JPH0665958B2 - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH0665958B2 JPH0665958B2 JP61027067A JP2706786A JPH0665958B2 JP H0665958 B2 JPH0665958 B2 JP H0665958B2 JP 61027067 A JP61027067 A JP 61027067A JP 2706786 A JP2706786 A JP 2706786A JP H0665958 B2 JPH0665958 B2 JP H0665958B2
- Authority
- JP
- Japan
- Prior art keywords
- fin
- heat exchanger
- plate
- flow path
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は並設フインとその両端部における連結板とを
一体成形して井桁形に構成した流路画成素子をプレート
間に挾持し,これらを上下方向に積層させたプレートフ
イン型の熱交換器に係り,特に上記流路画成素子におけ
る各フインの倒れ防止対策に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention holds a flow path defining element, which is formed in a double cross shape by integrally forming side-by-side fins and connecting plates at both ends thereof, between plates. The present invention relates to a plate fin type heat exchanger in which these are stacked in the vertical direction, and more particularly to measures for preventing the fins from collapsing in the flow path defining element.
プレートフイン型の熱交換器は単位体積当りの伝熱面積
が大きく,比較的小型で高効率の熱交換器として広く使
用されており,熱交換すべき2つの流体の流れ方の違い
から向流型,対向流型,直交(斜交)流型の三種類に分
けることができる。そして空調装置に利用されている空
気対空気熱交換器としては普通対向流型や直交流型が採
用されているが,これまでその基本的な構成は第12図に
示すように熱交換すべき2つの流体を仕切るプレート
(101)で複数列の平行流路を構成する波形板状のフイ
ン(102)を挾んで積層している。この第12図の空調用
のものにおいて,そのプレート(101)は伝熱性と透湿
性とを合わせもつた和紙をベースとする紙材で形成さ
れ,フイン(102)もプレート(101)と同じような紙材
を波形板に加工することで得られている。しかしながら
上記のように平板状のプレート(101)の間に波形板状
のフイン(102)を挾んで積層構造とする熱交換器は二
部材を交互に積層してゆかねばならないので生産性が悪
いうえ,積層途中においてフイン(102)の方向性に,
ばらつきができやすいといつた問題点があつた。そのた
め第13図に示すように所定間隔をおいて並設された複数
のフイン(3)と各フインの両端部に設けられフイン相
互間を橋絡する連結板(5)とから成る井桁形の流路画
成素子(4a)を,プレート(2)間に挾み,これらを上
下方向に積層したものが使用されるようになつてきた。The plate fin type heat exchanger has a large heat transfer area per unit volume and is widely used as a relatively small and highly efficient heat exchanger. Type, counter flow type, and orthogonal (oblique) flow type. The air-to-air heat exchangers used in air conditioners are usually of the counterflow type or the crossflow type, but until now the basic configuration should be heat exchange as shown in Fig. 12. A corrugated plate-like fin (102) forming a plurality of rows of parallel flow paths is sandwiched between plates (101) for partitioning two fluids. In the air conditioner shown in FIG. 12, the plate (101) is formed of a paper material based on Japanese paper having both heat conductivity and moisture permeability, and the fin (102) is the same as the plate (101). It is obtained by processing a corrugated board from different paper materials. However, as described above, the heat exchanger having the laminated structure in which the fins (102) having the corrugated plate shape are sandwiched between the flat plate (101) has to have two members alternately laminated, so that the productivity is poor. In addition, in the direction of the fin (102) during stacking,
There were some problems when it was easy to make variations. Therefore, as shown in FIG. 13, it has a double girder shape consisting of a plurality of fins (3) juxtaposed at predetermined intervals and connecting plates (5) provided at both ends of each fin and bridging the fins with each other. It has come to be used that a flow path defining element (4a) is sandwiched between plates (2) and these are vertically stacked.
そして上記各流路画成素子(4a)の各フイン(3)の形
状はフイン材料を減少させる目的で第14図に示すように
フインの高さHに対してその下底巾寸法(厚さ)TをT
/H=0.01〜0.3の範囲内に構成しているのが普通であ
つた。Further, the shape of each fin (3) of each flow path defining element (4a) has a lower bottom width dimension (thickness) with respect to the fin height H as shown in FIG. 14 for the purpose of reducing fin material. ) T to T
Usually, it is constructed within the range of /H=0.01 to 0.3.
従来の流路画成素子(4a)における各フイン(3)のT
/Hは以上の比に構成されているので,流路画成素子
(4a)を例えば第1図のように積み上げる際第15図また
は第16図に示すような両端連結板(5)を含めたフイン
(3)の倒れが発生しやすく,連結板(5)の破損の原
因となつたり、あるいは単位熱交換素子の高さの不ぞろ
いによる空気漏れ等の性能低下を引き起こす等の欠点が
あつた。T of each fin (3) in the conventional flow path defining element (4a)
Since / H is configured in the above ratio, when the flow path defining element (4a) is piled up, for example, as shown in FIG. 1, both end connecting plates (5) as shown in FIG. 15 or 16 are included. In addition, the fins (3) are likely to fall down, which may cause damage to the connecting plate (5), or may cause performance deterioration such as air leakage due to uneven height of the unit heat exchange elements. .
この発明は上記従来の欠点を解消するように流路画成素
子の各フインの倒れ防止とばらつくことの防止を図るこ
とを目的とする。An object of the present invention is to prevent the fins of the flow path defining element from collapsing and to prevent the fins from varying in order to solve the above-mentioned conventional drawbacks.
この発明の場合は,使用される流路画成素子の各フイン
の高さと底面でプレートに接続する部分を特定化すると
共に,各フインの下底巾寸法Tとフインの高さ寸法Hの
場合のT/Hを0.5ないし1.5の範囲内に設定して,積層
時の流路画成素子における各フインの安定性を連結板に
よる作用と共に,さらに高めてフインの倒れを防止する
ようにしている。In the case of the present invention, the height of each fin of the flow path defining element to be used and the portion to be connected to the plate at the bottom are specified, and in the case of the bottom bottom width dimension T of each fin and the fin height dimension H, T / H is set in the range of 0.5 to 1.5 so that the stability of each fin in the flow path defining element at the time of stacking is further enhanced by the action of the connecting plate and the fin is prevented from collapsing. .
この発明の場合は,流路画成素子における各フインの横
断面形状の特定化により,使用される材料の量が低減さ
れ、また各フインの上記T/Hの増大によりフインそれ
自体に倒れに対する反力が生ずることになり,両端部に
おける連結板との相乗作用により効果的な倒れ防止作用
が得られる。In the case of the present invention, the amount of the material used is reduced by specifying the cross-sectional shape of each fin in the flow path defining element, and the fin itself is prevented from collapsing due to the increase in T / H. A reaction force is generated, and the synergistic action with the connecting plates at both ends provides an effective fall prevention action.
先ず第17図に示す形状の従来のフイン(3)が上部から
の荷重により斜めになつた時の力の方向および倒れ方向
を考えると,図に示すようにフイン(3)が傾斜した状
態で,これに上の段の流路画成素子がプレート(2)を
介して乗せられ荷重がかけられると,フイン(3)の上
部に下向きの力Fが加わり,これに対する反力F1が下底
部に生ずるために,この2つの力FとF1により回転力A
が図示の方向に発生し,そのためフイン(3)は倒れる
ことになる。このことから本発明の場合は流路画成素子
(4)の各フイン(3)を第2図,第3図のように形成
するものであり,この場合は第2図に示すようにT/H
が1程度になり,したがつてこのフインを例えば第17図
の場合と同じ角度傾け,その上に同様の他の流路画成素
子をプレート(2)を介して乗せ荷重を加えると,フイ
ン(3)に対して加わる力Fおよび反力F1は第3図の状
態になるため図示のように回転力Aはフイン自体の倒れ
を防止する方向にかかることになり,積層時のフイン
(3)の倒れを両端部に設けた連結板(5)との相乗作
用により効果的に防止することになる。係具体的には各
フインの許容傾き角度を25゜とするとT/Hは0.47以上
であれば良く、また許容傾き角度を60゜とするとT/H
は1.732となり,現在使用されている一般的な流路画成
素子材の場合は上記T/Hを0.5ないし1.5程度とするの
が最適であることが実験的に確認されている。First, considering the direction of force and the tilting direction when the conventional fin (3) having the shape shown in FIG. 17 is obliquely contacted by the load from the upper part, the fin (3) is tilted as shown in the figure. , When the flow path defining element of the upper stage is placed on the plate via the plate (2) and a load is applied, a downward force F is applied to the upper part of the fin (3), and a reaction force F 1 against it is decreased. Because of the two forces F and F 1 generated at the bottom, the rotational force A
Occurs in the direction shown, which causes the fin (3) to fall. From this, in the case of the present invention, the fins (3) of the flow path defining element (4) are formed as shown in FIGS. 2 and 3. In this case, as shown in FIG. / H
Therefore, if this fin is tilted at the same angle as in the case of FIG. 17, and another similar flow path defining element is placed on it through the plate (2) and a load is applied, Since the force F and the reaction force F 1 applied to (3) are in the state shown in FIG. 3, the rotational force A is applied in the direction to prevent the fin itself from collapsing as shown in the drawing, and the fin ( The fall of 3) is effectively prevented by the synergistic action with the connecting plates (5) provided at both ends. Specifically, T / H should be 0.47 or more when the allowable tilt angle of each fin is 25 °, and T / H when the allowable tilt angle is 60 °.
Is 1.732, and it has been experimentally confirmed that the optimum T / H is 0.5 to 1.5 in the case of a general flow path defining element material currently used.
また第4図,第5図および第6図はフイン部分の材料の
量の低減も考慮に入れたこの発明の流路画成素子の一実
施例を示すものである。すなわち上記のようにフイン
(3)の倒れを防ぐにはT/Hを最小限0.5程度にすれ
ば良いのであるが,T/Hが1程度のものが実用面から望
ましい。しかしこの形状の場合にはフインとしての材料
の使用量がT/H=0.5の場合と比べて2倍となり,そ
の分コスト的にアツプするので、これを改善するために
第5図のように、当該フィンの底面で上記プレートと接
続する下底巾寸法T.上面で接続する上底巾寸法W,高さ寸
法Hの台形として下底巾寸法Tを巾広に確保しながら材
料の使用量を減少させようとするものであり,この場合
のT/H=1.0,W/T=0.2とするとフイン(3)の断面
積は となり,これによりT/H=0.6の長方形断面の場合と
同一となる。そしてこの時同じ傾きが生じるための底面
の高さの変化量を求めるとT/H=1.0の台形のほうが
T/H=0.6の長方形の場合の1.67倍となり,同じ変位
量に対して1/1.67の傾きしか生じないためにフイン自体
の安定性が高まる。すなわち断面形状を台形とすること
によりフインの安定性を確保しながらフインとして使用
される材料の節約も可能となる。なおこの時W/Tの比
は0.4以下が材料減少の効果は高くなるが,この形状の
成形方法等の関係からして0.1ないし0.9の範囲で使用す
るのが望ましい。Further, FIGS. 4, 5 and 6 show an embodiment of the flow path defining element of the present invention in consideration of reduction of the amount of material in the fin portion. That is, in order to prevent the fin (3) from collapsing as described above, the T / H should be set to a minimum of about 0.5, but a T / H of about 1 is desirable from the practical viewpoint. However, in the case of this shape, the amount of material used as fins is twice as much as that in the case of T / H = 0.5, and the cost increases accordingly, so to improve this, as shown in FIG. , The amount of material used while securing a wide lower bottom width T as a trapezoid of the upper bottom width W and height H that connect to the above plate at the bottom of the fin and the upper bottom. Is to decrease, and in this case T / H = 1.0 and W / T = 0.2, the cross-sectional area of fin (3) is Therefore, this is the same as in the case of a rectangular cross section with T / H = 0.6. Then, when the amount of change in the height of the bottom surface for obtaining the same inclination is calculated, the trapezoid with T / H = 1.0 is 1.67 times that of the rectangle with T / H = 0.6, which is 1 / The stability of the fin itself is increased because only the inclination of 1.67 occurs. That is, the trapezoidal cross-section makes it possible to save the material used as fins while ensuring the stability of the fins. At this time, if the W / T ratio is 0.4 or less, the effect of material reduction is high, but it is desirable to use it in the range of 0.1 to 0.9 in consideration of the molding method of this shape.
また第7図,第8図および第9図は上記台形フインに比
べ,さらに材料使用量を減少させるための各実施例であ
り、これらの場合のW/Tは0.1ないし0.9の範囲に設定
される。さらに流体を仕切るためのプレートは伝熱性を
有するものであれば顕熱交換が可能であるが,これを伝
熱性と透湿性を有する材料で構成すれば顕熱と潜熱の両
方すなわち全熱の熱交換が可能となり,空気対空気熱交
換器としての熱回収効率を大きくすることができる。Also, FIGS. 7, 8 and 9 are examples for further reducing the amount of material used as compared with the above trapezoidal fins, and the W / T in these cases is set in the range of 0.1 to 0.9. It Further, the plate for partitioning the fluid can exchange sensible heat if it has heat conductivity, but if it is made of a material having heat conductivity and moisture permeability, both sensible heat and latent heat, that is, total heat Exchange is possible, and heat recovery efficiency as an air-to-air heat exchanger can be increased.
その他第10図は熱交換すべき2つの空気流を一層ずつ交
互に通す上下一対の流路の入口(6)を正面側に有し,
かつ出口(7)が左右の反対方向に向うように開設した
対向流型熱交換器に第2図ないし第9図に示したフイン
構成の流路画成素子を実施した場合であり,また第11図
は最外側のフイン(3)を中間の他のフイン(3)より
巾広に形成し,熱交換器形成時の組立性の向上と,完成
後の空気漏れをより確実に防止するようにしたものであ
り,フイン構成としては第2図ないし第9図に示したも
のが同時に採用されている。Others Fig. 10 has a pair of upper and lower flow passage inlets (6) on the front side for alternately passing two air streams to be heat-exchanged,
In addition, it is a case where the flow path defining element having the fin configuration shown in FIGS. 2 to 9 is implemented in the counterflow heat exchanger opened so that the outlet (7) faces in the opposite direction to the left and right. Fig. 11 shows that the outermost fin (3) is formed wider than the other fins (3) in the middle to improve the assemblability when forming the heat exchanger and prevent air leakage after completion more reliably. The fin configuration shown in FIGS. 2 to 9 is adopted at the same time.
この発明は以上の実施例からも明らかなように,熱交換
器としては井桁形の流路画成素子を平板状のプレート間
に挾み,そのプレートの一つを共通にしてこれらを上下
方向に積層すると共に,流路画成素子のフィンの高さと
底面でプレートに接続する部分を以上述べたように特定
化しているので、フィンの両端部における連結板との相
乗作用により、より効果的にフィンの倒れを防止してば
らつくことも防ぎ伝熱効率を高めることができるという
効果を有するものである。As is apparent from the above-described embodiments, the present invention sandwiches a double-sided flow path defining element between flat plates as a heat exchanger, and uses one of the plates in common in the vertical direction. Since the height of the fins of the flow path defining element and the part that connects to the plate at the bottom are specified as described above, it is more effective due to the synergistic action with the connecting plates at both ends of the fin. In addition, the fins can be prevented from collapsing to prevent the fins from varying and the heat transfer efficiency can be improved.
第1図はこの発明の適用例としての直交流型熱交換器を
示す斜視図,第2図はこの発明の一実施例を示す流路画
成素子におけるフインの寸法関係を示す側面図,第3図
はフインの倒れが修正される時の力関係を示す側面図,
第4図,第7図,第8図および第9図はこの発明の他の
実施例である各種流路画成素子を示す側面図,第5図は
第4図のものにおけるフインの寸法関係を示す側面図,
第6図はそのフインの倒れが修正される時の力関係を示
す側面図,第10図はこの発明のフイン構成が実施された
流路画成素子とプレートの積層体から成る対向流型熱交
換器の斜視図,第11図は最外側のフインを中間の他のフ
インより巾広に形成したこの発明のフイン構成が実施さ
れた直交流型熱交換器用の流路画成素子を示す斜視図,
第12図は波形板状フインを使用した従来の直交流型熱交
換器の斜視図,第13図はフインとその相互間の連結板と
を一体成形した従来の井桁形の流路画成素子を示す斜視
図,第14図はそのフインの寸法関係を示す側面図,第15
図および第16図は上記流路画成素子の使用時におけるフ
インの倒れを示す側面図,第17図はそのフインが倒れる
時の力関係を示す側面図である。 なお図中、(1)は熱交換器,(2)はプレート,
(3)はフイン,(4)は流路画成素子,(5)は連結
板,(6)は入口,(7)は出口,Tは下底巾寸法,Hは高
さ寸法,Wは上底巾寸法を示すものである。FIG. 1 is a perspective view showing a cross-flow heat exchanger as an application example of the present invention, and FIG. 2 is a side view showing a dimensional relationship of fins in a flow path defining element showing an embodiment of the present invention. Fig. 3 is a side view showing the force relationship when the fall of the fin is corrected,
4, FIG. 7, FIG. 8 and FIG. 9 are side views showing various flow path defining elements which are other embodiments of the present invention, and FIG. 5 is a dimensional relationship of fins in FIG. Side view,
FIG. 6 is a side view showing the force relationship when the fin collapse is corrected, and FIG. 10 is a counterflow type heat composed of a laminated body of a flow path defining element and a plate in which the fin structure of the present invention is implemented. FIG. 11 is a perspective view of the exchanger, and FIG. 11 is a perspective view showing a flow path defining element for a cross-flow heat exchanger in which the fin structure of the present invention in which the outermost fin is formed wider than other fins in the middle is implemented. Figure,
FIG. 12 is a perspective view of a conventional cross-flow heat exchanger using corrugated plate fins, and FIG. 13 is a conventional cross-shaped flow path defining element in which fins and connecting plates between them are integrally molded. Figure 14 is a side view showing the dimensional relationship of the fins, Figure 14
FIG. 16 and FIG. 16 are side views showing the collapse of the fin when the flow path defining element is used, and FIG. 17 is a side view showing the force relationship when the fin is collapsed. In the figure, (1) is a heat exchanger, (2) is a plate,
(3) is a fin, (4) is a flow path defining element, (5) is a connecting plate, (6) is an inlet, (7) is an outlet, T is a bottom width dimension, H is a height dimension, W is The upper bottom width dimension is shown.
Claims (6)
と各フィンの両端部に設けられ,フィン相互間を橋絡す
る連結板とから成る井桁形の流路画成素子を伝熱性を有
するプレート間に挟持し,これらを上下方向に積層し,
それぞれのプレートで仕切られた流路に熱交換すべき2
つの空気流を一層ずつ交互に通して空気対空気熱交換を
行わせるようにしたものにおいて,上記流路画成素子の
各フィンの底面で上記プレートと接続する下底巾寸法T
とその高さ寸法Hの比T/Hを0.5ないし1.5の範囲内に
設定したことを特徴とする熱交換器。1. A double girder-shaped flow path defining element comprising a plurality of fins arranged in parallel at a predetermined interval and connecting plates provided at both ends of each fin and bridging the fins with each other. It is sandwiched between plates that have
Heat should be exchanged with the flow path divided by each plate 2
In a structure in which two air streams are alternately passed through to perform air-to-air heat exchange, a bottom width dimension T connected to the plate at the bottom of each fin of the flow path defining element
A heat exchanger characterized in that a ratio T / H of the height dimension H and the height dimension H is set within a range of 0.5 to 1.5.
巾寸法T,上面で接続する上底巾寸法Wとした時のW/T
を0.1ないし0.9の範囲内となる台形形状に設定した特許
請求の範囲第1項記載の熱交換器。2. W / T, where T is the bottom width of the fin connecting to the plate at the bottom of each fin, and W is the top width connecting at the top of the fin.
The heat exchanger according to claim 1, wherein the trapezoidal shape has a value of 0.1 to 0.9.
寸法T,上面で接続する上底巾寸法Wとした時のW/Tを
0.1ないし0.9の範囲内となる 凸形, またはこれらの形状の組合せとした特許請求の範囲第1
項記載の熱交換器。3. W / T when the bottom width dimension T connecting to the plate at the bottom surface of the fin and the top bottom width dimension W connecting at the top surface are W / T
Within the range of 0.1 to 0.9 Convex, Alternatively, a combination of these shapes may be used.
The heat exchanger according to the item.
で構成した特許請求の範囲第1項,第2項および第3項
のいずれかに記載された熱交換器。4. The heat exchanger according to any one of claims 1, 2, and 3, wherein the plate is made of a material having heat conductivity and moisture permeability.
に積層して,熱交換すべき2つの空気流を一層ずつ交互
に通す上下一対の流路を,その入口を正面の同一側に有
し,かつ出口が左右の反対方向に向うように両側に開設
された対向流型に形成した特許請求の範囲第1項および
第2項のいずれかに記載された熱交換器。5. A pair of upper and lower flow passages in which two flow passages for heat exchange are alternately passed by stacking the flow passage defining elements in a vertical direction through plates, and the inlets thereof are on the same side of the front surface. The heat exchanger according to any one of claims 1 and 2, wherein the heat exchanger is formed in a counter-flow type having an outlet on both sides so as to face left and right opposite directions.
の他のフィンよりプレートとの連結面を巾広に設定した
特許請求の範囲第1項,第2項および第5項のいずれか
に記載された熱交換器。6. An outermost fin of the flow path defining element, wherein a connecting surface with the plate is set wider than the other fins between the fins. The heat exchanger described in any of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61027067A JPH0665958B2 (en) | 1986-02-10 | 1986-02-10 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61027067A JPH0665958B2 (en) | 1986-02-10 | 1986-02-10 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62186194A JPS62186194A (en) | 1987-08-14 |
JPH0665958B2 true JPH0665958B2 (en) | 1994-08-24 |
Family
ID=12210724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61027067A Expired - Lifetime JPH0665958B2 (en) | 1986-02-10 | 1986-02-10 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0665958B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56112488U (en) * | 1980-01-28 | 1981-08-31 |
-
1986
- 1986-02-10 JP JP61027067A patent/JPH0665958B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62186194A (en) | 1987-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5872859B2 (en) | Heat exchanger | |
US4376460A (en) | Plate heat exchanger | |
WO1987006686A1 (en) | Counterflow heat exchanger with floating plate | |
US4893673A (en) | Entry port inserts for internally manifolded stacked, finned-plate heat exchanger | |
JP3654669B2 (en) | Plate heat exchanger | |
JP4504092B2 (en) | Plate heat exchanger | |
JPH0610587B2 (en) | Heat exchanger | |
JP3526321B2 (en) | Plate heat exchanger | |
JPH0129431Y2 (en) | ||
JPH0665958B2 (en) | Heat exchanger | |
JPH0534089A (en) | Heat exchanging element | |
CN112146484B (en) | Plate heat exchanger | |
JPS6332296A (en) | Layered heat exchanger | |
JPH07104115B2 (en) | Heat exchanger | |
JPH0875385A (en) | Heat exchanging element | |
JPH07260384A (en) | Plate type heat exchanger | |
CN219572764U (en) | Brazed heat exchanger | |
JP3543993B2 (en) | Plate heat exchanger | |
JPH0612215B2 (en) | Heat exchanger | |
JPH05157480A (en) | Heat exchanging element | |
JPH0318872Y2 (en) | ||
JP2000283682A (en) | Plate type heat exchanger | |
JP2543973Y2 (en) | Heat exchanger | |
JPS62200191A (en) | Plate type heat exchanger | |
JPH0624688Y2 (en) | Plate fin type heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |