumina aerogel catalyst composition and process for making same
US4206083A (en) Catalyst for ozone decomposition
RU96123751A (en) HIGH ACTIVITY CATALYSTS
EP0560074A1 (en) High surface area washcoated substrate and method for making
JPH02293049A (en) Catalyst for purification of exhaust gas
US5256387A (en) Catalyst for the production of nitric acid by oxidation of ammonia
JPH066723B2 (en) A method for manufacturing a carrier based on a porous sintered body of A type
JP3249143B2 (en) Preparation of monolithic catalysts with improved thermal shock properties
MXPA04007962A (en) Method for producing shell catalysts.
US2893891A (en) High surface area coating production
JPH0459052A (en) Catalyst for steam reforming
JPH0663423A (en) Production of catalyst element
JPH0244580B2 (en)
US5780102A (en) Process for producing alumina with high specific surface area
CN112955269B (en) Method for producing an open-pore metal body with an oxide layer and metal body produced by this method
CN111432962B (en) Method for producing open-porous molded bodies having modified surfaces and made of metal, and molded body produced using said method
JPH0683787B2 (en) Catalyst for steam reforming
JPH01307455A (en) Preparation of waste gas purification catalyst
US4284675A (en) Carriers for catalysts
RU2323047C1 (en) Catalytic micro-passage plates and method of their making
CN107619365B (en) Process for the spontaneous catalytic decomposition of hydrogen peroxide
JPS63107751A (en) Method for coating catalyst carrier