JP2681602B2 - Method for manufacturing titanium carbonitride sintered body - Google Patents

Method for manufacturing titanium carbonitride sintered body

Info

Publication number
JP2681602B2
JP2681602B2 JP5274791A JP27479193A JP2681602B2 JP 2681602 B2 JP2681602 B2 JP 2681602B2 JP 5274791 A JP5274791 A JP 5274791A JP 27479193 A JP27479193 A JP 27479193A JP 2681602 B2 JP2681602 B2 JP 2681602B2
Authority
JP
Japan
Prior art keywords
sintered body
titanium carbonitride
powder
sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5274791A
Other languages
Japanese (ja)
Other versions
JPH07109534A (en
Inventor
秀典 山岡
信久 黒野
啓章 小鷹
肇 斎藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP5274791A priority Critical patent/JP2681602B2/en
Publication of JPH07109534A publication Critical patent/JPH07109534A/en
Application granted granted Critical
Publication of JP2681602B2 publication Critical patent/JP2681602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度、高靭性、電気
伝導性に優れた炭窒化チタン焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium carbonitride sintered body having high strength, high toughness and excellent electric conductivity.

【0002】[0002]

【従来の技術】炭窒化チタン{Ti(C,N)}は、炭
化チタン(TiC)と窒化チタン(TiN)の全率型の
固溶体であり、高硬度、高融点、耐熱衝撃性を有し、か
つ電気の良導体である。
2. Description of the Related Art Titanium carbonitride {Ti (C, N)} is a solid solution of titanium carbide (TiC) and titanium nitride (TiN) and has high hardness, high melting point and thermal shock resistance. It is also a good conductor of electricity.

【0003】従来、導電性セラミックス素材を母材とす
る焼結体が、例えば加熱炉用圧延ロールに使用されてい
る。このような焼結体の代表的なものは、硼化チタン
(TiB2 ),硼化ジルコニウム(ZrB2 ),Ti
(C,N)などを母材とするものである。
Conventionally, a sintered body containing a conductive ceramic material as a base material has been used, for example, in a rolling roll for a heating furnace. Typical of such sintered bodies are titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), Ti.
The base material is (C, N) or the like.

【0004】Ti(C,N)を母材とする焼結体に関し
ては、Ti(C,N)−Mo2 C−Ni系,−WC−N
i系などのサーメットとして、「粉体および粉末冶金、
第38巻第2号」などの技術文献に記載されている。
Regarding a sintered body having Ti (C, N) as a base material, Ti (C, N) -Mo 2 C-Ni system, -WC-N
As cermets such as i-type, "Powder and powder metallurgy,
Vol. 38, No. 2 "and the like.

【0005】[0005]

【発明が解決しようとする課題】前述のTi(C,N)
系サーメットにおいては、Ti(C,N)粒を取りまく
金属相の層が厚いので、それらの熱膨張差によるTi
(C,N)粒に対する破壊応力が大きくなり、焼結体の
機械的強度が低下するという問題が生じる。 本発明
は、高強度かつ高靭性であり、しかも電気伝導性に優れ
た炭窒化チタン焼結体の製造方法を提供することを目的
とする。
The above-mentioned Ti (C, N)
In the cermet-based cermet, since the layer of the metal phase surrounding the Ti (C, N) grains is thick, Ti due to the difference in thermal expansion between them.
The fracture stress for the (C, N) grains increases, and the mechanical strength of the sintered body decreases. It is an object of the present invention to provide a method for producing a titanium carbonitride sintered body which has high strength and high toughness and is excellent in electric conductivity.

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明は、炭窒化チタン粉70〜95重量%にス
テンレス鋼粉5〜30重量%を湿式混合して得られたス
ラリーを乾燥してから、造粒し、その造粒粉を加圧成形
して得られた圧粉体を1400〜1700℃の焼成温度
で無加圧焼成することを特徴とする炭窒化チタン焼結体
の製造方法を要旨とする。
In order to solve the above-mentioned problems, the present invention provides a slurry obtained by wet mixing 70 to 95% by weight of titanium carbonitride powder with 5 to 30% by weight of stainless steel powder. A titanium carbonitride sintered body characterized by being dried, then granulated, and the green compact obtained by pressure molding the granulated powder is pressurelessly fired at a firing temperature of 1400 to 1700 ° C. The manufacturing method will be summarized.

【0007】[0007]

【実施例】本発明の好適な実施例による炭窒化チタン焼
結体の製造方法について説明する。
EXAMPLE A method for manufacturing a titanium carbonitride sintered body according to a preferred embodiment of the present invention will be described.

【0008】炭窒化チタン{Ti(Cx ,N1-x )}の
粉体70〜95重量%に助剤としてSUS316L等の
ステンレス鋼の粉体5〜30重量%を添加し、それらを
結合剤添加のトルエン溶液中で湿式混合して、スラリー
を得る。そのスラリーを乾燥してから、造粒した後、3
00MPaの圧力でCIP成形(冷間静水圧成形)して
圧粉体を得る。その圧粉体を水素ガス(H2 )あるいは
窒素ガス(N2 )の雰囲気で1400℃〜1700℃の
範囲内の焼成温度で1時間常圧焼結し、炭窒化チタンの
焼結体を得る。
Titanium carbonitride {Ti (C x , N 1 -x )} powder 70 to 95% by weight is added with stainless steel powder 5 to 30% by weight such as SUS316L as an auxiliary agent, and these are combined. Wet mix in a toluene solution with agents to obtain a slurry. After drying the slurry and granulating, 3
CIP molding (cold isostatic pressing) is performed at a pressure of 00 MPa to obtain a green compact. The green compact is subjected to atmospheric pressure sintering in a hydrogen gas (H 2 ) or nitrogen gas (N 2 ) atmosphere at a firing temperature in the range of 1400 ° C. to 1700 ° C. for 1 hour to obtain a titanium carbonitride sintered body. .

【0009】前述のように助剤添加率は5〜30重量%
の範囲内であり、好ましくは10〜20重量%の範囲内
である。それによって、焼結体の機械的強度、破壊靭性
が良好になる。助剤添加率が5重量%未満の場合は、焼
結性が悪く、30重量%より多い場合は、機械的強度が
低下する。
As described above, the auxiliary agent addition rate is 5 to 30% by weight.
It is within the range of, and preferably within the range of 10 to 20% by weight. This improves the mechanical strength and fracture toughness of the sintered body. If the additive amount is less than 5% by weight, the sinterability is poor, and if it is more than 30% by weight, the mechanical strength is lowered.

【0010】焼成温度が1400℃未満の場合は焼結せ
ず、1700℃より高い場合は機械的強度、破壊靭性が
低下する。
If the firing temperature is less than 1400 ° C., sintering will not occur, and if it is higher than 1700 ° C., the mechanical strength and fracture toughness will decrease.

【0011】結合剤添加のトルエン溶液は、結合剤とし
てステアリン酸およびパラフィンをトルエン溶液に添加
したものである。ステアリン酸およびパラフィンのそれ
ぞれの量は、混合粉に対して外率0.5〜5重量%であ
る。
The binder-added toluene solution is obtained by adding stearic acid and paraffin as a binder to a toluene solution. The amount of each of stearic acid and paraffin is 0.5 to 5% by weight based on the mixed powder.

【0012】炭窒化チタン{Ti(Cx ,N1-x )}に
おいては、炭化チタン(TiC)に窒素(N)が固溶し
ているので、炭化チタン焼結体(TiC焼結体)、窒化
チタン焼結体(TiN焼結体)と比較して、焼結時にお
けるTi(C,N)の粒成長が抑制されるとともに、焼
結性が向上する。したがって、常圧焼結に最適なTi
(Cx ,N1-x )(0<x<1)の組成、つまりCおよ
びNの固溶量を選択することによって、炭窒化チタン焼
結体の焼結性、機械的特性を改善できる。Ti(Cx
1-x )は、CとNの固溶量の比がX:1−Xであるこ
とを示す。xの値は0<x<1の範囲であり、好ましく
は0.5〜0.7である。
In titanium carbonitride {Ti (C x , N 1 -x )}, nitrogen (N) is solid-solved in titanium carbide (TiC), so titanium carbide sintered body (TiC sintered body) Compared with a titanium nitride sintered body (TiN sintered body), grain growth of Ti (C, N) during sintering is suppressed and sinterability is improved. Therefore, the optimum Ti for normal pressure sintering
The sinterability and mechanical properties of the titanium carbonitride sintered body can be improved by selecting the composition of (C x , N 1-x ) (0 <x <1), that is, the amount of solid solution of C and N. . Ti (C x ,
N 1-x ) indicates that the ratio of the solid solution amounts of C and N is X: 1-X. The value of x is in the range of 0 <x <1, and preferably 0.5 to 0.7.

【0013】このように、焼結性の良い組成を選定し、
この組成のTi(C,N)粉体に対する濡れ性の良好な
液相助剤としてSUS316Lの粉体を添加することに
より、粒成長を抑制し、焼成後の焼結体において、Ti
(C,N)とSUS316Lの粒界にそれらの固溶体を
形成して、Ti(C,N)と金属相の熱膨張差を緩和さ
せる。それによって、焼結体における粒子間の接合強
度、機械的強度、破壊靭性が向上できる。
In this way, a composition having good sinterability is selected,
By adding powder of SUS316L as a liquid phase aid having good wettability to Ti (C, N) powder of this composition, grain growth is suppressed, and in the sintered body after firing, Ti
A solid solution of (C, N) and SUS316L is formed in the grain boundary to relax the difference in thermal expansion between Ti (C, N) and the metal phase. Thereby, the bonding strength between particles, mechanical strength, and fracture toughness in the sintered body can be improved.

【0014】Ti(C,N)とSUS316Lの固溶体
の形成の有無は、X線回折において焼結後Ti(C,
N)とSUS316Lの回折角がずれることで判断でき
る。
Whether or not a solid solution of Ti (C, N) and SUS316L is formed is determined by X-ray diffraction after sintering Ti (C, N).
It can be determined by the deviation of the diffraction angle between N) and SUS316L.

【0015】SUS316Lは、太平洋金属株式会社製
のステンレス鋼である。
SUS316L is stainless steel manufactured by Taiheiyo Metal Co., Ltd.

【0016】このような製造方法において、炭窒化チタ
ンをTi(C0.7 ,N0.3 )とし、助剤をSUS316
Lとし、助剤添加率を10重量%、20重量%、30重
量%の3通りに設定し、焼成温度を1500℃、155
0℃、1600℃の3通りに設定し、焼成の雰囲気を水
素ガス、窒素ガスの2通りに設定して、これらの設定の
組合せによって18個の炭窒化チタン焼結体を得た。T
i(C0.7 ,N0.3 )は、炭素(C)と窒素(N)の固
溶量の比が0.7:0.3であることを示す。
In such a manufacturing method, titanium carbonitride is Ti (C 0.7 , N 0.3 ) and the auxiliary agent is SUS316.
L, the auxiliary agent addition rate was set to three types of 10% by weight, 20% by weight, and 30% by weight, and the firing temperature was 1500 ° C., 155
The temperature was set to 0 ° C. and 1600 ° C. in three ways, the firing atmosphere was set to two ways of hydrogen gas and nitrogen gas, and 18 titanium carbonitride sintered bodies were obtained by a combination of these settings. T
i (C 0.7 , N 0.3 ) indicates that the ratio of the solid solution amount of carbon (C) and nitrogen (N) is 0.7: 0.3.

【0017】これらの焼結体について、それぞれ相対密
度、4点曲げ強度および破壊靱性を測定した。
The relative density, 4-point bending strength and fracture toughness of each of these sintered bodies were measured.

【0018】図1および図2に、相対密度と助剤添加率
の関係を示す。図3および図4に、曲げ強度と助剤添加
率の関係を示す。図5および図6に、破壊靭性と助剤添
加率の関係を示す。ただし、図1、図3、図5は、雰囲
気を水素ガスにした場合を示し、図2、図4、図6は、
雰囲気を窒素ガスにした場合を示す。図1ないし図6の
それぞれにおいて、記号△、□、○は、焼成温度150
0℃、1550℃、1600℃の場合をそれぞれプロッ
トしたものである。
1 and 2 show the relationship between the relative density and the auxiliary agent addition rate. 3 and 4 show the relationship between bending strength and auxiliary agent addition rate. 5 and 6 show the relationship between the fracture toughness and the additive addition rate. However, FIGS. 1, 3 and 5 show the case where the atmosphere is hydrogen gas, and FIGS. 2, 4 and 6 show
The case where the atmosphere is nitrogen gas is shown. In each of FIGS. 1 to 6, the symbols Δ, □, and ◯ are the firing temperatures of 150.
The plots are for 0 ° C., 1550 ° C. and 1600 ° C., respectively.

【0019】比較例 TiC,Ti(C0.7 ,N0.3 ),TiNそれぞれの単
味の粉体を、それぞれ前述の実施例と同様に湿式混合、
乾燥、造粒、CIP成形(300MPa)して、圧粉体
を得た。それらの圧粉体を焼成温度1900℃でアルゴ
ンの(Ar)雰囲気で常圧焼結して、TiC焼結体、T
i(C0.7 ,N0.3 )焼結体、TiN焼結体を得た。そ
れらの焼結体の特性(相対密度、曲げ強度、破壊靭性)
を表1に示す。さらに、図1ないし図6に、Ti(C
0.7 ,N0.3 )焼結体の特性を記号▽でプロットして示
す。また、これらの焼結体の破面についての走査型電子
顕微鏡(SEM)による観察結果を、図7ないし図9に
示す。
Comparative Examples TiC, Ti (C 0.7 , N 0.3 ), and TiN, respectively, were mixed by wet mixing in the same manner as in the above-mentioned Examples.
Drying, granulation, and CIP molding (300 MPa) were performed to obtain a green compact. The green compacts were sintered under normal pressure in an argon (Ar) atmosphere at a firing temperature of 1900 ° C. to obtain a TiC sintered body, T
An i (C 0.7 , N 0.3 ) sintered body and a TiN sintered body were obtained. Properties of those sintered bodies (relative density, bending strength, fracture toughness)
Are shown in Table 1. Further, in FIGS. 1 to 6, Ti (C
0.7 , N 0.3 ) The characteristics of the sintered body are plotted by the symbol ▽. 7 to 9 show the results of observing the fractured surfaces of these sintered bodies with a scanning electron microscope (SEM).

【0020】[0020]

【表1】 表1より明らかなように、TiCにNが固溶することに
よって、焼結体の相対密度、焼結性、強度、破壊靭性が
それぞれ向上する。図7ないし図9より明らかなよう
に、TiCにNが固溶することによって、Ti(C,
N)粒子の粒成長が抑制される。
[Table 1] As is clear from Table 1, the solid solution of N in TiC improves the relative density, sinterability, strength, and fracture toughness of the sintered body. As is clear from FIGS. 7 to 9, the solid solution of N in TiC results in the formation of Ti (C,
N) Grain growth of particles is suppressed.

【0021】前述の実施例による焼結性、機械的特性の
良い組成の炭窒化チタンTi(C0. 7 ,N0.3 )粉体に
助剤SUS316Lを添加した場合の焼結体において
は、比較例によるTi(C0.7 ,N0.3 )単味の焼結体
と比較して、曲げ強度や破壊靭性が大幅に向上した。例
えば、前述の実施例によれば、図3および図6に示すよ
うに、曲げ強度1100MPaの焼結体や、破壊靭性1
3.4MNm-3/2の焼結体を製造することができた。こ
の強度向上は、Ti(C,N)と金属相の粒界に固溶相
を形成することによると考察される。
The sinterability by the foregoing embodiment, the sintered body in the case of adding auxiliaries SUS316L mechanical titanium carbonitride characteristics good composition Ti (C 0. 7, N 0.3 ) powder, comparative The bending strength and fracture toughness were significantly improved as compared with the sintered body of Ti (C 0.7 , N 0.3 ) alone according to the example. For example, according to the above-mentioned embodiment, as shown in FIGS. 3 and 6, a sintered body having a bending strength of 1100 MPa and a fracture toughness 1
It was possible to produce a sintered body of 3.4MNm -3/2. It is considered that this strength improvement is due to the formation of a solid solution phase at the grain boundary between Ti (C, N) and the metal phase.

【0022】要するに、助剤SUS316Lに対して濡
れ性の良い母剤{Ti(Cx ,N1- x )}の組成をコン
トロールして、母剤粒の粒成長を制御し、Ti(C,
N)と金属相の粒界に固溶相を作り、さらに、助剤添加
率を制御することによって、金属相の厚みをコントロー
ルする。それによって、機械的特性の優れた焼結体を得
る。
In short, by controlling the composition of the base material {Ti (C x , N 1 -x )} which has good wettability with the auxiliary agent SUS316L, the grain growth of the base material grains is controlled, and Ti (C,
The solid phase is formed at the grain boundary between N) and the metal phase, and the additive rate is controlled to control the thickness of the metal phase. Thereby, a sintered body having excellent mechanical properties is obtained.

【0023】助剤SUS316Lの作用効果をより具体
的に示すために、鉄粉末との比較データを得たので、そ
れを図10〜図14に示す。その際の助剤SUS316
Lの成分はNi12.55wt%、Cr17.42wt
%、Mo2.53wt%、残部Feからなるものであっ
て、鉄粉末は99.99wt%のものを使用した。焼成
条件は、Ti(C,N)−Fe系が1600℃、1時間
であり、Ti(C,N)−SUS316L系が1550
℃、1時間であった。図10〜図14より明らかなよう
に、それぞれ相対密度、曲げ強度、破壊靭性、硬度及び
耐酸性に関して、助材としてSUS316Lが鉄よりも
優れている。
In order to more specifically show the action and effect of the auxiliary agent SUS316L, comparative data with iron powder were obtained, which are shown in FIGS. 10 to 14. Auxiliary agent SUS316 in that case
The components of L are Ni 12.55 wt% and Cr 17.42 wt%
%, Mo 2.53 wt%, balance Fe, and the iron powder used was 99.99 wt%. The firing conditions are 1600 ° C. for 1 hour for Ti (C, N) -Fe system and 1550 for Ti (C, N) -SUS316L system.
It was 1 ° C. for 1 hour. As is clear from FIGS. 10 to 14, SUS316L as an auxiliary material is superior to iron in terms of relative density, bending strength, fracture toughness, hardness and acid resistance.

【0024】本発明は、以上説明した実施例に限定され
るものではない。例をあげると、SUS304L、SU
S317L、SUS410L、SUS416L、SUS
430Lである。
The present invention is not limited to the embodiments described above. For example, SUS304L, SU
S317L, SUS410L, SUS416L, SUS
It is 430L.

【0025】また、トルエン溶液による湿式混合に限ら
ず、その他の溶液による湿式混合を採用できる。
Further, not only wet mixing with a toluene solution but wet mixing with another solution can be adopted.

【0026】また、結合剤は、パラフィンおよびステア
リン酸に限らず、その他の結合剤を採用できる。
The binder is not limited to paraffin and stearic acid, and other binders can be used.

【0027】[0027]

【発明の効果】本発明によれば、高強度かつ高靭性であ
り、しかも電気伝導性に優れた炭窒化チタン焼結体を製
造することができる。
According to the present invention, a titanium carbonitride sintered body having high strength and high toughness and excellent electric conductivity can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の相対密度と助剤添加率の関
係を示すグラフ。
FIG. 1 is a graph showing the relationship between the relative density of a titanium carbonitride sintered body according to an example of the present invention sintered in an atmosphere of hydrogen gas and the auxiliary agent addition rate.

【図2】窒素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の相対密度と助剤添加率の関
係を示すグラフ。
FIG. 2 is a graph showing the relationship between the relative density and the additive ratio of the titanium carbonitride sintered bodies according to the examples of the present invention sintered in a nitrogen gas atmosphere.

【図3】水素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の曲げ強度と助剤添加率の関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the bending strength and the additive addition rate of the titanium carbonitride sintered bodies according to the examples of the present invention, which were sintered in an atmosphere of hydrogen gas.

【図4】窒素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の曲げ強度と助剤添加率の関
係を示すグラフ。
FIG. 4 is a graph showing the relationship between the bending strength and the additive addition rate of the titanium carbonitride sintered bodies according to the examples of the present invention sintered in an atmosphere of nitrogen gas.

【図5】水素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の破壊靭性と助剤添加率の関
係を示すグラフ。
FIG. 5 is a graph showing the relationship between the fracture toughness and the additive addition rate of titanium carbonitride sintered bodies according to the examples of the present invention, which were sintered in an atmosphere of hydrogen gas.

【図6】窒素ガスの雰囲気中で焼結した本発明の実施例
による炭窒化チタン焼結体の破壊靭性と助剤添加率の関
係を示すグラフ。
FIG. 6 is a graph showing the relationship between the fracture toughness and the additive ratio of the titanium carbonitride sintered bodies according to the examples of the present invention sintered in an atmosphere of nitrogen gas.

【図7】炭化チタン焼結体の破面を1500倍に拡大し
て示す図。
FIG. 7 is a diagram showing a fractured surface of a titanium carbide sintered body at a magnification of 1500 times.

【図8】炭窒化チタン焼結体の破面を1500倍に拡大
して示す図。
FIG. 8 is a diagram showing a fractured surface of a titanium carbonitride sintered body at a magnification of 1500 times.

【図9】窒化チタン焼結体の破面を1500倍に拡大し
て示す図。
FIG. 9 is a diagram showing a fractured surface of a titanium nitride sintered body at a magnification of 1500 times.

【図10】SUS316Lおよび鉄の粉末を助剤とした
Ti(C,N)焼結体の相対密度と助剤添加量の関係を
示すグラフ。
FIG. 10 is a graph showing the relationship between the relative density of a Ti (C, N) sintered body using SUS316L and iron powder as an auxiliary agent and the additive amount.

【図11】SUS316Lおよび鉄の粉末を助剤とした
Ti(C,N)焼結体の曲げ強度と助剤添加量の関係を
示すグラフ。
FIG. 11 is a graph showing the relationship between the bending strength and the additive amount of a Ti (C, N) sintered body using SUS316L and iron powder as an auxiliary agent.

【図12】SUS316Lおよび鉄の粉末を助剤とした
Ti(C,N)焼結体の破壊靭性と助剤添加量の関係を
示すグラフ。
FIG. 12 is a graph showing the relationship between the fracture toughness of a Ti (C, N) sintered body using SUS316L and iron powder as an additive and the additive amount of the additive.

【図13】SUS316Lおよび鉄の粉末を助剤とした
Ti(C,N)焼結体の硬度と助剤添加量の関係を示す
グラフ。
FIG. 13 is a graph showing the relationship between the hardness of a Ti (C, N) sintered body using SUS316L and iron powder as an auxiliary agent and the amount of the auxiliary agent added.

【図14】耐酸性とくに重量減少率と浸漬時間の関係を
示すグラフ。
FIG. 14 is a graph showing the relationship between acid resistance, particularly the weight loss rate, and immersion time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小鷹 啓章 愛知県名古屋市港区築三町1丁目11番地 株式会社エス・ティー・ケー・セラミ ックス研究所内 (72)発明者 斎藤 肇 愛知県名古屋市港区築三町1丁目11番地 株式会社エス・ティー・ケー・セラミ ックス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keisho Kotaka 1-1-11 Tsukisan-cho, Minato-ku, Nagoya City, Aichi Prefecture STK Ceramics Laboratory Co., Ltd. (72) Inventor Hajime Saito Nagoya City, Aichi Prefecture 1-11 Tsukisancho, Minato-ku STC Ceramics Research Institute Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭窒化チタン粉70〜95重量%にステ
ンレス鋼粉5〜30重量%を湿式混合して得られたスラ
リーを乾燥してから、造粒し、その造粒粉を加圧成形し
て得られた圧粉体を1400〜1700℃の焼成温度で
無加圧焼成することを特徴とする炭窒化チタン焼結体の
製造方法。
1. A slurry obtained by wet mixing 70 to 95% by weight of titanium carbonitride powder with 5 to 30% by weight of stainless steel powder is dried, then granulated, and the granulated powder is pressure-molded. A method for producing a titanium carbonitride sintered body, comprising subjecting the green compact thus obtained to pressureless firing at a firing temperature of 1400 to 1700 ° C.
JP5274791A 1993-10-07 1993-10-07 Method for manufacturing titanium carbonitride sintered body Expired - Fee Related JP2681602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274791A JP2681602B2 (en) 1993-10-07 1993-10-07 Method for manufacturing titanium carbonitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274791A JP2681602B2 (en) 1993-10-07 1993-10-07 Method for manufacturing titanium carbonitride sintered body

Publications (2)

Publication Number Publication Date
JPH07109534A JPH07109534A (en) 1995-04-25
JP2681602B2 true JP2681602B2 (en) 1997-11-26

Family

ID=17546614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274791A Expired - Fee Related JP2681602B2 (en) 1993-10-07 1993-10-07 Method for manufacturing titanium carbonitride sintered body

Country Status (1)

Country Link
JP (1) JP2681602B2 (en)

Also Published As

Publication number Publication date
JPH07109534A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
GB2093481A (en) Sintered high density refractory compositions
EP0349740B1 (en) Complex boride cermets
CN113373364A (en) Particle-reinforced refractory high-entropy composite material and preparation method thereof
JPS5991685A (en) Ceramic heater
EP0170889B1 (en) Zrb2 composite sintered material
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JP2681602B2 (en) Method for manufacturing titanium carbonitride sintered body
EP0174463A1 (en) Process for the production of heat and wear-resistant ceramic materials, product of the process and starting material composition for use in the process
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
KR100321939B1 (en) Titanium diboride sintered body with silicon nitride as a sintering aid and method for manufacture thereof
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
JPS60215575A (en) Manufacture of silicon nitride sintered body
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH06330220A (en) Cemented carbide
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP2000515481A (en) Method for producing molded body composed of ceramic composite structure
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
AU645721B2 (en) Process for manufacturing ceramic-metal composites
KR100396009B1 (en) High hardness titanium carbonitride based cermets and manufacturing method thereof
JPS6310115B2 (en)
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees