JPH06667B2 - Boride-aluminum nitride ceramic materials - Google Patents

Boride-aluminum nitride ceramic materials

Info

Publication number
JPH06667B2
JPH06667B2 JP63280176A JP28017688A JPH06667B2 JP H06667 B2 JPH06667 B2 JP H06667B2 JP 63280176 A JP63280176 A JP 63280176A JP 28017688 A JP28017688 A JP 28017688A JP H06667 B2 JPH06667 B2 JP H06667B2
Authority
JP
Japan
Prior art keywords
boride
powder
weight
added
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63280176A
Other languages
Japanese (ja)
Other versions
JPH02129074A (en
Inventor
忠彦 渡辺
一久 菖蒲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63280176A priority Critical patent/JPH06667B2/en
Publication of JPH02129074A publication Critical patent/JPH02129074A/en
Publication of JPH06667B2 publication Critical patent/JPH06667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的特性および耐食特性に優れたホウ化物
−窒化物アルミニウム系セラミックスに関するものであ
る。
TECHNICAL FIELD The present invention relates to a boride-nitride aluminum-based ceramics excellent in mechanical properties and corrosion resistance.

[従来の技術] ホウ化金属、特にTiB2、ZrB2、HfB2は硬度が高く、ろう付
加工ができる上、溶融金属に対し耐食性があるため、耐
摩材料や溶融金属用電極等の多くの用途に用いられると
期待されている。
[Prior Art] Metal boride, especially TiB 2 , ZrB 2 , and HfB 2 have high hardness, can be brazed, and have corrosion resistance against molten metal. Therefore, many materials such as wear-resistant materials and electrodes for molten metal can be used. It is expected to be used for various purposes.

しかしながら、これらホウ化金属の殆どは融点が高く、
難焼結性であり、高密度、高強度焼結体を得るため種々
の低融点物質を添加することにより、高密度化を計って
いる(例えば特公昭59−3997号公報)。そのた
め、ホウ化金属が本来有する優れた特性を損なってしま
う。また焼結体中に低融点物質がそのまま残留し、この
残留部分が溶融金属に接触し、そこから腐食が生じると
いう問題があった。さらに、低融点物質を添加しない場
合(例えば特公昭63−201067)には、焼結温度
が高くなり、そのために粒成長を引き起こし、耐食性は
優れているものの機械的強度の低い焼結体しか得られな
いという問題があった。
However, most of these metal borides have high melting points,
It is difficult to sinter, and high density and high strength sintered bodies are obtained by adding various low melting point substances (for example, Japanese Patent Publication No. 59-3997). Therefore, the excellent characteristics originally possessed by the metal boride are impaired. Further, there is a problem that the low melting point substance remains as it is in the sintered body, and the remaining portion comes into contact with the molten metal, causing corrosion. Furthermore, when a low melting point substance is not added (for example, Japanese Examined Patent Publication No. 63-201067), the sintering temperature becomes high, which causes grain growth, resulting in only a sintered body having excellent corrosion resistance but low mechanical strength. There was a problem that I could not.

[発明が解決しようとする問題点] 本発明は、上記低融点物質添加法の製品特性の低下とい
う問題を解決し、高密度、高強度かつ耐食性に優れた焼
結体を提供すること、および焼結温度を低くし、粒成長
を抑制することにより耐食性も優れかつ機械的性質にも
優れた焼結体を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention provides a sintered body that solves the problem of deterioration of product characteristics in the above-mentioned low melting point substance addition method and has high density, high strength, and excellent corrosion resistance, and It is an object of the present invention to provide a sintered body having excellent corrosion resistance and mechanical properties by lowering the sintering temperature and suppressing grain growth.

[問題点を解決するための手段] 本発明の上記目的は、下記の如き手段を採用することで
達成できる。
[Means for Solving Problems] The above object of the present invention can be achieved by adopting the following means.

MB2型ホウ化物、M2B5型ホウ化物、MB型ホウ化物の中か
ら選ばれた2種以上にAlNを全重量に対し1〜45重量
%添加した混合粉末を焼結するかあるいは、上記混合粉
末に、さらにTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mnの内の1種
以上の金属粉末を全重量に対し0.1〜50重量%添加
した粉末を焼結することにより得られる。
Sinter a mixed powder in which 1 to 45 wt% of AlN is added to two or more selected from MB 2 type boride, M 2 B 5 type boride and MB type boride, or A powder obtained by further adding 0.1 to 50% by weight to the total weight of one or more metal powders of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Mn to the mixed powder. It is obtained by sintering.

AlNの添加量が1%未満か45%を越えると、焼結体の
機械的特性は悪くなる。
If the amount of AlN added is less than 1% or more than 45%, the mechanical properties of the sintered body deteriorate.

また、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mnの金属粉の添加量
が0.1%未満もしくは50%を越えると耐熱性や、耐
食性が悪くなる。
Further, if the addition amount of the metal powder of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn is less than 0.1% or more than 50%, heat resistance and corrosion resistance are deteriorated.

本発明の材料を得るための焼結では、原料として用いる
粉末の酸化を防ぐために、非酸化性雰囲気であることが
好ましく、又、用いる原料粉末の粒径は出来る限り微細
である方がよく、通常4μm以下の平均粒子径、より好
ましくは1μm以下の平均粒径の粉末とする。
In the sintering for obtaining the material of the present invention, in order to prevent the oxidation of the powder used as the raw material, a non-oxidizing atmosphere is preferable, and the particle size of the raw material powder used is preferably as fine as possible, Usually, the powder has an average particle diameter of 4 μm or less, more preferably 1 μm or less.

次に、本発明の代表的な方法について述べる。Next, a typical method of the present invention will be described.

まず所定の混合比に混合した粉末組成物を黒鉛型に入
れ、真空中で、黒鉛パンチに200kg/cm2の荷重をかけ
ながら、1500〜1800℃で60分程度焼結するホ
ットプレス法を用いることができる。
First, a hot press method is used in which a powder composition mixed in a predetermined mixing ratio is put into a graphite mold and sintered in a vacuum at a temperature of 1500 to 1800 ° C. for about 60 minutes while applying a load of 200 kg / cm 2 to a graphite punch. be able to.

また、別の方法としては、普通焼結法やH.I.P法を採用
しても容易に十分な緻密な焼結体が得られる。
Further, as another method, a sufficiently dense sintered body can be easily obtained even if the ordinary sintering method or the HIP method is adopted.

[実施例1] 次に実施例を示し、本発明方法を更に詳述する。Example 1 Next, the method of the present invention will be described in more detail with reference to examples.

TiB2粉末に全重量に対し5重量%のTaB2を混合した粉末
を基本成分とし、それに全重量の15重量%のAlN粉末
を混合し、この混合粉末を黒鉛型に充填した後、真空中
で、200kg/cm2のダイ圧力のもとで1600℃に60
分間焼結した。得られた焼結体の空隙はほとんど見られ
なかった。またその抵折力、ビッカース硬度および破壊
靱性値K1Cは、それぞれ、90kg/mm2、Hv2400およ
び4MPam1/2であった。なお、TiB2粉末のみを同一条件
でホットプレス焼結しても、空隙の多い焼結体が得られ
るが、抗折力試験片に加工することは不可能なほど、多
孔質であった。その他の実施例を表1に示す。表1に示
すように、2種のホウ化物にAlNを添加した焼結体は、
低融点金属を加えなくとも焼結温度1600℃という低
い温度で緻密化し、しかも抗折力の高いことがわかる。
The basic component is a powder obtained by mixing 5 wt% of TaB 2 with the TiB 2 powder, and 15 wt% of the total weight of AlN powder is mixed with the powder. At a die pressure of 200 kg / cm 2 at 1600 ° C 60
Sintered for minutes. The voids in the obtained sintered body were hardly seen. Further, its bending strength, Vickers hardness and fracture toughness value K 1C were 90 kg / mm 2 , Hv 2400 and 4 MPam 1/2 , respectively. Even if only TiB 2 powder was hot-press sintered under the same conditions, a sintered body with many voids was obtained, but it was so porous that it could not be processed into a transverse rupture strength test piece. Other examples are shown in Table 1. As shown in Table 1, the sintered body obtained by adding AlN to two types of borides is
It can be seen that even if the low melting point metal is not added, the densification is performed at a low temperature of 1600 ° C. and the bending strength is high.

[実施例2] TiB2粉末に全重量の5%のTiB粉末と15重量%のAlN粉
末を加えた混合粉末を基本とし、それに全重量の3重量
%のTi粉末を混合し、1500℃で60分間、真空中で
ホットプレスした。その結果を表2、No.2に示す。そ
の他、金属粉末を加えた例を表2に示している。
Example 2 Based on a mixed powder obtained by adding 5% by weight of TiB powder and 15% by weight of AlN powder to TiB 2 powder, 3% by weight of Ti powder by weight was mixed, and the mixture was heated at 1500 ° C. Hot pressed in vacuum for 60 minutes. The results are shown in Table 2, No.2. In addition, Table 2 shows an example in which metal powder is added.

なお、表1と表2に実施例を示しているが、実施例に示
されないホウ化物の内MB2型とM2B5型ホウ化物の特性はT
iB2と同一の焼結特性を有するし、MB型ホウ化物はTiBや
MoBと同一の性質を有することが判明している。さら
に、Ti、Zr以外の添加金属もTi、Zrと同様にホウ化物と反
応し、焼結時における緻密化を容易にすることは明らか
である。
Although Examples are shown in Tables 1 and 2, among the boride compounds not shown in the examples, the characteristics of MB 2 type and M 2 B 5 type boride are T
It has the same sintering characteristics as iB 2 and MB-type boride has TiB and
It has been found to have the same properties as MoB. Further, it is apparent that the added metals other than Ti and Zr react with borides in the same manner as Ti and Zr to facilitate densification during sintering.

又表2に示すように、高融点金属を添加した系にさらに
AlNを定量添加すると焼結温度か低下するばかりでな
く、抗折力も改善されることがわかる。
Further, as shown in Table 2, in the system to which the high melting point metal is added,
It can be seen that the addition of AlN in a fixed amount not only lowers the sintering temperature but also improves the transverse rupture strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】TiB2、ZrB2、HfB2、VB2、NbB2、TaB2、CrB2、Mo
B2、MnB2、AlB2のMB2型ホウ化物、W2B5、Mo2B5のM2B5型ホ
ウ化物、TiB、ZrB、HfB、VB、NbB、TaB、CrB、MoB、MnBのMB型ホ
ウ化物の中から選ばれた2種以上にAlNを全重量に対し
1〜45重量%添加した混合粉末を焼結して得られるセ
ラミックス材料。
1. TiB 2 , ZrB 2 , HfB 2 , VB 2 , NbB 2 , TaB 2 , CrB 2 , Mo
B 2, MnB 2, AlB 2 of MB 2 type boride, W 2 B 5, Mo 2 M 2 B 5 type borides of B 5, TiB, ZrB, HfB , VB, NbB, TaB, CrB, MoB, MnB A ceramic material obtained by sintering a mixed powder in which 1 to 45% by weight of AlN is added to two or more kinds selected from the above MB type boride.
【請求項2】請求項1に記載のMB2ホウ化物、M2B5型ホ
ウ化物、MB型ホウ化物の中から選ばれた2種以上の粉末
にAlNを全重量に対し1〜45重量%添加した粉末を基
本成分とし、これにTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mnの内
の1種以上の金属粉末を全重量に対し0.1〜50重量
%添加した粉末を焼結して得られるセラミックス材料。
2. The powder of two or more kinds selected from the MB 2 boride, M 2 B 5 type boride and MB type boride according to claim 1, and AlN in an amount of 1 to 45% by weight based on the total weight. % Added powder as a basic component, and 0.1 to 50 weight% of the total weight of one or more metal powders of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Mn. % A ceramic material obtained by sintering the added powder.
JP63280176A 1988-11-04 1988-11-04 Boride-aluminum nitride ceramic materials Expired - Lifetime JPH06667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280176A JPH06667B2 (en) 1988-11-04 1988-11-04 Boride-aluminum nitride ceramic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280176A JPH06667B2 (en) 1988-11-04 1988-11-04 Boride-aluminum nitride ceramic materials

Publications (2)

Publication Number Publication Date
JPH02129074A JPH02129074A (en) 1990-05-17
JPH06667B2 true JPH06667B2 (en) 1994-01-05

Family

ID=17621358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280176A Expired - Lifetime JPH06667B2 (en) 1988-11-04 1988-11-04 Boride-aluminum nitride ceramic materials

Country Status (1)

Country Link
JP (1) JPH06667B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268314A (en) * 1979-12-21 1981-05-19 Union Carbide Corporation High density refractory composites and method of making
JPS63201067A (en) * 1987-02-13 1988-08-19 工業技術院長 Manufacture of metal diboride base ceramics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
特開昭63−201067JP,A)

Also Published As

Publication number Publication date
JPH02129074A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
EP0349740B1 (en) Complex boride cermets
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JP2005281084A (en) Sintered compact and manufacturing method therefor
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPH06667B2 (en) Boride-aluminum nitride ceramic materials
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP3290685B2 (en) Silicon nitride based sintered body
JPH069264A (en) Wc-al2o3 sintered composite compact
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JPH0632658A (en) Silicon nitride-based sintered compact
JPS63218584A (en) Ceramic sintered body
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JPH0711041B2 (en) Ceramic particle reinforced titanium composite material
JP2665755B2 (en) Method for producing β-sialon composite ceramics
JPH03290355A (en) Al2o3-wc-based high-strength-high-toughness sintered material
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPS62260775A (en) Titanium carbide-hafnium-boride metal base ceramic material(2)
JPS5845170A (en) High strength titanium nitride boride metal composite ceramics
JP2681602B2 (en) Method for manufacturing titanium carbonitride sintered body
JPH0672056B2 (en) Method for producing fiber-reinforced ceramics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term