JPH0667105B2 - Zero-phase circulating current compensation method for ground relay - Google Patents

Zero-phase circulating current compensation method for ground relay

Info

Publication number
JPH0667105B2
JPH0667105B2 JP60019727A JP1972785A JPH0667105B2 JP H0667105 B2 JPH0667105 B2 JP H0667105B2 JP 60019727 A JP60019727 A JP 60019727A JP 1972785 A JP1972785 A JP 1972785A JP H0667105 B2 JPH0667105 B2 JP H0667105B2
Authority
JP
Japan
Prior art keywords
line
phase
current
zero
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019727A
Other languages
Japanese (ja)
Other versions
JPS61180523A (en
Inventor
徳男 江村
生次 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP60019727A priority Critical patent/JPH0667105B2/en
Publication of JPS61180523A publication Critical patent/JPS61180523A/en
Publication of JPH0667105B2 publication Critical patent/JPH0667105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 <技術分野> この発明は地絡リレーの零相循環電流補償方法に関し、
さらに詳細にいえば、少なくとも1の送電線と併架され
る高抵抗接地系平行2回線送電線に一線地絡故障が発生
したことを検出して、地絡故障発生送電線を遮断させる
地絡リレーにおいて、上記地絡リレーの動作に障害を与
える零相循環電流を除去し、真の故障電流のみにより地
絡リレーを作動させ得るようにする零相循環電流補償方
法に関する。
TECHNICAL FIELD The present invention relates to a zero-phase circulating current compensation method for a ground fault relay,
More specifically, a ground fault that interrupts the transmission line that has a ground fault by detecting that a one-line ground fault has occurred in a high-resistance grounding parallel two-line transmission line that is parallel to at least one transmission line. The present invention relates to a zero-phase circulating current compensating method for removing a zero-phase circulating current that impairs the operation of the ground-fault relay so that the ground-fault relay can be operated only by a true fault current.

<従来技術> 高抵抗接地系平行2回線送電線の地絡保護においては、
主保護リレーとして、両回線の差電流を利用して故障回
線を選択遮断させる地絡回路選択リレーを、後備保護リ
レーとして、単回線送電線にも適用されている方向地絡
リレーを設置する考え方が主流である。これらの地絡リ
レーは、送電線の両端部に設置されており、リレーへの
電流入力は、主保護の地絡回路選択リレーへは両回線間
の零相差電流、後備保護の地絡方向リレーへは回線の零
相電流が入力される。
<Prior Art> In the ground fault protection of a high resistance grounding parallel two-line transmission line,
Concept of installing a ground fault circuit selection relay that selectively shuts down a failed circuit by using the differential current of both lines as a main protection relay, and a direction ground fault relay that is also applied to single-line transmission lines as a backup protection relay Is the mainstream. These ground fault relays are installed at both ends of the transmission line, and the current input to the relay is the zero phase difference current between both lines to the main protection ground fault circuit selection relay and the ground fault direction relay for backup protection. The zero-phase current of the line is input to.

一方、近年鉄塔建設用地の確保難等の理由で、1つの鉄
塔に、例えば直接接地系統と高抵抗接地系統の如く異系
統の送電線、或は高抵抗接地系統同士の如く同系統の送
電線が併架されることが多くなっている。そして、この
ような併架送電線では、両系統の送電線の導体間隔の不
平衡から導体間相互インダクタンスに差ができ、平行2
回線送電線においては、回線間を環流する、いわゆる循
環電流が流れることが知られている。
On the other hand, due to the difficulty of securing a construction site for steel towers in recent years, one steel tower has different power transmission lines such as a direct grounding system and a high resistance grounding system, or transmission lines of the same system such as high resistance grounding systems. Are often put together. In such a parallel transmission line, there is a difference in the mutual inductance between the conductors due to the imbalance in the conductor spacing of the transmission lines of both systems, and the parallel 2
It is known that a so-called circulating current flows between lines in a line transmission line.

第3図は、併架送電線の関係を概略的に示す図であり、
起誘導系としての送電線(A)と、被誘導系としての高
抵抗接地系平行2回線送電線(B)とが併架されてい
る。同図において、起誘導系は平行2回線送電線として
示されている。
FIG. 3 is a diagram schematically showing the relationship between the parallel transmission lines,
A power transmission line (A) as an induction system and a high resistance grounding system parallel two-line power transmission line (B) as an induced system are provided together. In the figure, the induction system is shown as a parallel two-line transmission line.

この高抵抗接地系平行2回線送電線(B)において、負
荷に供給される負荷電流ILは、回線B1,B2により
それぞれIL/2ずつ流れ、また、回線B1,B2には
破線で示す方向に循環電流Ijが流れる。そして、故障
が発生した場合には、故障点に故障電流Ifが流れる。
但し、負荷電流、循環電流、および故障電流について
は、正確には回線の相数に対応する行列式で表現される
ものであるが、簡素化のために、IL,If,Ijとして表現し
ている。例えば、 の如くであり、また各行列の各要素は複素数である。
In this high resistance grounding parallel two-line transmission line (B), the load current IL supplied to the load flows by IL / 2 by the lines B1 and B2, respectively, and the lines B1 and B2 are in the directions indicated by broken lines. Circulating current Ij flows. When a failure occurs, the failure current If flows at the failure point.
However, the load current, circulating current, and fault current are accurately expressed by the determinant corresponding to the number of phases in the line, but for simplicity, they are expressed as IL, If, Ij. There is. For example, And each element of each matrix is a complex number.

したがって、高抵抗接地系平行2回線送電線(B)の電
源端の両回線B1,B2の電流I1s,I2s、および負荷端の
両回線B1,B2の電流I1r,I2rは、健全時には、 I1s=IL/2−Ij,I2s=IL/2+Ij, I1r=−IL/2+Ij,I2r=−IL/2−Ij で表わされることになり、故障時には、 I1s=IL/2+(2l-x)If/2I−Ij, I2s=IL/2+xIf/2l+Ij, I1r=−IL/2+xIf/2l+Ij, I2r=−IL/2−xIf/2l−Ij で表わされることになる。
Therefore, the currents I1s and I2s of both lines B1 and B2 at the power source end of the high resistance grounding parallel two-line transmission line (B) and the currents I1r and I2r of both lines B1 and B2 at the load end are I1s = IL / 2-Ij, I2s = IL / 2 + Ij, I1r = -IL / 2 + Ij, I2r = -IL / 2-Ij, and at the time of failure, I1s = IL / 2 + (2l-x) If / 2I -Ij, I2s = IL / 2 + xIf / 2l + Ij, I1r = -IL / 2 + xIf / 2l + Ij, I2r = -IL / 2-xIf / 2l-Ij.

但し、lは高抵抗接地系平行2回線送電線(B)の全長
であり、xは電源側から故障点までの距離である。そし
て、循環電流Ijは、 Ij=(Zs-Zm)-1[(Z31-Z41)I1+(Z32-Z42)I2]L/21であ
る。ここで、Zsは高抵抗接地系平行2回線送電線
(B)の回線B1,B2の単位長当りのインピーダンス
行列であり、Zmは高抵抗接地系平行2回線送電線
(B)の回線B1,B2間の単位長当りの相互インダク
タンス行列であり、Z31は、平行2回線送電線(A)の
回線A1と、高抵抗接地系平行2回線送電線(B)の回
線B1との間の単位長当りの相互インダクタンス行列で
あり、Z41は、平行2回線送電線(A)の回線A1と、
高抵抗接地系平行2回線送電線(B)の回線B2との間
の単位長当りの相互インダクタンス行列であり、 Z32は、平行2回線送電線(A)の回線A2と、高抵抗
接地系平行2回線送電線(B)の回線B1との間の単位
長当りの相互インダクタンス行列であり、Z42は、平行
2回線送電線(A)の回線A2と、高抵抗接地系平行2
回線送電線(B)の回線B2との間の単位長当りの相互
インダクタンス行列であり、I1,I2は起誘導系であ
る平行2回線送電線(A)の回線A1,A2の電流であ
り、L/lは併架区間率である。
Here, 1 is the total length of the high resistance grounding parallel two-line transmission line (B), and x is the distance from the power source side to the failure point. The circulating current Ij is Ij = (Zs-Zm) -1 [(Z31-Z41) I1 + (Z32-Z42) I2] L / 21. Here, Zs is an impedance matrix per unit length of the lines B1 and B2 of the high resistance grounding parallel two-line transmission line (B), and Zm is the line B1 of the high resistance grounding parallel two-line transmission line (B). Z31 is a mutual inductance matrix per unit length between B2, and Z31 is a unit length between the line A1 of the parallel 2-line transmission line (A) and the line B1 of the high resistance grounding parallel 2-line transmission line (B). Is a mutual inductance matrix per hit, and Z41 is the line A1 of the parallel two-line power transmission line (A),
Z32 is a mutual inductance matrix per unit length between the high-resistance grounding system parallel 2-line transmission line (B) and the line B2. Z32 is parallel to the high-resistance grounding system A2 of the parallel 2-line transmission line (A). Z42 is a mutual inductance matrix per unit length between the two-line power transmission line (B) and the line B1. Z42 is a parallel two-line power transmission line (A) line A2 and a high-resistance grounding system parallel two.
A mutual inductance matrix per unit length between the line transmission line (B) and the line B2, and I1 and I2 are currents of the lines A1 and A2 of the parallel two-line transmission line (A) which is an induction system, L / l is the cross-section rate.

以上の如き関係で、特に一線地絡故障時においては、故
障電流Ifは、故障相以外の健全2相の成分は零である
から、例えばa相一線地絡故障時は、 と表すことができ、上記の関係を、各相および零相分で
表せば、 電源端の各回線B1,B2では、 I1sa=ILa/2+(2l-x)Ifa/2l−Ija I1sb=ILb/2 −Ijb I1sc=ILc/2 −Ijc 3I1s0=I1sa+I1sb+I1sc =(2l−x)Ifa/2l−3Ij0 I2sa=ILa/2+xIfa/2l+Ija I2sb=ILa/2 +Ijb I2sc=ILc/2 +Ijc 3I2s0=I2sa+I2sb+I2sc =xIfa/2l+3Ij0 負荷端の各回線B1,B2では、 I1ra=−ILa/2+xIfa/2l+Ija I1rb=−ILb/2 +Ijb I1rc=−ILc/2 +Ijc 3I1r0=I1ra+I1rb+I1rc =xIfa/2l+3Ij0 I2ra=−ILa/2-xIfa/2l−Ija I2rb=−ILb/2 −Ijb I2rc=−ILc/2 −Ijc 3I2r0=I2ra+I2rb+I2rc =−xIfa/2l−3Ij0 となる。ここで、3Ij0=Ija+Ijb+Ijcであり、こ
れがいわゆる零相循環電流とよばれるものである。ま
た、負荷電流には零相分が含まれないから、ILa+ILb
+Ilc=0である。さらに、電源端、負荷端の両回線間
差電流、和電流についてみると、電源端では、 Isda=I1sa−I2sa=(l−x)Ifa/l−2Ija Isdb=I1sb−I2sb= −2Ijb Isdc=I1sc−I2sc= −2Ijc 3Isd0=3I1s0−3I2s0 =(l−x)Ifa/l−2・3Ij0 Issa=I1sa+I2sa=ILa+Ifa Issb=I1sb+I2sb=ILb Issc=I1sc+I2sc=ILc 3Iss0=I1s0+I2s0=Ifa 負荷端では、 Irda=I1ra−I2ra=xIfa/l+2Ija Irdb=I1rb−I2rb= +2Ijb Irdc=I1rc−I2rc= +2Ijc 3Ird0=3I1r0−3I2r0 =xIfa/l+2・3Ij0 Irsa=I1ra+I2ra=−ILa Irsb=I1rb+I2rb=−ILb Irsc=I1rc+I2rc=−ILc 3Irs0=3I1r0+3I2r0=0 となる。
Due to the above relationships, particularly in the case of a one-line ground fault, the fault current If is zero in the sound two-phase components other than the fault phase. If the above relationship is expressed in terms of each phase and zero phase, I1sa = ILa / 2 + (2l-x) Ifa / 2l-Ija I1sb = ILb in each line B1 and B2 at the power source end. / 2--Ijb I1sc = ILc / 2-Ijc 3I1s0 = I1sa + I1sb + I1sc = (2l-x) Ifa / 2l-3Ij0 I2sa = ILa / 2 + xIfa / 2l + Ija I2sb = Ila + I2s + Ic2Is + Ic2Is + Ic2Is xIfa / 2l + 3Ij0 In each line B1 and B2 at the load end, I1ra = -ILa / 2 + xIfa / 2l + Ija I1rb = -ILb / 2 + Ijb I1rc = -ILc / 2 + Ijc3I1r0 = I1ra + I1rb + I1rc2ra = Ijla / 2l + iJla / 2I + 3Ij2 / 2 -xIfa / 2l-Ija I2rb = -ILb / 2-Ijb I2rc = -ILc / 2-Ijc3I2r0 = I2ra + I2rb + I2rc = -xIfa / 2l-3Ij0. Here, 3Ij0 = Ija + Ijb + Ijc, which is a so-called zero-phase circulating current. In addition, since the load current does not include the zero phase component, ILa + ILb
+ Ilc = 0. Further, regarding the difference current between both lines at the power source end and the load end, and the sum current, at the power source end, Isda = I1sa-I2sa = (l-x) Ifa / l-2Ija Isdb = I1sb-I2sb = -2Ijb Isdc = I1sc-I2sc = -2Ijc 3Isd0 = 3I1s0-3I2s0 = (l-x) Ifa / l-2 * 3Ij0 Issa = I1sa + I2sa = ILa + Ifa Issb = I1sb + I2s0 = I2s0 = I1s0 = I1s0 = I1s0 = I1s0 = I1s0 = I1s0 I1ra-I2ra = xIfa / l + 2Ija Irdb = I1rb-I2rb = + 2Ijb Irdc = I1rc-I2rc = + 2Ijc3Ird0 = 3I1r0-3I2r0 = xIfa / Irb + Irb = Irb + Irb + Ira + I2ra1 + Ibra + I2b1Irb = I2b = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb + Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb = Irb + Irb 3Irs0 = 3I1r0 + 3I2r0 = 0.

以上に説明したように、地絡回線選択リレーへの電流入
力である、両回線間の零相差電流、或は方向地絡リレー
への電流入力である回線の零相電流には、故障電流と、
零相循環電流とが含まれることになり、高抵抗接地系平
行2回線送電線における一線地絡故障時の故障電流はか
なり小さいのであるから、零相循環電流の大きさ、位相
によっては、地絡リレーの検出感度の低下、方向誤認
(誤って地絡故障発生回線以外の健全回線を誤遮断する
こと)等の不都合を発生させることがある。
As explained above, the zero-phase difference current between both lines, which is the current input to the ground fault line selection relay, or the zero-phase current of the line which is the current input to the direction ground fault relay, is ,
Since the zero-phase circulating current is included, and the fault current at the time of a one-line ground fault in a high-resistance grounding parallel two-line transmission line is quite small, it may depend on the magnitude and phase of the zero-phase circulating current. This may cause inconveniences such as a decrease in the detection sensitivity of the fault relay and a wrong direction (erroneously disconnecting a healthy line other than the line in which the ground fault has occurred).

以下に従来リレーのもつ問題点を、先ず主保護リレーで
ある地絡回線選択リレーについて詳細に説明する。
The problems of the conventional relay will be described in detail below first with respect to the ground fault line selection relay which is the main protection relay.

電源端の零相和電流には零相循環電流が含まれず、故障
電流のみとなることに着目して、零相和電流を入力とす
る方向地絡リレーを地絡回線選択リレーと組合せて使用
することも行なわれている。しかし、この場合には、負
荷端の零相和電流が0となるので、電源端にしか使用す
ることができず、負荷端においては、電流感度を低下さ
せる、或は時限をもたせ、電源端が先行遮断され、循環
電流が消滅した後に時限遮断させる等、地絡回線選択リ
レーの高感度、高速動作といった本来の性能を犠牲にし
た使用をせざるを得ない実情にある。
Focusing on the fact that the zero-phase sum current at the power supply end does not include the zero-phase circulating current, but only the fault current, the direction ground fault relay that inputs the zero-phase sum current is used in combination with the ground fault line selection relay. Things are also being done. However, in this case, since the zero-phase sum current at the load end becomes 0, it can be used only at the power supply end, and at the load end, the current sensitivity is lowered, or a time limit is set to reduce the current sensitivity. However, there is no choice but to use the ground-fault line selection relay at the expense of its original performance such as high sensitivity and high-speed operation, such as a time-off after the circulating current has disappeared due to the preceding interruption.

さらには、循環電流が、鉄塔構造と平行2回線送電線
(A)の電流のみに基いて定まり、高抵抗接地系平行2
回線送電線(B)の故障の有無には無関係であることに
着目して、高抵抗接地系平行2回線送電線(B)の故障
前後における零相循環電流が一定であるという仮定の下
に、故障前後の零相差電流の変化量から故障電流分を抽
出することも考えられるが、例えば、高抵抗接地系平行
2回線送電線(B)、或は多端子系統であって、1端子
が先行遮断された場合等の如く、故障発生時に零相循環
電流が変化する場合も考えられるのであるから、確実な
一線地絡故障の検出を行ない得ないという不都合があ
る。
Furthermore, the circulating current is determined only based on the current of the steel tower structure and the parallel two-line transmission line (A), and the high resistance grounding system parallel two
Paying attention to the fact that it is irrelevant to the presence or absence of a failure in the line transmission line (B), under the assumption that the zero-phase circulating current before and after the failure of the high resistance grounding parallel two-line transmission line (B) is constant. It is conceivable to extract the fault current component from the amount of change in the zero-phase difference current before and after the fault. For example, in a parallel 2-line transmission line (B) with a high resistance grounding system or in a multi-terminal system, one terminal is Since it is possible that the zero-phase circulating current changes when a failure occurs, such as when the circuit is cut off in advance, there is the inconvenience that a reliable one-line ground fault cannot be detected.

一方、後備保護リレーである方向地絡リレーは回線の零
相電流を利用しており、この零相電流にも零相循環電流
が含まれていることは先に述べたとおりである。したが
って、方向地絡リレーについても前記のような不都合を
はらんでいるといえる。
On the other hand, the directional ground fault relay, which is a backup protection relay, uses the zero-phase current of the line, and this zero-phase current also contains the zero-phase circulating current, as described above. Therefore, it can be said that the directional ground fault relay has the above-mentioned inconveniences.

即ち、地絡リレーを用いて、故障電流を確実に検出し、
確実、かつ迅速に地絡故障発生回線を遮断することは極
めて困難であった。
That is, using the ground fault relay, the fault current can be reliably detected,
It was extremely difficult to reliably and quickly shut off the ground fault circuit.

<目的> この発明は上記の問題点に鑑みてなされたものであり、
零相循環電流を除去して故障電流のみを地絡リレーに印
加することができる、地絡リレーの零相循環電流補償方
法を提供することを目的としている。
<Purpose> The present invention has been made in view of the above problems,
An object of the present invention is to provide a zero-phase circulating current compensating method for a ground fault relay, which can remove a zero-phase circulating current and apply only a fault current to the ground fault relay.

<構成> 上記の目的を達成するための、第1の発明の零相循環電
流補償方法は、健全2相の回線間差電流のうち、進み相
の回線間差電流から、遅れ相の回線間差電流を120度
進相させたものを減算し、鉄塔構造、導体配置等の固定
ファクタにより定まる定数を乗算して零相循環電流補償
値を算出し、回線間零相差電流から上記零相循環電流補
償値を減算することにより、故障電流を得るものであ
り、上記定数としては、鉄塔構造、導体配置等の固定フ
ァクタにより定まるものが使用される。
<Structure> The zero-phase circulating current compensating method of the first aspect of the invention for achieving the above-mentioned object is a method of changing the line-to-line differential current of the leading phase to the line-to-line of the delayed phase among the line-to-line differential currents of sound two phases. The difference current advanced by 120 degrees is subtracted, and the zero-phase circulation current compensation value is calculated by multiplying by a constant determined by a fixed factor such as the tower structure and conductor arrangement, and the zero-phase circulation current is calculated from the line-to-line zero-phase difference current. The fault current is obtained by subtracting the current compensation value. As the constant, one determined by a fixed factor such as the steel tower structure and conductor arrangement is used.

即ち、既に説明したように、一線地絡故障時の回線間の
各相の差電流、零相差電流は、電源端、負荷端の区別な
く、一般に、 Ida=Ifa+Ija Idb= Ijb Idc= Ijc 3Id0=Ifa+3Ij0 の形で表現されることが理解される。なぜならば、(l-
x)Ifa/lを新しくIfa,−2Ijaを新しくIja等と考え
ればよいからである。この式からもわかるように、各相
差電流には負荷電流が含まれていない。しかるに、平行
2回線送電線に不平衡分岐がある場合や、多端子系で一
端が先行遮断された場合等には、各相差電流には負荷電
流が含まれるものとなる。したがって、上式は、さらに
一般的に、 Ida=ILa+Ifa+Ija Idb=ILb+ Ijb Idc=ILc+ Ijc 3Id0=Ida+Idb+Idc = Ifa+3Ij0 の形で表現できることになる。負荷電流には零相分が含
まれないことより、ILa+ILb+ILc=0は明らかであ
る。
That is, as described above, the difference current and zero phase difference current of each phase between lines at the time of a one-line ground fault are generally Ida = Ifa + Ija Idb = Ijb Idc = Ijc 3Id0 = without distinction between the power source end and the load end. It is understood that it is expressed in the form Ifa + 3Ij0. Because (l-
This is because xfa Ifa / l can be considered as new Ifa and -2Ija as new Ija and the like. As can be seen from this equation, each phase difference current does not include the load current. However, when there is an unbalanced branch in the parallel two-line power transmission line or when one end of the multi-terminal system is cut off in advance, each phase difference current includes a load current. Therefore, the above equation can be more generally expressed as Ida = ILa + Ifa + Ija Idb = ILb + Ijb Idc = ILc + Ijc 3Id0 = Ida + Idb + Idc = Ifa + 3Ij0. Since the load current does not include the zero phase component, it is clear that ILa + ILb + ILc = 0.

この表現式は、先に示した一線地絡故障時の各相電流、
零相電流の表現とも一致することも理解されよう。した
がって、以下に説明する零相循環電流補償方法は、回線
間の零相差電流を入力とする地絡回路選択リレーのみな
らず、回線の零相電流を入力とする方向地絡リレーにも
適用できることはいうまでもない。
This expression is for each phase current at the time of the one-line ground fault shown above,
It will also be appreciated that it is consistent with the expression for zero-phase current. Therefore, the zero-phase circulating current compensation method described below can be applied not only to a ground fault circuit selection relay that inputs a zero-phase difference current between lines, but also to a direction ground fault relay that inputs a zero-phase current of a line. Needless to say.

また、上式は、a相一線地絡故障時を示すものであり、
b相の場合にはb相差電流に、c相の場合にはc相差電
流に故障電流分が現れることになるが、以下ではa相一
線故障時について説明する。これは何ら一般性を失うも
のではない。
In addition, the above equation shows the case of a phase 1 line ground fault,
A failure current component appears in the b-phase difference current in the case of the b-phase and in the c-phase difference current in the case of the c-phase, but the case of the a-phase single-line failure will be described below. This does not lose any generality.

この発明の目的は、零相循環電流を補償し、故障電流を
得ようとするものであるが、この発明は、故障相以外の
健全2相に含まれる循環電流に着目し、これらに基い
て、零相差電流に含まれる零相循環電流を補償し、故障
電流を抽出しようとするものである。
An object of the present invention is to compensate a zero-phase circulating current and obtain a fault current. However, the present invention focuses on circulating currents included in two healthy phases other than the fault phase, and based on these, , The zero-phase circulating current included in the zero-phase difference current is compensated to extract the fault current.

負荷電流ILa,ILb,ILcは大半が正相分であることを
考慮すれば、α=−1/2+j√3/2とし、ILa=IL,I
Lb=α2IL,ILc=αILと表現できる。したがっ
て、 Ida= IL+Ifa+Ija Idb=α2IL +Ijb Idc= αIL +Ijc 3Id0= Ifa+3Ij0 と表現できる。ここで、3Ij0が、いわゆる零相循環電
流であり、3Ij0=Ija+Ijb+Ijcである。
Considering that most of the load currents ILa, ILb, and ILc are positive phase components, α = −1 / 2 + j√3 / 2, and ILa = IL, I
It can be expressed as Lb = α 2 IL and ILc = α IL. Therefore, it can be expressed as Ida = IL + Ifa + Ija Idb = α 2 IL + Ijb Idc = αIL + Ijc 3Id0 = Ifa + 3Ij0. Here, 3Ij0 is a so-called zero-phase circulating current, and 3Ij0 = Ija + Ijb + Ijc.

また、循環電流Ija,Ijb,Ijcについても既に説明し
たが、一般的に で表されると考えてよい。なぜなら、(L/2l)I1,(L/2
l)I2を新しいI1,I2と考えればよいからである。
さらに上式は第4図に示すように、導体配置により、第
4図Aにおいては、 第4図Bにおいては、 第4図Cにおいては、 となることが容易に証明され、一般的に、 として表現することができる。
Also, the circulating currents Ija, Ijb, Ijc have already been described, but in general You can think of it as Because (L / 2l) I1, (L / 2
l) I2 should be considered as new I1 and I2.
Furthermore, the above formula is as shown in FIG. In FIG. 4B, In FIG. 4C, Is easily proved to be Can be expressed as

また、本件発明者が鋭意努力の結果、零相循環電流3I
j0=Ija+Ijb+Ijcが、健全2相のうち、進み相の回
線間差電流の循環電流成分から、遅れ相の回線間差電流
の循環電流成分を120度進相させたものを減算したも
の(Ijb−αIjc)に基いて、極めて高精度に近似でき
ることを見出した。
In addition, as a result of diligent efforts by the present inventor, the zero-phase circulating current 3I
j0 = Ija + Ijb + Ijc is obtained by subtracting 120 degrees of the circulating current component of the lagging phase difference current from the circulating current component of the leading phase difference current of the two healthy phases (Ijb- Based on αIjc), we have found that it can be approximated with extremely high accuracy.

そして、(Ijb−αIjc)は、Idb−αIdc=(α2
L+Ijb)−α(αIL+Ijc)=Ijb−αIjcの関係
で示されるように、健全2相の差電流Idb,Idcから算
出することができるのであるから、測定することができ
る健全2相の差電流Idb,Idcに基いて、零相循環電流
ときわめて高精度に近似する補償電流値を得ることがで
きる。
Then, (Ijb-αIjc) is Idb-αIdc = (α 2 I
L + Ijb) −α (αIL + Ijc) = Ijb−αIjc As shown by the relationship, since it can be calculated from the difference currents Idb and Idc of the healthy two phases, it is possible to measure the difference current Idb of the healthy two phases. , Idc, it is possible to obtain a compensation current value that is very accurately approximated to the zero-phase circulating current.

即ち、ΔIj=3Ij0−k(Ijb−αIjc)とすれば、
この式を展開することにより、 ΔIj=Ija+(1−k)Ijb+(1+αk)Ijc が得られる。
That is, if ΔIj = 3Ij0-k (Ijb-αIjc),
By expanding this equation, ΔIj = Ija + (1-k) Ijb + (1 + αk) Ijc is obtained.

ここで、循環電流Ija,Ijb,Ijcは、起誘導系の健全
運転時、故障時、あるいは欠相時に大きく変化する起誘
導系の電流の影響を受けて、その大きさ、位相が大きく
変化するものであるが、循環電流Ija,Ijb,Ijcの大
きさ、位相に影響されることなく、ΔIj=0を成立さ
せる定数kが得られれば、零相循環電流3Ij0を正確
に算出することができる。
Here, the circulating currents Ija, Ijb, and Ijc greatly change in magnitude and phase under the influence of the current of the induction system which changes significantly during normal operation of the induction system, failure, or phase loss. However, if the constant k that satisfies ΔIj = 0 is obtained without being affected by the magnitude and phase of the circulating currents Ija, Ijb, and Ijc, the zero-phase circulating current 3I j0 can be accurately calculated. it can.

一方、循環電流Ijは、既に説明したように、 で表されるから、 となる。但し、ka=−(k21−αk31),ka′=(k11
+k21+k31),kb=−(k22−αk32),kb′=(k
12+k22+k32),kc=−(k23−αk33),kc′=
(k13+k23+k33)である。
On the other hand, the circulating current Ij is, as described above, Is expressed as Becomes However, ka = − (k21−αk31), ka ′ = (k11
+ K21 + k31), kb =-(k22-αk32), kb '= (k
12 + k22 + k32), kc =-(k23-αk33), kc '=
(K13 + k23 + k33).

したがって、ΔIj=(kaK+ka′)I12a+(kbK+k
b′)I12b+(kcK+kc′)I12cとなる。
Therefore, ΔIj = (kaK + ka ') I12a + (kbK + k
b ') I12b + (kcK + kc') I12c.

ここで、起誘導系の電流I12a,I12b,I12cの大き
さ、位相に左右されることなく、ΔIj=0とするため
には、係数kaK+ka′,kbK+kb′,kcK+kc′を全て
0とする定数kを求めればよいのであるが、これら全て
の係数を0とする定数kが存在することは期待できな
い。そこで、例えば、最小2乗法の原理に従って、 f(k)=lkaK+ka′l2+lkbK+kb′l2+lkcK
+kc′l2を最小にするkを選択することにより、零相
循環電流に近似する補償値 k(Ijb−αIjc)を算出することができる。
Here, in order to set ΔIj = 0 without being influenced by the magnitude and phase of the currents I12a, I12b, I12c of the induction system, a constant k that sets all the coefficients kaK + ka ', kbK + kb', kcK + kc 'to 0. However, it cannot be expected that there is a constant k that sets all the coefficients to 0. Therefore, for example, according to the principle of least squares, f (k) = lkaK + ka′l 2 + lkbK + kb′l 2 + lkcK
By selecting k that minimizes + kc′l 2 , the compensation value k (I jb −αI jc ) that approximates the zero-phase circulating current can be calculated.

ここで、上記最小2乗法の原理に従って選択される定数
kは、 k=−(ka′+kb′+kc′)/(lkal2+l
kbl2+lkcl2)で表される。但し、,,
は、それぞれka,kb,kcの共役複素数を示す。そして、上
記行列(Zs-Zm)-1(Z31-Z41)の各要素kijは、後述する実
施例に示すように、実数と考えてよいのであるから、上
記定数kは、 k=Σ(k2i+k3i/2)・(k1i+k2i+k3i)/Σ
(k2i2+k2ik3i+k3i2)+jΣ(√3/2)k3i(k1
i+k2i+k3i)/Σ(k2i2+k2ik3i+k3i2)で表
されることになる。但し、Σはi=1〜3までの加算を
示す。
Here, the constant k selected according to the principle of the least squares method is k =-(ka '+ kb' + kc ') / (lkal 2 +1
It is represented by kbl 2 + lkcl 2 ). However,
Are the conjugate complex numbers of ka, kb, and kc, respectively. Further, each element kij of the matrix (Zs-Zm) -1 (Z31-Z41) can be considered as a real number, as will be described later in an embodiment, and thus the constant k is k = Σ (k2i + k3i / 2) ・ (k1i + k2i + k3i) / Σ
(K2i 2 + k2i k3i + k3i 2 ) + jΣ (√3 / 2) k3i (k1
i + k2i + k3i) / Σ ( will be represented by k2i 2 + k2ik3i + k3i 2) . However, Σ indicates addition up to i = 1 to 3.

以上はa相一線地絡故障時について説明したが、b相一
線地絡故障時には、 Ida= IL +Ija Idb=α2IL+Ifd+Ijb Idc=αIL +Ijc 3Id0= Ifb+3Ij0 の関係から 3Ij0=Ija+Ijb+Ijc=k(Ijc−αIja)とする
定数kを算出すればよく、 Σ(k2i+k3i/2)・(k1i+k2i+k3i)/Σ(k2i
2+k2ik3i+k3i2)+jΣ(√3/2)k3i(k1i+k2
i+k3i)/Σ(k2i2+k2ik3i+k3i2) の式において、k1i,k2i,k3iをそれぞれk2i,k3
i,k1iとサイクリックに置換することにより、算出す
ることができる。
In the above, the case of the a-phase one-line ground fault has been described, but in the case of the b-phase one-line ground fault, Id = IL + Ija Idb = α 2 IL + Ifd + Ijb Idc = αIL + Ijc 3Id0 = Ifb + 3Ij0 3Ij0 = Ija + Ijb = Ijc = Ijc = Ijb = Ijc = Ijc ) (K2i + k3i / 2) · (k1i + k2i + k3i) / Σ (k2i
2 + k2i k3i + k3i 2 ) + jΣ (√3 / 2) k3i (k1i + k2
i + k3i) / Σ (k2i 2 + k2i k3i + k3i 2 ) where k1i, k2i, k3i are replaced by k2i, k3, respectively.
It can be calculated by cyclically replacing i and k1i.

また、c相一線地絡故障時についても、同様にして算出
することができる。
In addition, the same can be calculated for a c-phase one-line ground fault.

以上の説明から明らかなように、零相循環電流に近似す
る補償値k(Ijb−αIjc)を算出するための定数
kは、起誘導系の電流には全く左右されず、鉄塔構造、
導体配置等の固定ファクタのみにより定まる上記行列(Z
s-Zm)-1(Z31-Z41)の各要素kijのみに基いて決定するこ
とができるものであり、後述する実施例からも明らかに
なるように、零相循環電流を高精度で補償することがで
き、真の故障電流を高精度で得ることができ、補償後の
値によって地絡回線選択リレーを駆動すれば、一線地絡
故障発生回線のみを、正確、かつ迅速に選択遮断するこ
とができる。
As is clear from the above description, the constant k for calculating the compensation value k (I jb −αI jc ) that approximates the zero-phase circulating current is not affected by the current in the induction system at all, and the tower structure,
The above matrix (Z
s-Zm) -1 (Z31-Z41) can be determined only based on each element kij, and as will be apparent from the examples described later, zero-phase circulating current is compensated with high accuracy. It is possible to obtain a true fault current with high accuracy, and if the ground fault line selection relay is driven by the value after compensation, it is possible to selectively and quickly cut off only the line that has a ground fault fault. You can

さらに、この方法は、電源端、負荷端の区別、或は多端
子系へも適用でき、故障発生時に循環電流の変化があっ
ても何ら影響されることのない方法である。
Furthermore, this method can be applied to a power source end and a load end, or can be applied to a multi-terminal system, and even if there is a change in circulating current when a failure occurs, it is not affected at all.

上記の目的を達成するための、第2の発明の零相循環電
流補償方法は、健全2相の電流のうち、進み相の電流か
ら、遅れ相の電流を120度進相させたものを減算し、
鉄塔構造、導体配置等の固定ファクタにより定まる定数
を乗算して零相循環電流補償値を算出し、零相電流から
上記零相循環電流補償値を減算することにより、故障電
流を得て方向地絡リレーを駆動するものであり、上記定
数としては、鉄塔構造、導体配置等の固定ファクタによ
り定まるものが使用される。
The zero-phase circulating current compensating method of the second aspect of the invention for achieving the above object is to subtract, from the currents of the normal two phases, the currents of the lagging phase by 120 degrees from the currents of the leading phase. Then
Calculate the zero-phase circulating current compensation value by multiplying the constant determined by fixed factors such as the steel tower structure and conductor layout, and subtract the above zero-phase circulating current compensation value from the zero-phase current to obtain the fault current and obtain the direction It drives a relay relay, and as the above constant, one determined by a fixed factor such as a steel tower structure and conductor arrangement is used.

この場合にも上記と同様に真の故障電流に近似させるこ
とができる値を得ることができ、得られた値によって方
向地絡リレーを駆動することができる。
In this case as well, a value that can be approximated to the true fault current can be obtained in the same manner as above, and the direction ground fault relay can be driven by the obtained value.

<実施例> 以下、実施例を示す添付図面によって詳細に説明する。<Example> Hereinafter, detailed description will be given with reference to the accompanying drawings illustrating an example.

第3図は高抵抗接地系平行2回線送電線(B)に異系統
の平行2回線送電線(A)が併架されている状態を示す
図であり、高抵抗接地系平行2回線送電線(B)の電源
側を、Y−Y結線の主変圧器(T1)を介して電源(図示せ
ず)に接続しているとともに、負荷側を、Y−Δ結線の
主変圧器(T2)を介して負荷(図示せず)に接続してい
る。そして、上記主変圧器(T1)の二次側の中性点を抵抗
(R)を介して接地している。
FIG. 3 is a diagram showing a state in which a parallel 2-circuit power transmission line (A) of a different system is laid on the parallel 2-circuit power transmission line (B) of a high-resistance ground system. The power supply side of (B) is connected to a power supply (not shown) through a main transformer (T1) of Y-Y connection, and the load side is connected to a main transformer (T2) of Y-Δ connection. Is connected to a load (not shown). Then, the neutral point on the secondary side of the main transformer (T1) is grounded via a resistor (R).

第5図は高抵抗接地系平行2回線送電線(B)の電源側
における各相差電流、および零相差電流を得るための一
般的な回路構成であり、第1回線B1の各相毎にカレン
トトランス(CT1)(CT2)(CT3)を取付けているとともに、
第2回線B2の各相毎にカレントトランス(CT4)(CT5)(C
T6)を取付けている。そして、両回線B1,B2の各相
毎のカレントトランスを、互に差回路に接続し、カレン
トトランス(CT4)(CT5)(CT6)の一方の端子を、零相差電
流検出用の補助カレントトランス(CT7)の一端に一点接
続し、カレントトランス(CT1)(CT2)(CT3)の一方の端子
を、それぞれ各相差電流検出用の補助カレントトランス
(CT8)(CT9)(CT10)の各々の一端に接続し、補助カレント
トランス(CT8)(CT9)(CT10)の各々の他端を、上記カレン
トトランス(CT7)の他端に一点接続している。
FIG. 5 shows a general circuit configuration for obtaining each phase difference current and zero phase difference current on the power source side of the high resistance grounding parallel two-line transmission line (B). The current is supplied to each phase of the first line B1. While installing the transformer (CT1) (CT2) (CT3),
Current transformer (CT4) (CT5) (C for each phase of the second line B2
T6) is installed. Then, the current transformers for each phase of both lines B1 and B2 are connected to each other in a difference circuit, and one terminal of the current transformers (CT4) (CT5) (CT6) is connected to an auxiliary current transformer for detecting a zero phase difference current. (CT7) is connected to one end, and one terminal of the current transformer (CT1) (CT2) (CT3) is connected to each auxiliary current transformer for phase difference current detection.
(CT8) (CT9) (CT10) connected to each one end, auxiliary current transformer (CT8) (CT9) (CT10) each end connected to the other end of the current transformer (CT7) There is.

第2図は平行2回線送電線(A)と高抵抗接地系平行2
回線送電線(B)とを同一の鉄塔(P)に併架した状態
を示す図であり、鉄塔(P)の上部に平行2回線送電線
(A)を架設し、下部に高抵抗接地系平行2回線送電線
(B)を架設している。そして、同図中A,B,C,D
は、それぞれ鉄塔の高さ、導体間隔等が異なる送電線鉄
塔の例を示している。
Fig. 2 shows parallel 2-circuit transmission line (A) and high-resistance grounding system parallel 2
It is a figure which shows the state which put together the line transmission line (B) and the same steel tower (P), the parallel 2-line transmission line (A) is installed in the upper part of a steel tower (P), and a high resistance earthing | grounding system is provided in the lower part. A parallel two-line power transmission line (B) is installed. And in the figure, A, B, C, D
Shows an example of transmission line towers with different tower heights and conductor intervals.

第1図は循環電流対策を施すためのブロック図であり、
カレントトランス(CT8)(CT9)(CT10)の出力信号を、零相
循環電流補償値算出回路(1)(2)(3)に印加し、零相循環
電流補償値算出回路(1)(2)(3)の出力信号を選択回路(4)
に印加するとともに、地絡相判別回路(5)からの出力信
号を選択回路(4)に印加することにより、健全2相の回
線間差電流を入力とする零相循環電流補償値算出回路か
らの出力信号のみを選択的に出力する。そして、補助カ
レントトランス(CT7)の出力信号、および選択回路(4)か
らの出力信号を零相循環電流補償回路(6)に印加して、
零相差電流から零相循環電流補償値を減算し、真の故障
電流に高精度で近似できる値を得ることができる。但
し、上記零相循環電流補償値算出回路(1)(2)(3)は、各
2相の回線間差電流に基いて、 k1(Ida−αIdb),k2(Idb−αIdc), k3(Idc−αIda)を算出するものである。
FIG. 1 is a block diagram for taking measures against circulating current,
Apply the output signal of the current transformer (CT8) (CT9) (CT10) to the zero-phase circulating current compensation value calculation circuit (1) (2) (3), and the zero-phase circulating current compensation value calculation circuit (1) (2) ) (3) output signal selection circuit (4)
To the selection circuit (4) by applying the output signal from the ground fault phase discrimination circuit (5) to the selection circuit (4), Only the output signal of is selectively output. Then, the output signal of the auxiliary current transformer (CT7) and the output signal from the selection circuit (4) are applied to the zero-phase circulating current compensation circuit (6),
By subtracting the zero-phase circulating current compensation value from the zero-phase difference current, a value that can be approximated to the true fault current with high accuracy can be obtained. However, the zero-phase circulating current compensation value calculation circuits (1) (2) (3) are based on the differential current between the lines of each two phases, and k1 (Ida-αIdb), k2 (Idb-αIdc), k3 ( Idc-αIda) is calculated.

さらに詳細に説明すると、第2図Aは、平行2回線送電
線(A)の各回線A1,A2が互に逆向きに架設され、
高さ方向に隣合う導体の間隔が8.5m、水平方向に隣
合う導体の間隔が11.0m、高抵抗接地系平行2回線
送電線(B)の各回線B1,B2が同じ向きに架設さ
れ、高さ方向に隣合う導体の間隔が3.5m、水平方向
に隣合う導体の間隔が、上から順に10.0m,10.
5m,11.0m、平行2回線送電線(A)と高抵抗接
地系平行2回線送電線(B)との高さ方向の間隔が8.
0mにそれぞれ設定されている場合である。
More specifically, FIG. 2A shows that the lines A1 and A2 of the parallel two-line power transmission line (A) are installed in opposite directions to each other.
The conductors adjacent to each other in the height direction have an interval of 8.5 m, the conductors adjacent to each other in the horizontal direction have an interval of 11.0 m, and the lines B1 and B2 of the high resistance grounding parallel two-line power transmission line (B) are installed in the same direction. The distance between adjacent conductors in the height direction is 3.5 m, and the distance between adjacent conductors in the horizontal direction is 10.0 m, 10.
5 m, 11.0 m, and the distance between the parallel 2-line transmission line (A) and the high resistance grounding parallel 2-line transmission line (B) in the height direction is 8.
This is the case when each is set to 0 m.

この場合の行列(Z31-Z41)および (Zs-Zm)-1(Z31-Z41)を以下に示すが、行列の各要素は以
下の計算式に従って与えられることが知られている。
The matrices (Z31-Z41) and (Zs-Zm) -1 (Z31-Z41) in this case are shown below, and it is known that each element of the matrix is given according to the following calculation formula.

の4つの行列について、Zsの対角要素Zaa,Zb
b,Zccは、導体の自己インピーダンスを示し、抵抗
分は殆ど無視でき、 Zmm=jω×[0.10+0.4605 log10(2He/r)] で与えられる。
Diagonal elements Zaa and Zb of the four matrices of
b and Zcc represent the self-impedance of the conductor, and the resistance component can be almost ignored, and is given by Zmm = jω × [0.10 + 0.4605 log 10 (2He / r)].

Zaa,Zbb,Zcc以外の要素Zmnは導体m,n
間の相互インダクタンスを示し、 Zmn=jω×[0.05+0.4605 log10(2He/Dmn)]で与えら
れる。
Elements Zmn other than Zaa, Zbb, and Zcc are conductors m and n.
The mutual inductance between them is given by Zmn = jω × [0.05 + 0.4605 log 10 (2He / Dmn)].

これらの式において、 ω=2π,:系統周波数(Hz) r:導体の半径(m) Dmn=導体m,n間の距離(m) He:等価対地深さ(m) を示すものであり、Zmm,Zmnの単位はmΩ/kmで
ある。
In these formulas, ω = 2π ,: system frequency (Hz) r: conductor radius (m) Dmn = distance between conductors m and n (m) He: equivalent ground depth (m), The unit of Zmm and Zmn is mΩ / km.

これらの計算式に従って、 と計算される。According to these formulas, Is calculated.

また、 (但し、高抵抗接地系平行2回線送電線(B)の線種を
ACSR610sq、導体半径が17.1mm、2He=
800mとしている。)と計算されるから、 となる。
Also, (However, the line type of the high resistance grounding parallel two-line transmission line (B) is ACSR610 sq , the conductor radius is 17.1 mm, 2He =
It is 800m. ) Is calculated, Becomes

以上の計算結果に基いて、b相一線地絡故障時の、零相
循環電流補償演算で用いる定数kを算出する。
Based on the above calculation results, the constant k used in the zero-phase circulating current compensation calculation at the time of the b-phase one-line ground fault is calculated.

上記係数ka=−(0.617-1.047α)×10-2,ka′=2.3
76×10-2,kb=−(1.045-2.237α)×10-2,kb′
=4.622×10-2,kc=−(2.052-6.806α)×10-2
kc′=12.050×10-2となるので、これら係数に基い
て、k=1.513ej46.3°として算出することができる。
The coefficient ka = − (0.617-1.047α) × 10 −2 , ka ′ = 2.3
76 × 10 -2 , kb =-(1.045-2.237α) × 10 -2 , kb '
= 4.622 × 10 -2 , kc =-(2.052-6.806α) × 10 -2 ,
Since kc ′ = 12.050 × 10 −2 , k = 1.513e j46.3 ° can be calculated based on these coefficients.

上記kを用いて得られる零相循環電流補償値k(Ijc−
αIja)と、真の零相循環電流3Ij0=Ija+Ijb+I
jcとを比較してみると、 3Ij0=Ija+Ijb+Ijc =(k11+k21+k31)I12a +(k12+k22+k32)I12b +(k13+k23+k33)I12c =(2.376I12a+4.622I12b+12.050I12c)×10-2
あり、 k(Ijc−αIja)=k(k31−αk11)I12a +k(k32−αk12)I12b +k(k33−αk13)I12c =(2.205ej7.8°×I12a +4.395ej4.5°×I12b +12.153ej0.9°×I12c ×10-2であるから、起誘導系の各電流I
12a,I12b,I12cの係数が精度よく一致している。実
際に、起誘導系の負荷電流を例えば2000Aとすれ
ば、I12a=2000,I12b=2000α2,I12c=2
000αであるから、3Ij0=175.4ej132.8°A, k(Ijc−αIja)=178.8ej128.9°Aとなり、きわめ
て高精度で零相循環電流を補償し、真の故障電流にきわ
めて近似する故障電流を得て、誤動作の恐れなく地絡リ
レーを作動させることができる。
Zero-phase circulating current compensation value k (Ijc-
αIja) and true zero-phase circulating current 3Ij0 = Ija + Ijb + I
Comparing and jc, a 3Ij0 = Ija + Ijb + Ijc = (k11 + k21 + k31) I12a + (k12 + k22 + k32) I12b + (k13 + k23 + k33) I12c = (2.376I12a + 4.622I12b + 12.050I12c) × 10 -2, k (Ijc-αIja ) = K (k31−αk11) I12a + k (k32−αk12) I12b + k (k33−αk13) I12c = (2.205e j7.8 ° × I12a + 4.395e j4.5 ° × I12b + 12.153e j0.9 ° × Since I12c × 10 -2 , each current I of the induction system is
The coefficients of 12a, I12b, and I12c match with high precision. Actually, if the load current of the induction system is 2000 A, for example, I12a = 2000, I12b = 2000α 2 , I12c = 2
Since it is 000α, 3Ij0 = 175.4e j132.8 ° A, k (Ijc-αIja) = 178.8e j128.9 ° A, which compensates the zero-phase circulating current with extremely high accuracy and is extremely close to the true fault current. It is possible to operate the ground fault relay without a fear of malfunction by obtaining a fault current that causes

第2図B〜Dの鉄塔構造については、特に例示しない
が、上記第2図Aの鉄塔構造の場合と同様にして、定数
kを算出することができ、この定数kに基いて零相循環
電流補償値を算出し、零相差電流から減算することによ
り、故障電流を得て、誤動作の恐れなく地絡リレーを作
動させることができる。
The steel tower structure of FIGS. 2B to 2D is not particularly illustrated, but the constant k can be calculated in the same manner as in the case of the steel tower structure of FIG. 2A, and the zero-phase circulation is based on the constant k. By calculating the current compensation value and subtracting it from the zero phase difference current, it is possible to obtain a fault current and operate the ground fault relay without fear of malfunction.

<効果> 以上のようにこの発明は、電源端、負荷端の区別なく、
多端子系統においても、健全2相の電流に基いて、簡単
な四則演算を行なうのみで真の故障電流に高精度で近似
する電流を得ることができ、この電流のみによって地絡
リレーを作動させ、正確、かつ迅速に地絡故障発生回線
を遮断することができるという特有の効果を奏する。
<Effect> As described above, according to the present invention, there is no distinction between the power source end and the load end.
Even in a multi-terminal system, a current that is close to the true fault current can be obtained with high accuracy by performing simple four arithmetic operations based on the sound currents in two phases, and the ground fault relay is activated only by this current. The unique effect that the ground fault occurrence line can be cut off accurately and promptly is achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は循環電流対策を施すためのブロック図、 第2図は鉄塔構造、導体配置を示す図、 第3図は平行2回線送電線(A)と高抵抗接地系平行2
回線送電線(B)との関係を示す図、 第4図は平行2回線送電線(A)と高抵抗接地系平行2
回線送電線(B)とが併架された状態を示す図、 第5図は各相差電流を得るための電気的接続を示す図。 (1)(2)(3)…零相循環電流補償値算出回路、 (4)…選択回路、(6)…零相循環電流補償回路、 (B)…高抵抗接地系平行2回線送電線
Fig. 1 is a block diagram for taking measures against circulating current, Fig. 2 is a diagram showing a tower structure and conductor arrangement, and Fig. 3 is a parallel two-line transmission line (A) and a high resistance grounding system parallel 2
FIG. 4 is a diagram showing the relationship with the line transmission line (B), and FIG. 4 is a parallel 2 line transmission line (A) and a high resistance grounding system parallel 2
FIG. 5 is a diagram showing a state in which a line power transmission line (B) is placed side by side, and FIG. 5 is a diagram showing electrical connection for obtaining each phase difference current. (1) (2) (3) ... Zero-phase circulating current compensation value calculation circuit, (4) ... Selecting circuit, (6) ... Zero-phase circulating current compensating circuit, (B) ... High resistance grounding parallel 2-line transmission line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1の送電線と併架される高抵抗
接地系平行2回線送電線に一線地絡が発生したことを検
出して、地絡故障発生回線を選択遮断させる地絡回線選
択リレーにおいて、 鉄塔構造、導体配置等の固定ファクタにより定まる定数
(k,k,k)に定数(k)を乗じ、その乗じた結
果に鉄塔構造、導体配置等の固定ファクタにより定まる
他の定数(k′,k′,k′)を加算した値をそ
れぞれ最小とするような定数(k)が存在することに着目
して、前記定数(k)を所定の方法により求め、 一線(例えばa相)地絡故障発生時に健全2相(b,c
相)の回線間差電流(Idb,Idc)のうち、進み相
の回線間差電流(Idb)から、遅れ相の回線間差電流
を120度進相させたもの(αIdc)を減算し、この
減算した電流に前記定数(k)を乗算して零相循環電流補
償値(3Ij0)を算出し、回線間零相差電流(3I
d0)から上記零相循環電流補償値(3Ij0)を減算
することにより、真の故障電流(Ifa)を得ることを
特徴とする地絡回線選択リレーの零相循環電流補償方
法。
1. A ground fault line selection for selectively disconnecting a ground fault failure line by detecting that a one-line ground fault has occurred in a high resistance grounding parallel two-line power transmission line that is installed together with at least one transmission line. In relays, constants (k a , k b , k c ) determined by fixed factors such as steel tower structure and conductor arrangement are multiplied by a constant (k), and the result of multiplication is determined by fixed factors such as steel tower structure and conductor arrangement. The constant (k) is found by a predetermined method, paying attention to the fact that there is a constant (k) that minimizes the sum of the constants (k a ′, k b ′, k c ′) of , 1 line (for example, a phase) When a ground fault occurs, a sound 2 phase (b, c
Line between difference current (I db phase) of the I dc), the process proceeds phase line between differential current (I db), the line between the difference current delay phase that is 120 DoSusumusho the (.alpha. I dc) The subtracted current is multiplied by the constant (k) to calculate the zero phase circulating current compensation value (3I j0 ), and the line zero phase difference current (3I j
A zero-phase circulating current compensating method for a ground fault line selection relay, wherein a true fault current (I fa ) is obtained by subtracting the zero-phase circulating current compensation value (3I j0 ) from d0 ).
【請求項2】前記定数(k)を求める所定の方法は、最小
2乗法である特許請求の範囲第1項記載の地絡回線選択
リレーの零相循環電流補償方法。
2. The zero-phase circulating current compensating method for a ground fault line selection relay according to claim 1, wherein the predetermined method for obtaining the constant (k) is a least square method.
【請求項3】少なくとも1の送電線と併架される高抵抗
接地系平行2回線送電線に一線地絡が発生したことを検
出して、送電線を遮断させる方向地絡リレーにおいて、 鉄塔構造、導体配置等の固定ファクタにより定まる定数
(k,k,k)に定数(k)を乗じ、その乗じた結
果に鉄塔構造、導体配置等の固定ファクタにより定まる
他の定数(k′,k′,k′)を加算した値をそ
れぞれ最小とするような定数(k)が存在することに着目
して、前記定数(k)を所定の方法により求め、 一線(例えばa相)地絡故障発生時に健全2相(b,c
相)の回線間差電流(Idb,Idc)のうち、進み相
の回線間差電流(Idb)から、遅れ相の回線間差電流
を120度進相させたもの(αIdc)を減算し、この
減算した電流に前記定数(k)を乗算して零相循環電流補
償値(3Ij0)を算出し、回線間零相差電流(3I
d0)から上記零相循環電流補償値(3Ij0)を減算
することにより、真の故障電流(Ifa)を得ることを
特徴とする方向地絡リレーの零相循環電流補償方法。
3. A directional ground fault relay that cuts off a transmission line by detecting the occurrence of a single-line ground fault in a high resistance grounding parallel two-line transmission line that is laid together with at least one transmission line. , A constant (k a , k b , k c ) determined by a fixed factor such as conductor arrangement is multiplied by a constant (k), and the result of multiplication is another constant (k a determined by a fixed factor such as steel tower structure and conductor arrangement). Paying attention to the fact that there is a constant (k) that minimizes the sum of the values of ′, k b ′ and k c ′), the constant (k) is obtained by a predetermined method, and a straight line (for example, a Phase) Sound 2 phase (b, c
Line between difference current (I db phase) of the I dc), the process proceeds phase line between differential current (I db), the line between the difference current delay phase that is 120 DoSusumusho the (.alpha. I dc) The subtracted current is multiplied by the constant (k) to calculate the zero phase circulating current compensation value (3I j0 ), and the line zero phase difference current (3I j
A zero-phase circulating current compensation method for a directional ground fault relay, characterized in that a true fault current (I fa ) is obtained by subtracting the zero-phase circulating current compensation value (3I j0 ) from d0 ).
【請求項4】前記定数(k)を求める所定の方法は、最小
2乗法である特許請求の範囲第3項記載の方向地絡リレ
ーの零相循環電流補償方法。
4. The zero-phase circulating current compensating method for a directional ground fault relay according to claim 3, wherein the predetermined method for obtaining the constant (k) is a least square method.
JP60019727A 1985-02-04 1985-02-04 Zero-phase circulating current compensation method for ground relay Expired - Lifetime JPH0667105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019727A JPH0667105B2 (en) 1985-02-04 1985-02-04 Zero-phase circulating current compensation method for ground relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019727A JPH0667105B2 (en) 1985-02-04 1985-02-04 Zero-phase circulating current compensation method for ground relay

Publications (2)

Publication Number Publication Date
JPS61180523A JPS61180523A (en) 1986-08-13
JPH0667105B2 true JPH0667105B2 (en) 1994-08-24

Family

ID=12007341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019727A Expired - Lifetime JPH0667105B2 (en) 1985-02-04 1985-02-04 Zero-phase circulating current compensation method for ground relay

Country Status (1)

Country Link
JP (1) JPH0667105B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119621A (en) * 1981-01-14 1982-07-26 Mitsubishi Electric Corp Zero phase circulation current remedy ground-fault protection relay unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119621A (en) * 1981-01-14 1982-07-26 Mitsubishi Electric Corp Zero phase circulation current remedy ground-fault protection relay unit

Also Published As

Publication number Publication date
JPS61180523A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
US4841405A (en) Protective relaying apparatus for providing fault-resistance correction
US6721671B2 (en) Directional element to determine faults on ungrounded power systems
EP2730023B1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
JP5770903B1 (en) Leakage current calculation device and leakage current calculation method
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
US2242950A (en) Protective relaying equipment
JPH0667105B2 (en) Zero-phase circulating current compensation method for ground relay
US2479345A (en) Single-element distance ground relay
CN108254650A (en) A kind of quick distinguishing method of substation busbars singlephase earth fault
Shaban et al. Induced sheath voltage in double circuit
CN103346535A (en) Doubling differential protection method for converter transformer
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JPH0667104B2 (en) Zero-phase circulating current compensation method for ground fault line selection relay
US11962140B2 (en) Coordination of protective elements in an electric power system
US1953108A (en) Differential relaying system
Hou Comparing Fault Resistance Coverage of Different Distribution System Grounding Methods
US20240072533A1 (en) Fault detection in shunt capacitor banks
JPH0528053B2 (en)
JPS62255880A (en) Discriminating method for accident section of power cable
SU551748A2 (en) Short circuit protection device
Rainin et al. Complex criteria of operation of automatic low-voltage circuit breakers
JPS61147732A (en) Countermeasure for circulating current of earth leading circuit selection relay
Escalante De Leon Protection and communication for a 230 kV transmission line using a pilot overreaching transfer tripping (POTT) scheme
JPS61147734A (en) Countermeasure for circulating current of earth leading relay