JPH0666526B2 - Semiconductor laser diode and manufacturing method thereof - Google Patents

Semiconductor laser diode and manufacturing method thereof

Info

Publication number
JPH0666526B2
JPH0666526B2 JP63189279A JP18927988A JPH0666526B2 JP H0666526 B2 JPH0666526 B2 JP H0666526B2 JP 63189279 A JP63189279 A JP 63189279A JP 18927988 A JP18927988 A JP 18927988A JP H0666526 B2 JPH0666526 B2 JP H0666526B2
Authority
JP
Japan
Prior art keywords
layer
convex portion
semi
stripe
current confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63189279A
Other languages
Japanese (ja)
Other versions
JPH0239483A (en
Inventor
洋一 大澤
Original Assignee
関西日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西日本電気株式会社 filed Critical 関西日本電気株式会社
Priority to JP63189279A priority Critical patent/JPH0666526B2/en
Publication of JPH0239483A publication Critical patent/JPH0239483A/en
Publication of JPH0666526B2 publication Critical patent/JPH0666526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は低電流で動作するとともに発振モードを単一に
制御でき内部に電流狭窄層を有する半導体レーザダイオ
ードとその製造方法に関するものであり、特に電流狭窄
層の形成と、発光領域層等の形成を一度のエピタキシャ
ル成長工程中に実現でき、かつ、高速、高出力動作が可
能な、半導体レーザダイオードと、その製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser diode having a current confinement layer capable of operating at a low current and controlling a single oscillation mode, and a method for manufacturing the same. The present invention relates to a semiconductor laser diode capable of realizing the formation of a constriction layer and the formation of a light emitting region layer and the like in a single epitaxial growth step, and capable of high-speed and high-power operation, and a manufacturing method thereof.

従来の技術 レーザダイオードの低電流動作、単一モードー化を実現
するための種々の構造が各所で提案され実施されてい
る。
2. Description of the Related Art Various structures for realizing low current operation and single mode operation of laser diodes have been proposed and implemented in various places.

例えば、雑誌“Applied Optics"1.June(1979)の1812
頁(第1の文献)には、CPSレーザが示され、昭和53年
秋季応用物理学会講演予稿集,論文番号3P−Z−484頁
(第2の文献)には、TSレーザが示され、又、結晶内部
に電流狭窄層を有する内部ストライプ型レーザについて
は、昭和55年春,応用物理学会講演予稿集,論文番号2a
−G−8の158頁(第3の文献)のSMLレーザが示され、
さらに電子通信学会電子デバイス研究会予稿集ED79−5
0,49(1979)(第4の文献)には、VSISレーザが示され
ている。又、光通信用半導体レーザダイオードとして
は、“Elcxtron Letter"18(1982)の953頁(第5の文
献)に発表されたDC−PBHレーザが実用化されている。
For example, 1812 in the magazine “Applied Optics” 1.June (1979).
CPS laser is shown on page (1st literature), TS laser is shown on page pp. 3P-Z-484 (2nd literature), Proceedings of Autumn Society of Applied Physics, 1978, Regarding the internal stripe type laser with a current constriction layer inside the crystal, Spring 1980, Proceedings of the Japan Society of Applied Physics, Paper No. 2a
-G-8 page 158 (3rd document) SML laser is shown,
Furthermore, Proceedings of IEICE Electronic Devices Research Group ED79-5
0,49 (1979) (4th reference) shows a VSIS laser. As a semiconductor laser diode for optical communication, a DC-PBH laser disclosed in "Elcxtron Letter" 18 (1982), page 953 (fifth document) has been put into practical use.

これらのレーザダイオードは、低電流低閾値動作を図る
ため、注入領域を限定し、単一モード制御のためには屈
折率の大きい活性層を屈折率の小さいクラッド層で挾む
ことにより、光導波路を形成しており、そのヘテロ接合
と平行方向の活性層には、種々のストライプ構造を形成
して屈折率差による、光の閉じ込めを行う「屈折率分布
導波型」を採用している。
In order to achieve low current and low threshold operation, these laser diodes limit the injection region, and for single-mode control, an active layer with a high refractive index is sandwiched by a clad layer with a low refractive index. In the active layer in the direction parallel to the heterojunction, various stripe structures are formed to adopt the "gradient distribution waveguide type" for confining light by the refractive index difference.

発明が解決しようとする課題 しかし、前述の第1、第2の文献レーザは、注入領域の
限定のためにストライプ状に亜鉛等の拡散を行う必要が
あり、そのためにはレーザ発振部と電流通路とが一致す
る様に拡散マスクを精密に位置合わせすることが必要に
なる。又、第3、第4の文献レーザでは、内部に電流狭
窄層を形成するためには、前記層成長の後にエッチング
工程で狭窄層の通路を形成し、再びエピタキシャル成長
工程で発光領域を形成しなければならない。これは、第
1のエピタキシャル工程で成長した層が酸化したり処理
工程で汚染され、第2のエピタキシャル工程で良質な成
長層が形成できず、第1のエピタキシャルに採用可能な
材料が限定され素子設計上の大きな制約となる。
However, in the above-mentioned first and second reference lasers, it is necessary to diffuse stripes of zinc or the like in order to limit the implantation region, and for that purpose, the laser oscillation part and the current passage are required. It is necessary to precisely align the diffusion mask so that and coincide with each other. Further, in the third and fourth reference lasers, in order to form the current confinement layer inside, the path of the confinement layer must be formed in the etching step after the layer growth, and the light emitting region must be formed again in the epitaxial growth step. I have to. This is because the layer grown in the first epitaxial step is oxidized or contaminated in the processing step, a good quality growth layer cannot be formed in the second epitaxial step, and the materials that can be used in the first epitaxial step are limited. It becomes a big design constraint.

又、光通信用レーザダイオードとして実用化されている
第5の文献のレーザダイオードでは、第1のエピタキシ
ャル工程での層の酸化が比較的少ない材料であるInp系
を用いて、発光領域としてのダブルヘテロ接合構造を形
成し、続いて二重チャンネルの内部を電流注入領域とす
るために、フォトレジストによるエッチング工程で、内
部ストライプを形成し、その後第2のエピタキシャル工
程で、電流狭窄層を埋め込み成長している。さらに近
年、前記第5の文献のDC,PBHレーザの電流狭窄層に、半
絶縁体層を用いた実施例が雑誌“Applied Physics Le
tters"48(23)9.June1986の1572頁(第6の文献)に発
表されているが、第5の文献と同様に二度の成長工程を
経なければならない。
Further, in the laser diode of the fifth document which has been put into practical use as a laser diode for optical communication, the Inp system, which is a material in which the layer is relatively oxidized in the first epitaxial step, is used, and a double diode is used as a light emitting region. In order to form a heterojunction structure, and then to form a current injection region inside the double channel, an internal stripe is formed by a photoresist etching process, and then a current confinement layer is buried and grown in a second epitaxial process. is doing. Furthermore, in recent years, an example in which a semi-insulating layer is used as a current confinement layer of the DC, PBH laser of the fifth document has been published in a magazine “Applied Physics Le”.
tters "48 (23) 9.June 1986, page 1572 (6th document), but like the 5th document, it must undergo two growth steps.

上述した様に、従来技術では、発光領域と電流注入領域
とを、別個の工程で形成している。即ち、発光領域を先
に形成し、電流注入領域を後に形成する第1,第2,第5,第
6の文献の方法と、先に電流注入用の狭窄領域を形成し
て、後で発光領域形成する第3,第4の方法とがあるが、
いずれも、二段階のエピタキシャル成長工程で形成する
ため、歩留りの低下を防ぐために高い工程能力が必要と
される。又、製造工程が複雑化,長時間化するために製
造コストが大幅にアップし、生産性が乏しいものとな
る。
As described above, in the conventional technique, the light emitting region and the current injection region are formed in separate steps. That is, the method of the first, second, fifth, and sixth literatures in which the light emitting region is formed first and the current injection region is formed later, and the constriction region for current injection is formed first, and the light emission is performed later. There are 3rd and 4th methods to form areas,
Since both are formed by a two-step epitaxial growth process, high process capability is required in order to prevent a decrease in yield. Further, since the manufacturing process is complicated and the time is long, the manufacturing cost is significantly increased and the productivity is poor.

素子特性上の問題点として、従来の電流狭窄はPN接合の
逆バイアスのバリアーにより電流(ホール)をブロック
して導通を阻止するものであるために、印加電流が増大
すると漏れ電流成分も増加し、内部効率が低下する。第
5の文献のDC,PBHレーザダイオードの場合には、狭窄部
のPNPN接合のサイリスタがターンオンして導通し、光出
力が飽和・減少する。このため、単一モードでの電流−
光出力特性の直線性が失われ、高出力動作が、できなく
なる欠点を有する。
As a problem in device characteristics, the conventional current constriction blocks the current (hole) by blocking the reverse bias barrier of the PN junction and blocks conduction. Therefore, when the applied current increases, the leakage current component also increases. , The internal efficiency decreases. In the case of the DC, PBH laser diode of the fifth document, the thyristor of the PNPN junction in the constriction turns on and becomes conductive, and the optical output is saturated / decreased. Therefore, the current in single mode −
There is a drawback that the linearity of the light output characteristic is lost and high output operation cannot be performed.

課題を解決するための手段 本発明は、前述した従来技術を解決するために、電流注
入領域を形成するための電流狭窄層に、半絶縁層を採用
し、一度の液相エピタキシャル工程での内部電流狭窄領
域と、発光領域とを形成する事を可能とする構造及び製
造方法から成る。
Means for Solving the Problems In order to solve the above-mentioned conventional technique, the present invention adopts a semi-insulating layer as a current confinement layer for forming a current injection region, and the semi-insulating layer is used in a single liquid phase epitaxial process. It has a structure and a manufacturing method that enable formation of a current confinement region and a light emitting region.

本発明の半導体レーザダイオードは基板表面に二重のス
トライプ状の溝に挾まれたメサ型の、ストライプ状凸部
を有する半導体基板と、前記基板の凸部頂上平坦部を除
く部分の表面に設けられた第1の半絶縁体層と、それら
の上に設けた前記基板と同導電型で、この基板よりもバ
ンドギャップが小さい材質から成る活性領域と、さらに
前記活性層の前記凸部以外に隣接して設けられた前記基
板とバンドギャップが等しい第2の半絶縁体層と、前記
凸部活性領域に隣接した前記基板と異なる導電型でバン
ドギャップが等しいクラッド層とその上に設けられたキ
ャップ層とを含むことを特徴とする。
The semiconductor laser diode of the present invention is provided on the surface of a semiconductor substrate having a mesa-type stripe-shaped convex portion sandwiched in a double-stripe-shaped groove on the surface of the substrate and a portion of the substrate excluding the flat top portion of the convex portion. A first semi-insulating layer, an active region made of a material having the same conductivity type as that of the substrate and having a bandgap smaller than that of the substrate, and the first semi-insulating layer provided on the first semi-insulating layer; A second semi-insulating layer having the same bandgap as the adjacent substrate, a clad layer having a different conductivity type and the same bandgap from the substrate adjacent to the convex active region, and a second semi-insulating layer provided on the convex active region. And a cap layer.

本発明の半導体レーザダイオードの製造方法は、一導電
型の半導体基板に、二重のストライプ状の溝に挟まれた
メサ型のストライプ状凸部を形成し、ボートスライド式
液相エピタキシャル成長法により前記凸部頂上平坦部を
除く部分に電流狭窄層として、鉄(Fe)又はコバルト
(Co)を添加した半絶縁体層を形成する工程と、前記凸
部を含む全表面に、一導電型の活性層を形成する工程
と、その上に前記凸部頂上の平坦部を除く部分に(c)
工程と同様に第2の電流狭層を形成する工程と、反対導
電型のクラッド層及びキャップ層を順次形成する工程と
を含んで構成される。
The method for manufacturing a semiconductor laser diode of the present invention comprises forming a mesa-shaped stripe-shaped convex portion sandwiched between double stripe-shaped grooves on a semiconductor substrate of one conductivity type, and using a boat slide type liquid phase epitaxial growth method to form the mesa-shaped stripe-shaped convex portion. A step of forming a semi-insulating layer to which iron (Fe) or cobalt (Co) is added as a current confinement layer except the flat portion on the top of the convex portion, and one conductivity type active layer on the entire surface including the convex portion. In the step of forming a layer and on the portion except the flat portion on the top of the convex portion (c)
Similar to the step, it includes a step of forming a second current narrowing layer and a step of sequentially forming a clad layer and a cap layer of opposite conductivity types.

作用 上記手段の製造方法により、ストライプ状凸部を除く部
分には、半絶縁体層が形成され、凸部頂上の平坦面上に
は活性層及びクラッド層が形成されて注入電流の狭窄層
での導通がなくなり、注入電流密度が高くなり、半導体
レーザダイオードの発振閾値が下がり、低電流動作が可
能になる。又、印加電流を増加してもターンオンしない
から、レーザダイオードの反射面の光学的損傷に至るま
での光出力である約150〜200mwレベルまでの高出力動作
が可能になる。
By the manufacturing method of the above means, the semi-insulating layer is formed on the portion excluding the stripe-shaped convex portion, and the active layer and the clad layer are formed on the flat surface on the top of the convex portion to form the injection current confinement layer. Is eliminated, the injection current density is increased, the oscillation threshold of the semiconductor laser diode is lowered, and low current operation becomes possible. Further, even if the applied current is increased, it does not turn on, so that a high output operation up to about 150 to 200 mw level, which is the optical output up to the optical damage to the reflecting surface of the laser diode, becomes possible.

実施例 次に図面を参照しながら本発明を詳細に説明する。EXAMPLES Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例のレーザ光に垂直な素子の
主要断面図、第2図は電流狭窄部の製造過程を示す斜視
図である。本実施例は、第2図のように半導体基板10上
に二重のストライプ溝(二重チャルネル)20と、これら
のストライプ溝20によって挟まれたメサ型の凸部とが形
成され、この半導体基板10上に電流狭窄層である第1の
半絶縁体層11、活性層12、第2の半絶縁体層13、第2の
クラッド層14、およびキャップ層15が一度のエピタキシ
ャル成長工程で連続して順次形成されたものである。
FIG. 1 is a main sectional view of an element perpendicular to a laser beam according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a manufacturing process of a current constriction portion. In this embodiment, as shown in FIG. 2, a double stripe groove (double channel) 20 and a mesa-shaped convex portion sandwiched by these stripe grooves 20 are formed on a semiconductor substrate 10. The first semi-insulating layer 11, the active layer 12, the second semi-insulating layer 13, the second cladding layer 14, and the cap layer 15, which are current confinement layers, are continuously formed on the substrate 10 in one epitaxial growth step. Are sequentially formed.

本、実施例において凸部の両側の溝20では、第1及び第
2の半絶縁体層11,13によって電流が狭窄され、メサ凸
部の頂上21部分のみに電流が流れる。
In the present embodiment, in the grooves 20 on both sides of the convex portion, the current is confined by the first and second semi-insulating layers 11 and 13, and the current flows only in the top portion 21 of the mesa convex portion.

横モードの制御性については、一般に活性層の実効屈折
率Neffは層厚が薄くなる程、小さくなり漏れやすくな
る。又、接合に平行な方向に活性層のNeffの変化率が大
きくなると、光の閉じ込め効果が大きくなり、発光スポ
ットサイズが2〜3μm以上になると容易に高次の横モ
ードが発生してしまう。しかし、第3図に示すように、
本実施例の凸部頂上21の巾は1〜2μm程度であり、活
性層厚は溝の両側の方が厚くかつ、なだらかに湾曲して
いる。そのため、光は凸部の両側に漏れ、かつ、実効屈
折率の変化が小さいから、高次の横モードは存在しなく
なる。従って、基本モードのみとなり安定した単一モー
ド制御が可能となる。
Regarding the controllability of the transverse mode, generally, the effective refractive index Neff of the active layer becomes smaller as the layer thickness becomes thinner, and the active layer easily leaks. Further, when the rate of change of Neff of the active layer increases in the direction parallel to the junction, the effect of confining light increases, and when the emission spot size becomes 2 to 3 μm or more, a higher-order transverse mode easily occurs. However, as shown in FIG.
The width of the apex 21 of the convex portion of this embodiment is about 1 to 2 μm, and the thickness of the active layer is thicker on both sides of the groove and is gently curved. Therefore, light leaks to both sides of the convex portion and the change in the effective refractive index is small, so that the higher-order transverse modes do not exist. Therefore, only the basic mode is available and stable single mode control is possible.

このことから、横モード制御された高出力レーザが、第
2の実施例として提案される。即ち、凸部頂上21の巾を
2〜4μmまで拡大しても、本実施例のように活性層が
なだらかに湾曲していれば、高次モードは発生しないか
ら、より注入レベルを高め高効率の高出力半導体レーザ
ダイオードが可能となる。
From this, a transverse mode controlled high power laser is proposed as a second embodiment. That is, even if the width of the apex 21 of the convex portion is expanded to 2 to 4 μm, if the active layer is gently curved as in the present embodiment, the higher order mode does not occur, so that the injection level is further increased and the efficiency is high. It enables high power semiconductor laser diodes.

尚、低電流動作については、前記〔作用〕の項で述べた
通り、本発明の実施により、漏れ電流を極限まで低下せ
しめることができ、低い発振閾値で、かつ、高出力動作
が可能となる。
As for the low current operation, as described in the above [Operation], the implementation of the present invention makes it possible to reduce the leakage current to the utmost limit, and enables the high output operation with a low oscillation threshold. .

次に、本発明の半導体レーザダイオードの製造方法につ
いて説明する。
Next, a method of manufacturing the semiconductor laser diode of the present invention will be described.

第2図は本発明のレーザダイオードの製造方法について
説明するために示した断面図である。
FIG. 2 is a sectional view shown for explaining the method for manufacturing the laser diode of the present invention.

まず、第2図に示すように、(100)面を上面にしたn
型InP基板10の上面にフォトレジストを塗布し、これを
幅数μm,間隔200〜300μmのストライプ形状で選択エッ
チングを行い、メサ凸部の頂上21の巾が0.5〜2μm
で、凸部の両側に、溝巾がそれぞれ2〜5μmになる二
重チャンネル20を形成する。
First, as shown in FIG.
Photoresist is applied to the upper surface of the InP substrate 10, and is selectively etched in a stripe shape with a width of several μm and an interval of 200 to 300 μm. The width of the top 21 of the mesa protrusion is 0.5 to 2 μm.
Then, double channels 20 having a groove width of 2 to 5 μm are formed on both sides of the convex portion.

そして、基板10の洗浄処理工程を経て、通常のボートス
ライド法液相エピタキシャル成長を行う。すなわち、高
純度のグラファイト製ボートにn型InP基板10および、
各層成長用材料を配置した後に、高純度水素ガス雰囲気
中に、約630〜670℃で2〜4時間保持した後に、冷却速
度0.3〜0.8℃/minで徐令し、数℃降温した時点で、第
1の半絶縁体層11となる。鉄もしくはコバルトが0.3〜
0.1〔atom%〕添加された成長溶液を、基板10に接触せ
しめ、凸部頂上21以外の部分に比抵抗が10Ωcm以上
の第1のInp半絶縁体層11を成長せしめる。この成長条
件は溶液の過冷却度を極めて小さく迎え、準平衝状態に
制御することである。即ち、面方位の成長速度依存性を
強めて、溶質が凸部傾斜面に拡散し、凸部頂上21付近に
存在せしめないことが重要な成長条件となる。
Then, after the substrate 10 is washed, the ordinary boat slide method liquid phase epitaxial growth is performed. That is, the n-type InP substrate 10 and the high-purity graphite boat,
After arranging the materials for growing each layer, after keeping them in a high-purity hydrogen gas atmosphere at about 630 to 670 ° C. for 2 to 4 hours, gradually cooling at a cooling rate of 0.3 to 0.8 ° C./min, and lowering the temperature by several ° C. , The first semi-insulating layer 11. Iron or cobalt 0.3 to
The growth solution added with 0.1 [atom%] is brought into contact with the substrate 10 to grow the first Inp semi-insulating layer 11 having a specific resistance of 10 Ω 5 cm or more on a portion other than the top 21 of the convex portion. This growth condition is to control the supercooling degree of the solution to be extremely small and to control it in a quasi-equal state. That is, it is an important growth condition that the growth rate dependence of the plane orientation is strengthened so that the solute is not diffused to the inclined surface of the convex portion and allowed to exist near the peak 21 of the convex portion.

次に第3図に示すように、n型InGaAsP4元混晶を所望の
活性層波長組成に制御して、凸部頂上21での、活性層12
の層厚が0.05〜0.15μmに成るように成長せしめる。
Next, as shown in FIG. 3, by controlling the n-type InGaAsP quaternary mixed crystal to a desired active layer wavelength composition, the active layer 12 at the peak 21 of the convex portion is controlled.
Is grown to a layer thickness of 0.05 to 0.15 μm.

さらに、第2の半絶縁体層13を、第1の半絶縁体層11同
様の成長条件で、凸部以外に成長せしめた後に、第2の
クラッド層14となる、亜鉛が添加され、キャリア濃度が
5〜20×1017〔cm−3〕のP型Inp層を1〜3μm成長
せしめ、さらに電極形成のためのP型キャップ層15を0.
5〜3μm、一度の液相エピタキシャル成長工程で形成
する。続いて、ウェーハ製造工程を経て、電極形成しさ
らに、素子製造工程を経て、出来た半導体レーザダイオ
ードに順方向電流を流して、発振閾値が数mA程度で数mW
以上の単一モード光出力を得ることができ、印加電流を
増すと、レーザ光が直線的に増加し、数10mW〜100mWの
光出力を得ることができる。
Further, under the same growth conditions as the first semi-insulating layer 11, the second semi-insulating layer 13 is grown to a portion other than the convex portion, and then zinc is added to form the second cladding layer 14. A P-type Inp layer having a concentration of 5 to 20 × 10 17 [cm −3 ] is grown to 1 to 3 μm, and a P-type cap layer 15 for forming an electrode is formed to a thickness of 0.1 μm.
5 to 3 μm, formed in a single liquid phase epitaxial growth step. Then, through the wafer manufacturing process, electrodes are formed, and further, through the device manufacturing process, a forward current is applied to the resulting semiconductor laser diode, and the oscillation threshold is several mA at several mA.
The above single-mode light output can be obtained, and when the applied current is increased, the laser light linearly increases, and the light output of several tens mW to 100 mW can be obtained.

発明の効果 本発明による効果は以下の通りとなる。Effects of the Invention The effects of the present invention are as follows.

(イ)基板凸部に電流狭窄用ストライプが設けられてい
るため、電流注入領域限定用のストライプ形成のための
マスク位置を、発光領域と精密に合わせ込む必要がな
い。従って、注入領域と発光領域とのずれのために生ず
る注入キャリア密度分布の非対象性に伴う発振モードの
不安定性を解消し、単一モード制御が容易に実現でき
る。
(A) Since the current confinement stripe is provided on the convex portion of the substrate, it is not necessary to precisely align the mask position for forming the stripe for limiting the current injection area with the light emitting area. Therefore, the instability of the oscillation mode due to the asymmetry of the injected carrier density distribution caused by the shift between the injection region and the light emitting region is eliminated, and the single mode control can be easily realized.

(ロ)電流狭窄層として、半絶縁体層を採用したため
に、漏れ電流成分が極限まで抑えられ、発振閾値の低下
と高出力動作の両者を同時に実現できる。
(B) Since the semi-insulating layer is adopted as the current confinement layer, the leakage current component can be suppressed to the utmost limit, and both reduction of the oscillation threshold and high output operation can be realized at the same time.

(ハ)電流狭窄領域作成工程をエピタキシャル成長工程
の間に介在させる、いわゆる“二度エピ”を解消し、一
度のエピタキシャル成長工程で、所期の目的が達成でき
る。
(C) The so-called “twice epi” in which the current constriction region forming step is interposed between the epitaxial growth steps is eliminated, and the intended purpose can be achieved by one epitaxial growth step.

(ニ)半絶縁体層が素子のキャパシタンスを支配するた
め、高速動作が可能になる。
(D) Since the semi-insulating layer controls the capacitance of the device, high speed operation is possible.

したがって、製造工程での大幅な歩留向上が計られると
ともに、成長装置、成長工数の半減を図れるため、極め
て量産性が高くなる。
Therefore, the yield can be greatly improved in the manufacturing process, and the growth apparatus and the growth man-hours can be reduced by half, resulting in extremely high mass productivity.

以上の説明から明らかな様に、本発明によって低閾値で
高出力動作する単一モードの半導体レーザダイオードが
高い生産性で得られた。
As is apparent from the above description, according to the present invention, a single mode semiconductor laser diode which operates at a high output with a low threshold value can be obtained with high productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の半導体レーザダイオード
の概略的断面図、第2図は、第1図の(100)面を上面
にしたInP基板のメサ状凸部頂上平坦部以外の領域に、
液相エピタキシャル成長により電流狭窄用の半絶縁体層
を形成した斜視図、第3図は第1図のダイオードの要部
拡大断面図である。 10……半導体(InP)基板、 11……第1の半絶縁体(InPもしくはInGaAsp 4元混
晶)層、 12……活性層、 13……第2の半絶縁体(InPもしくはInGaAsp 4元混
晶)層、 14……第2のクラッド層、 15……キャップ層、 16……電流狭窄及び発光領域、 20……二重のストライプ溝(チャンネル)、 21……メサ凸部の頂上。
FIG. 1 is a schematic cross-sectional view of a semiconductor laser diode according to an embodiment of the present invention, and FIG. 2 is a plan view of the InP substrate with the (100) plane of FIG. In the area,
FIG. 3 is a perspective view in which a semi-insulating layer for current confinement is formed by liquid phase epitaxial growth, and FIG. 3 is an enlarged sectional view of a main part of the diode in FIG. 10 ... Semiconductor (InP) substrate, 11 ... First semi-insulator (InP or InGaAsp quaternary mixed crystal) layer, 12 ... Active layer, 13 ... Second semi-insulator (InP or InGaAsp quaternary) (Mixed crystal) layer, 14 ... second cladding layer, 15 ... cap layer, 16 ... current confinement and emission region, 20 ... double stripe groove (channel), 21 ... top of mesa protrusion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二重のストライプ状の溝に挟まれたメサ型
ストライプ状凸部を形成した一導電型半導体基板と、 前記凸部の頂上平坦部を除く部分に前記溝を埋めるよう
設けられた半絶縁体の第1の電流狭窄層と、それらの上
に設けられた前記基板よりバンドギャップの小さい一導
電型活性層と、 前記活性層に隣接して、前記凸部頂上平坦部を除く部分
に前記溝を埋めるよう設けられた半絶縁体の第2の電流
狭窄層と、 前記活性層の上に設けられた反対導電型のクラッド層
と、 前記クラッド層の上に設けられたキャップ層とを含むこ
とを特徴とする半導体レーザダイオード。
1. A one-conductivity-type semiconductor substrate having a mesa-type stripe-shaped convex portion sandwiched between double stripe-shaped grooves, and a portion of the convex portion excluding a flat top portion of the convex portion so as to fill the groove. A first current confinement layer of a semi-insulating material, an active layer of one conductivity type having a bandgap smaller than that of the substrate, which is provided on the first current confinement layer, and adjacent to the active layer, except for the flat top portion of the convex portion. A second current confinement layer of a semi-insulating material that is provided so as to fill the groove in a portion, a clad layer of opposite conductivity type provided on the active layer, and a cap layer provided on the clad layer A semiconductor laser diode comprising:
【請求項2】(a)一導電型半導体基板に、二重ストラ
イプ状の溝に挟まれたメサ型のストライプ状凸部を形成
する工程と、 (b)前記凸部頂上の平坦部を除く部分に、鉄もしむは
コバルトを添加した溶液を用いてInpの半絶縁性化合物
半導体層による電流狭窄層を形成する工程と、 (c)前記凸部を含む全表面に一導電型活性層を形成す
る工程と、 (d)その上に前記凸部頂上の平坦部を除く部分に
(c)工程と同様に第2の電流狭窄層を形成する工程
と、 (e)その後前記活性層の上に反対導電型のクラッド層
及びキャップ層を順次形成する工程とを含み、 前記(b)〜(e)の各工程を液相エピタキシャル成長
法による連続した一度の成長工程で行うことを特徴とす
る半導体レーザダイオードの製造方法。
2. A step of: (a) forming a mesa-shaped stripe-shaped convex portion sandwiched between double-stripe-shaped grooves on a semiconductor substrate of one conductivity type; and (b) excluding a flat portion on the top of the convex portion. A step of forming a current confinement layer of a semi-insulating compound semiconductor layer of Inp using a solution containing iron or iron or cobalt, and (c) forming an active layer of one conductivity type on the entire surface including the convex portion. A step of forming the second current confinement layer on the active layer except the flat portion on the top of the convex portion (d) in the same manner as the step (c); And a step of sequentially forming a clad layer and a cap layer of opposite conductivity type, wherein each of the steps (b) to (e) is performed in one continuous growth step by a liquid phase epitaxial growth method. Manufacturing method of laser diode.
JP63189279A 1988-07-28 1988-07-28 Semiconductor laser diode and manufacturing method thereof Expired - Lifetime JPH0666526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189279A JPH0666526B2 (en) 1988-07-28 1988-07-28 Semiconductor laser diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189279A JPH0666526B2 (en) 1988-07-28 1988-07-28 Semiconductor laser diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0239483A JPH0239483A (en) 1990-02-08
JPH0666526B2 true JPH0666526B2 (en) 1994-08-24

Family

ID=16238658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189279A Expired - Lifetime JPH0666526B2 (en) 1988-07-28 1988-07-28 Semiconductor laser diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0666526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679388B1 (en) * 1991-07-19 1995-02-10 Cit Alcatel SEMICONDUCTOR DOUBLE CHANNEL LASER AND ITS MANUFACTURING METHOD.
JP6119673B2 (en) 2014-06-04 2017-04-26 株式会社オートネットワーク技術研究所 connector
US20230216278A1 (en) * 2022-01-05 2023-07-06 Modulight Oy Method for fabricating semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137087A (en) * 1983-12-26 1985-07-20 Toshiba Corp Semiconductor laser device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AppliedPhysicsLetters48(23),9JUNE1986P.1572−P.1573

Also Published As

Publication number Publication date
JPH0239483A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
EP0025362B1 (en) A semiconductor light emitting device
US4841532A (en) Semiconductor laser
KR900003844B1 (en) Semiconductor laser device and manufacturing method thereof
JPS6243357B2 (en)
JPH0666526B2 (en) Semiconductor laser diode and manufacturing method thereof
JPS61164287A (en) Semiconductor laser
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
Tsang et al. Lateral current confinement by reverse‐biased junctions in GaAs‐AlxGa1− xAs DH lasers
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2738040B2 (en) Semiconductor light emitting device
JPH0629616A (en) Semiconductor laser diode and manufacturing method thereof
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JP2942404B2 (en) Method of manufacturing buried heterostructure semiconductor laser
JPH03203282A (en) Semiconductor laser diode
JPH0634429B2 (en) Method for selectively growing GaAs for formation of semiconductor laser and semiconductor laser
JPS6112399B2 (en)
JPH05226774A (en) Semiconductor laser element and its production
KR920002201B1 (en) Semiconductor laser chip and manufacture method
JPH0567849A (en) Semiconductor light emitting element
JPS62279688A (en) Manufacture of semiconductor laser element
JPH05299771A (en) Semiconductor laser diode
JPH08236858A (en) P-type substrate buried type semiconductor laser and its manufacture
JPS6239088A (en) Semiconductor laser
JPH07154031A (en) Semiconductor laser
JPH088482A (en) Semiconductor laser and manufacture thereof