JPH0666690A - Analysis of dissolved gas - Google Patents

Analysis of dissolved gas

Info

Publication number
JPH0666690A
JPH0666690A JP4216812A JP21681292A JPH0666690A JP H0666690 A JPH0666690 A JP H0666690A JP 4216812 A JP4216812 A JP 4216812A JP 21681292 A JP21681292 A JP 21681292A JP H0666690 A JPH0666690 A JP H0666690A
Authority
JP
Japan
Prior art keywords
gas
dissolved gas
feed pump
dissolved
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4216812A
Other languages
Japanese (ja)
Other versions
JPH0715431B2 (en
Inventor
Yosuke Eguchi
洋介 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP4216812A priority Critical patent/JPH0715431B2/en
Publication of JPH0666690A publication Critical patent/JPH0666690A/en
Publication of JPH0715431B2 publication Critical patent/JPH0715431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • G01N33/2841Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel gas in oil, e.g. hydrogen in insulating oil

Abstract

PURPOSE:To obtaing a method for analyzing dissolved gas accurately with high reproducibility through a simple apparatus requiring no vacuum unit. CONSTITUTION:In the method for analyzing dissolved gas, liquid containing dissolved gas to be measured is dripped, in thin film state, on the inner wall of a drip wall tower 1 by means of a liquid feed pump 4 while simultaneously carrier gas is fed oppositely to, or in parallel with, the dripping liquid flow from the bottom or the head of the tower 1 by means of a gas feed pump 3. Dissolved gas evaporated from the dripping liquid flow is circulated, along with the carrier gas, through a closed channel including the drip wall tower 1, a gas sensor 2, and the gas feed pump 3 by means of the gas feed pump 3 and then the evaporated dissolved gas is concentrated to be analyzed through the gas sensor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、簡易な装置を用い
て、溶存ガスを正確かつ再現性よく分析する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately and reproducibly analyzing a dissolved gas using a simple device.

【0002】[0002]

【従来の技術】液中の溶存ガスの分析法は種々の分野に
おいて利用されている。例えば、変圧器等の油入機器の
状態を監視し、該機器の異常を早期に発見することによ
って、事故の発生を未然に防止する方法として、油中の
溶存ガスを分析して診断する方法が広く利用されてい
る。
2. Description of the Related Art Analytical methods for dissolved gas in a liquid are used in various fields. For example, a method of analyzing a dissolved gas in oil and diagnosing it as a method of preventing the occurrence of an accident by monitoring the condition of an oil-filled device such as a transformer and detecting an abnormality of the device at an early stage. Is widely used.

【0003】このような溶存ガスの分析法としては、例
えば(a)真空を利用して油中ガスを抽出してガスクロマ
トグラフにより分析する方法、(b)ガス透過材を利用す
る方法、(c)真空気化させた油中ガスをキャリヤーガス
と共にガスセンサーへ導入する方法(特開平2−227
674号公報参照)、(d)多孔質膜を通して被測定液中
へキャリヤーガスを透過させることによって小気泡中に
溶存ガスを気化させ、該小気泡をガスセンサーへ導入す
る方法、および(e)油中ガスを真空脱気して抽出し、該
抽出ガスをガスセンサーとフィルターを含む閉鎖流路内
を循環させて溶存ガス量を測定する方法(特開平2−6
0415号公報参照)等が知られている。
As a method for analyzing such dissolved gas, for example, (a) a method of extracting a gas in oil by utilizing vacuum and analyzing by gas chromatography, (b) a method of using a gas permeable material, (c) ) A method of introducing vacuum-vaporized gas in oil into a gas sensor together with a carrier gas (JP-A-2-227)
674), (d) a method of vaporizing a dissolved gas in small bubbles by permeating a carrier gas into a liquid to be measured through a porous membrane, and introducing the small bubbles into a gas sensor, and (e) A method of measuring the dissolved gas amount by extracting the gas in oil by vacuum degassing and circulating the extracted gas in a closed flow path including a gas sensor and a filter (JP-A-2-6).
No. 0415) is known.

【0004】しかしながら、方法(a)の場合には、高価
な真空装置と複雑な操作だけでなく、相当な労力や時間
を必要とし、方法(b)の場合には、比較的遅いガス透過
速度に起因して迅速正確なガス分析ができず、方法(c)
の場合には、高価な真空装置を必要とするだけでなく、
気化した溶存ガスの全てをキャリヤーガスにのせること
は難しく、再現性に問題があり、方法(d)の場合には、
飛沫同伴が避けられず、装置の汚染に起因して測定精度
と保守面に問題があり、また、方法(e)の場合には、高
価な真空装置を必要とするだけでなく、測定結果が真空
度によって左右され、操作も比較的複雑である。
However, in the case of the method (a), not only expensive vacuum equipment and complicated operation but also considerable labor and time are required, and in the case of the method (b), a relatively low gas permeation rate. Due to the fact that a quick and accurate gas analysis cannot be performed, the method (c)
In addition to requiring expensive vacuum equipment,
It is difficult to put all of the vaporized dissolved gas on the carrier gas, and there is a problem in reproducibility. In the case of method (d),
Entrainment is unavoidable, there is a problem in measurement accuracy and maintenance due to device contamination, and method (e) not only requires an expensive vacuum device, but also results in measurement The operation is relatively complicated, depending on the degree of vacuum.

【0005】[0005]

【発明が解決しようとする課題】この発明は、溶存ガス
の従来の分析法に係わる上記の諸問題を解決し、高価な
真空装置を必要としない簡易な装置を用いることによっ
て、溶存ガスを正確かつ再現性良く分析する方法を提供
するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems associated with the conventional method of analyzing dissolved gas, and uses a simple apparatus which does not require an expensive vacuum apparatus to accurately measure the dissolved gas. And it was made in order to provide the method of analyzing with sufficient reproducibility.

【0006】[0006]

【課題を解決するための手段】即ちこの発明は、(i)被
測定溶存ガス含有液を送液ポンプを用いて濡壁塔の内壁
に沿って薄膜状で落下させると共に、(ii)キャリヤーガ
スを送気ポンプを用いて該濡壁塔の底部または頭部から
該落下液流にたいして向流または並流として流し、(ii
i)該落下液流から気化される該溶存ガスを、該濡壁塔、
ガスセンサーおよび該送気ポンプを含む閉鎖流路内にお
いて、該送気ポンプを用いて該キャリヤーガスと共に循
環させ、次いで、(iv)気化濃縮された該溶存ガスを該ガ
スセンサーを用いて分析することを含む溶存ガス分析法
に関する。
Means for Solving the Problems That is, the present invention comprises: (i) dropping a solution containing a dissolved gas to be measured in a thin film form along the inner wall of a wetting wall tower using a liquid feed pump, and (ii) a carrier gas. By using an air pump from the bottom or the head of the wetting wall column as a countercurrent or a cocurrent flow to the falling liquid flow, (ii)
i) introducing the dissolved gas vaporized from the falling liquid stream into the wetting wall tower,
Circulating with the carrier gas using the gas pump in a closed flow path containing the gas sensor and the gas pump, and then (iv) analyzing the vaporized and concentrated dissolved gas using the gas sensor. And a dissolved gas analysis method including the above.

【0007】以下、本発明を添付図に基づいて説明す
る。図1は本発明による溶存ガス分析法を実施するのに
好適な装置の一態様を示す模式的な構成図である。図
中、(1)は濡壁塔、(2)はガスセンサー、(3)は送気ポ
ンプ、(4)は送液ポンプ、(5)〜(8)は三方切換弁、お
よび(9)は貯液槽をそれぞれ示す。図1に示す溶存ガス
分析装置は、濡壁塔(1)、送液ポンプ(4)および貯液槽
(9)を有する液相流路並びに濡壁塔(1)、ガスセンサー
(2)および送気ポンプ(3)と流路切換弁(5)〜(8)を介
在させた配管系によって連結した気相循環流路と具備す
る。
The present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing one embodiment of an apparatus suitable for carrying out the dissolved gas analysis method according to the present invention. In the figure, (1) is a wet wall tower, (2) is a gas sensor, (3) is an air supply pump, (4) is a liquid supply pump, (5) to (8) are three-way switching valves, and (9). Indicate the liquid storage tanks. The dissolved gas analyzer shown in FIG. 1 includes a wet wall tower (1), a liquid feed pump (4) and a liquid storage tank.
Liquid phase flow path having (9), wetting wall tower (1), gas sensor
(2) and the air feed pump (3) and a gas phase circulation flow path connected by a piping system with the flow path switching valves (5) to (8) interposed.

【0008】送気ポンプ(3)を用いて、大気→(7)→
(3)→(8)→(5)→(2)→(6)→大気の順で配管系内を
通気することによってセンサーリフレッシュをおこなっ
た後、送液ポンプ(4)を作動させ、被測定対象から貯液
槽(9)内へ供給された絶縁油等の被測定溶存ガス含有液
を濡壁塔(1)内へ導入し、内壁に沿って薄膜状で落下さ
せ、落下液は貯液槽(9)内へ戻し、循環させる。一方、
三方切換弁(5)〜(8)の操作によって、キャリヤーガス
として例えば、空気、N2および不活性ガス等を濡壁塔
(1)の底部から該塔内へ導入し、該落下液流に対して向
流として流すことによって溶存ガスの気化を開始する。
この場合、キャリヤーガスは濡壁塔(1)の頭部から該塔
内へ導入し、落下液流に対して並流として流してもよ
い。
Using the air pump (3), the atmosphere → (7) →
(3) → (8) → (5) → (2) → (6) → After performing sensor refreshing by venting the inside of the piping system in the order of the atmosphere, operate the liquid feed pump (4) to The measured gas-containing liquid such as insulating oil supplied from the object to be measured into the liquid storage tank (9) is introduced into the wetting wall tower (1) and dropped in a thin film along the inner wall, and the falling liquid is stored. Return to the liquid tank (9) and circulate. on the other hand,
By operating the three-way switching valves (5) to (8), for example, air, N 2 and an inert gas are used as carrier gas in the wetting wall column.
It is introduced from the bottom of (1) into the tower, and the dissolved gas is vaporized by flowing as a countercurrent to the falling liquid flow.
In this case, the carrier gas may be introduced into the wetting wall column (1) from the head thereof and flow in parallel with the falling liquid stream.

【0009】濡壁塔(1)内における液体の落下速度は、
液体やキャリヤーガスの種類、溶存ガスの種類や量およ
び濡壁塔の長さや内容積等に応じて適宜選定され、特に
限定的ではないが、通常では10〜30ml/分・cm
2である。落下速度が小さすぎると液膜の形成が困難と
なり、大きくなると液膜が厚くなって抽出率が低下する
からである。なお、所望により、液体は被測定対象から
濡壁塔へ直接供給し、循環させなくてもよい。
The falling speed of the liquid in the wetting wall tower (1) is
It is appropriately selected depending on the type of liquid or carrier gas, the type and amount of dissolved gas, the length and internal volume of the wetting wall tower, etc., but is not particularly limited, but usually 10 to 30 ml / min.cm.
Is 2 . This is because if the falling speed is too low, it becomes difficult to form a liquid film, and if the falling speed is too high, the liquid film becomes thick and the extraction rate decreases. If desired, the liquid need not be circulated by directly supplying it from the object to be measured to the wetting wall tower.

【0010】溶存ガスの気化を開始した後、三方切換弁
の操作によって、(7)→(3)→(8)→(1)→(5)→(2)
→(6)→(7)の閉鎖流路を構成し、送気ポンプ(3)の作
用により、キャリヤーガスと気化した溶存ガスの混合ガ
スを該閉鎖流路内において循環させ、これによって、濡
壁塔の内壁に沿って落下する落下液流中の溶存ガスのキ
ャリヤーガスへの気化濃縮をおこなう。該混合ガスの循
環速度は特に限定的ではないが、通常は500〜2,0
00ml/分・cm2である。溶存ガスの気化濃縮を所
定時間(通常、約5〜30分間)行った後、ガスセンサー
(2)によって溶存ガスを分析する。ガスセンサーは被測
定ガスの種類や含有量および溶存ガスの分析目的等に応
じて適宜選定すればよいが、一般的には、半導体型セン
サー、燃焼型センサーおよびガスクロマトグラフィー等
が常用される。
After starting the vaporization of the dissolved gas, by operating the three-way switching valve, (7) → (3) → (8) → (1) → (5) → (2)
→ (6) → (7) to form the closed flow path, and the mixed gas of the carrier gas and the vaporized dissolved gas is circulated in the closed flow path by the action of the air supply pump (3), thereby wetting The dissolved gas in the falling liquid stream falling along the inner wall of the wall tower is vaporized and concentrated to a carrier gas. The circulation rate of the mixed gas is not particularly limited, but is usually 500 to 2.0.
It is 00 ml / min · cm 2 . Evaporate and concentrate the dissolved gas for a specified time (usually about 5 to 30 minutes), then use a gas sensor.
Dissolved gas is analyzed according to (2). The gas sensor may be appropriately selected according to the type and content of the gas to be measured, the analysis purpose of the dissolved gas, etc., but in general, semiconductor type sensors, combustion type sensors, gas chromatography and the like are commonly used.

【0011】なお、ガスセンサー(2)の応答が遅い場合
には、三方切換弁(5)および(8)の操作により、(3)→
(8)→(5)→(2)→(6)→(7)→(3)の閉鎖流路を構成
し、該閉鎖流路を内において、キャリヤーガスと被測定
ガスとの混合ガスの循環をさらに続行した後、測定をお
こなえばよい。この循環操作中は、送液ポンプ(4)の作
動を停止する。
When the response of the gas sensor (2) is slow, the operation of the three-way switching valves (5) and (8) causes (3) →
(8)->(5)->(2)->(6)->(7)-> (3) constitutes a closed flow path, and inside the closed flow path, a mixed gas of a carrier gas and a measurement gas is formed. The measurement may be performed after the circulation is further continued. During this circulation operation, the operation of the liquid feed pump (4) is stopped.

【0012】三方切換弁(5)〜(8)として、例えば三方
電磁弁を使用し、該弁の上記切換操作及び送液ポンブ
(4)と送気ポンプ(3)の作動をプログラマブルコントロ
ーラーで制御することによって、上記の測定操作を自動
的に行うことができる。
As the three-way switching valves (5) to (8), for example, three-way solenoid valves are used, and the switching operation of the valves and the liquid feeding pump are performed.
By controlling the operations of (4) and the air supply pump (3) with a programmable controller, the above measurement operation can be automatically performed.

【0013】[0013]

【実施例】以下、本発明を実施例によって説明する。 実施例1 溶存ガスとしてメタンガスを30ppm(v/v)含有する
絶縁油を被検試料として使用した。該試料を図1に示す
構成の測定装置を用いて分析した。三方切換弁(5)〜
(8)としては三方電磁弁を使用し、ガスセンサー(2)と
してはガスクロマトグラフィを使用し、キャリヤーガス
としては空気を用いた。また、濡壁塔(1)としては、内
径1.3cm、長さ25cm、内容積33cm3のポリ塩
化ビニル製円柱状カラムを使用した。測定条件は次の通
りである。濡壁塔内における被検試料の流速:15ml
/分・cm2、キャリヤーガスと溶存ガスの混合ガスの
循環速度:1,000ml/分・cm2、該混合ガスの循
環時間:5分間。溶存ガスの抽出率は72%であった。
上記測定操作を5回繰り返したところ、溶存ガスの抽出
率は69〜75%であった。
EXAMPLES The present invention will be described below with reference to examples. Example 1 An insulating oil containing 30 ppm (v / v) of methane gas as a dissolved gas was used as a test sample. The sample was analyzed using the measuring device having the configuration shown in FIG. Three-way switching valve (5)
A three-way solenoid valve was used as (8), gas chromatography was used as the gas sensor (2), and air was used as the carrier gas. A cylindrical column made of polyvinyl chloride having an inner diameter of 1.3 cm, a length of 25 cm, and an inner volume of 33 cm 3 was used as the wetting wall tower (1). The measurement conditions are as follows. Flow rate of test sample in the wetting wall tower: 15 ml
/ Min · cm 2 , circulation rate of mixed gas of carrier gas and dissolved gas: 1,000 ml / min · cm 2 , circulation time of said mixed gas: 5 minutes. The dissolved gas extraction rate was 72%.
When the above measurement operation was repeated 5 times, the extraction rate of the dissolved gas was 69 to 75%.

【0014】[0014]

【発明の効果】本発明によれば、真空装置を必要としな
い簡易な装置を用いることによって、溶存ガス、例え
ば、絶縁油中に溶存する水素ガス、メタンガス等を正確
かつ再現性良く分析することができるので、例えば、変
圧器等の油入機器の状態を簡便に監視して事故の発生を
未然に防止することができる。
According to the present invention, a dissolved gas, for example, hydrogen gas or methane gas dissolved in insulating oil, can be analyzed accurately and with good reproducibility by using a simple device that does not require a vacuum device. Therefore, for example, the state of oil-filled equipment such as a transformer can be easily monitored to prevent an accident from occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による溶存ガス分析法を実施するのに
好適な装置の一態様を示す模式的構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of an apparatus suitable for carrying out a dissolved gas analysis method according to the present invention.

【符号の説明】[Explanation of symbols]

1 濡壁塔 2 ガスセンサー 3 送気ポンプ 4 送液ポンプ 5 三方切換弁 6 三方切換弁 7 三方切換弁 8 三方切換弁 9 貯液槽 1 Wet Wall Tower 2 Gas Sensor 3 Gas Pump 4 Liquid Pump 5 Three-way Switching Valve 6 Three-way Switching Valve 7 Three-way Switching Valve 8 Three-way Switching Valve 9 Storage Tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (i)被測定溶存ガス含有液を送液ポンプ
を用いて濡壁塔の内壁に沿って薄膜状で落下させると共
に、 (ii)キャリヤーガスを送気ポンプを用いて該濡壁塔の底
部または頭部から該落下液流にたいして向流または並流
として流し、 (iii)該落下液流から気化される該溶存ガスを、該濡壁
塔、ガスセンサーおよび該送気ポンプを含む閉鎖流路内
において、該送気ポンプを用いて該キャリヤーガスと共
に循環させ、次いで、 (iv)気化濃縮された該溶存ガスを該ガスセンサーを用い
て分析することを含む溶存ガス分析法。
1. (i) The solution containing the dissolved gas to be measured is dropped in a thin film form along the inner wall of the wetting wall column by using a liquid feed pump, and (ii) the carrier gas is wetted by using an air feed pump. Flowing countercurrently or cocurrently from the bottom or the head of the wall tower to the falling liquid stream, (iii) the dissolved gas vaporized from the falling liquid stream is passed through the wetting wall tower, the gas sensor and the air supply pump. A dissolved gas analysis method, comprising: circulating the carrier gas with the carrier gas in the closed flow path containing the gas; and (iv) analyzing the vaporized and concentrated dissolved gas using the gas sensor.
【請求項2】 濡壁塔(1)、送液ポンプ(4)および貯液
槽(9)を有する液相流路並びに濡壁塔(1)、ガスセンサ
ー(2)および送気ポンプ(3)を流路切換弁(5)〜(8)
を介在させた配管系によって連結した気相循環流路を具
備する溶存ガス分析装置。
2. A liquid phase flow path having a wetting wall tower (1), a liquid feed pump (4) and a liquid storage tank (9), and a wetting wall tower (1), a gas sensor (2) and an air feed pump (3). ) Is the flow path switching valve (5) to (8)
A dissolved gas analyzer having a gas-phase circulation flow path connected by a piping system in which a gas is interposed.
JP4216812A 1992-08-14 1992-08-14 Dissolved gas analysis method Expired - Lifetime JPH0715431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216812A JPH0715431B2 (en) 1992-08-14 1992-08-14 Dissolved gas analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216812A JPH0715431B2 (en) 1992-08-14 1992-08-14 Dissolved gas analysis method

Publications (2)

Publication Number Publication Date
JPH0666690A true JPH0666690A (en) 1994-03-11
JPH0715431B2 JPH0715431B2 (en) 1995-02-22

Family

ID=16694278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216812A Expired - Lifetime JPH0715431B2 (en) 1992-08-14 1992-08-14 Dissolved gas analysis method

Country Status (1)

Country Link
JP (1) JPH0715431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312584A4 (en) * 2015-06-18 2018-12-05 Pureron Japan Co., Ltd. Continuous measurement method for hydrogen gas concentration and hydrogen gas concentration measurement device used in same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312584A4 (en) * 2015-06-18 2018-12-05 Pureron Japan Co., Ltd. Continuous measurement method for hydrogen gas concentration and hydrogen gas concentration measurement device used in same

Also Published As

Publication number Publication date
JPH0715431B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JPH09133668A (en) Gas chromatography system or method for conveying material sample for analysis to gas chromatrgraphy system
EP1613943B1 (en) System and method for extracting headspace vapor
JP4361936B2 (en) Method for introducing standard gas into a sample vessel
US4133767A (en) Chromatographic apparatus and method
US2967764A (en) Apparatus for analysis and other processing of fluids
JP3725441B2 (en) Method for analyzing impurities in a gas stream
US5693538A (en) System and method for monitoring volatile species in liquids
CA2051245A1 (en) Process and apparatus for the electrochemical determination of gaseous or volatile species with particular reference to hemogasanalyzers
US3533272A (en) Preparation of gas mixtures
JPH0666690A (en) Analysis of dissolved gas
KR101150832B1 (en) Pretreating apparatus for vials for dissolved gas in oil analysis
JP2003107063A (en) Deaeration apparatus and method of high performance liquid chromatography
US2980513A (en) Combustibles-in-air instrument
JPS62187250A (en) Capillary gas chromatographic apparatus for analyzing volatile component
Reinke et al. The online removal of dissolved oxygen from aqueous solutions used in voltammetric techniques by the chromatomembrane method
EP0744612B1 (en) Oxygen analyzer
SU1734005A1 (en) Method for chromatographic analysis of microimpurities in gas
SU1713882A1 (en) Method of measuring hydrogen concentration
JPH11295196A (en) Component concentration stabilizng method for supplied gas, and supplied gas containing microquantity of moisture used in this method
JPH06317577A (en) Measuring apparatus of quantity of carbon
JPS5828212Y2 (en) gas analyzer
JPH0375559A (en) Carbon-quantity measuring apparatus
DE2422271C3 (en) Calibration device for devices for the automatic determination of traces of organic solvent vapors in air
SU1272228A1 (en) Device for sampling and introducing vapour phase samples in gas chromatograph
JPS5883287A (en) Sampling method for radioactivity