JPH066520B2 - Method for producing silicon carbide whisker - Google Patents

Method for producing silicon carbide whisker

Info

Publication number
JPH066520B2
JPH066520B2 JP61000739A JP73986A JPH066520B2 JP H066520 B2 JPH066520 B2 JP H066520B2 JP 61000739 A JP61000739 A JP 61000739A JP 73986 A JP73986 A JP 73986A JP H066520 B2 JPH066520 B2 JP H066520B2
Authority
JP
Japan
Prior art keywords
powder
silicon carbide
heating
whiskers
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000739A
Other languages
Japanese (ja)
Other versions
JPS62162697A (en
Inventor
英晃 宮下
紀博 村川
明男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61000739A priority Critical patent/JPH066520B2/en
Publication of JPS62162697A publication Critical patent/JPS62162697A/en
Publication of JPH066520B2 publication Critical patent/JPH066520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化ケイ素ウイスカーの改良された製造法に関
するものである。
TECHNICAL FIELD The present invention relates to an improved method for producing silicon carbide whiskers.

ウイスカーとは針状結晶を意味し、単一の針状結晶内の
格子欠陥が皆無に近いので、その機械的強度は材料に期
待される理想的な最高値に近い強度の素材である。また
炭化ケイ素は耐熱性、耐蝕性の優れた化合物である。
Whiskers mean needle-like crystals, and since there are almost no lattice defects in a single needle-like crystal, their mechanical strength is a material whose strength is close to the ideal maximum expected for the material. Silicon carbide is a compound having excellent heat resistance and corrosion resistance.

従って、炭化ケイ素ウイスカーはこれらの性質を併せ持
つ、即ち機械的強度及び耐熱、耐蝕性に優れた新しい素
材であるので、金属やセラミックなどに添加して、これ
らの機械的強度や耐熱耐蝕性を高める補強剤としての用
途が期待されている。
Therefore, since silicon carbide whiskers are a new material that has these properties in combination, that is, it has excellent mechanical strength, heat resistance, and corrosion resistance, it can be added to metals and ceramics to enhance their mechanical strength and heat corrosion resistance. It is expected to be used as a reinforcing agent.

〔従来技術〕[Prior art]

炭化ケイ素ウイスカーを製造する従来の技術としては、
CH3SiCl3などの気体原料を使用して製造する方法も提案
されてはいるが、固体原料即ち酸化ケイ素と単体炭素の
混合物から製造する方法が工業的製造方法としては一般
的である。
As a conventional technique for manufacturing a silicon carbide whisker,
Although a method of manufacturing using a gas raw material such as CH 3 SiCl 3 has been proposed, a method of manufacturing from a solid raw material, that is, a mixture of silicon oxide and elemental carbon is a general industrial manufacturing method.

このような固体の原料から炭化ケイ素ウイスカーを製造
する方法は、天然ケイ石やSiCl4などの分解性ケイ素化
合物を、水蒸気雰囲気下で加水分解して得られる所謂、
エアロジルなどの酸化ケイ素とグラファイト、コーク
ス、カーボンブラックなどの炭素を粉砕混合し、嵩比重
の低い状態で非酸化性の雰囲気下、1300〜1800
℃に加熱することによって得ることが出来る。しかしな
がら、この方法を工業的な規模で実施した場合、我々が
検討したところによると反応の進行とともに反応生成物
であるウイスカーの占める見掛けの容積は、ケイ素酸化
物と単体炭素の混合物の仕込み時の見掛けの容積の半分
以下に減少するもので、この見掛けの容積の収縮によっ
て空隙が生ずるためか、反応容器の壁面に近い部分は長
く真直ぐに成長した良好なウイスカーが得られるもの
の、中心部は短く湾曲の多いウイスカーや微粒子状結晶
が生成するという問題点があった。
The method for producing a silicon carbide whisker from such a solid raw material is a degradable silicon compound such as natural silica stone or SiCl 4 , a so-called obtained by hydrolyzing in a steam atmosphere,
Silicon oxides such as Aerosil and carbons such as graphite, coke, and carbon black are crushed and mixed, and the bulk specific gravity is kept low in a non-oxidizing atmosphere at 1300 to 1800.
It can be obtained by heating to ℃. However, when this method is carried out on an industrial scale, according to our examination, the apparent volume occupied by the reaction product whiskers as the reaction progresses is such that when the mixture of silicon oxide and elemental carbon is charged. It is reduced to less than half of the apparent volume.Because of the contraction of the apparent volume, voids are generated, but a good whisker that grows straight and long in the part near the wall of the reaction vessel can be obtained, but the central part is short. There is a problem that whiskers with many curves and fine-grained crystals are generated.

この様な湾曲の多いウイスカーや微粒子状結晶の混入し
たウイスカーは、これを金属やセラミックなどに添加し
ても、その補強効果は満足できる程度でないという欠点
がある。
Such a whisker having a large amount of curvature or a whisker mixed with fine-grained crystals has a drawback in that even if it is added to a metal or ceramic, its reinforcing effect is not satisfactory.

また固体の原料から炭化ケイ素ウイスカーを製造する方
法としては、上記方法の外に、もみ殻を一酸化炭素雰囲
気下で加熱する方法、もみ殻を不活性ガス雰囲気下で一
旦加熱して得られる、炭化されたもみ殻を再度非酸化性
の雰囲気下で加熱する方法、もみ殻を燃焼させて得られ
る灰化物にカーボンブラックを混合した後非酸化性雰囲
気下で加熱する方法などが知られている。
As a method for producing silicon carbide whiskers from a solid raw material, in addition to the above methods, a method of heating rice husks in a carbon monoxide atmosphere, a method of heating rice husks once in an inert gas atmosphere, Known methods include heating carbonized rice husks again in a non-oxidizing atmosphere, and mixing carbon black with the ash obtained by burning rice husks and then heating it in a non-oxidizing atmosphere. .

しかしながら、農業副産物であるもみ殻は、その性状が
天候や産出地あるいは品種などによって異なり、また採
取、運搬過程で種々雑多の不純物や異物が混入し易いた
め、得られる炭化ケイ素ウイスカーの品質が安定し難い
といった欠点があった。また、もみ殻を加熱する方法で
は、得られた炭化ケイ素ウイスカーのほぼ2倍の重量割
合で微粒子状の炭化ケイ素結晶が、さらにもみ殻の炭化
物やもみ殻の灰化物とカーボンブラックの混合物を加熱
する方法では、同程度の重量割合で微粒子状の炭化ケイ
素結晶が、同時に副生しウイスカーと微粒子状結晶との
混合物として得られるので、高収率で炭化ケイ素ウイス
カーを得ることが出来ず更に、この混合物から炭化ケイ
素ウイスカーのみを分離して取り出すことは容易ではな
く、分離操作を行なった後にも微粒子状結晶が少なから
ずウイスカー中に残存するという欠点があった。
However, the properties of rice husk, which is an agricultural by-product, vary depending on the weather, the place of origin, the variety, etc., and various impurities and foreign substances are easily mixed in during the collection and transportation process, so the quality of the obtained silicon carbide whiskers is stable. There was a drawback that it was difficult to do. In addition, in the method of heating the rice husks, the silicon carbide crystals in the form of fine particles are heated at a weight ratio almost twice that of the obtained silicon carbide whiskers, and further the carbide of the rice husks and the mixture of the ash of the rice husks and the carbon black are heated. In the method, fine silicon carbide crystals in the same weight ratio are obtained as a mixture of whiskers and fine crystals that are by-produced at the same time, and thus silicon carbide whiskers cannot be obtained in high yield. It is not easy to separate and take out only the silicon carbide whiskers from this mixture, and there is a drawback that even after the separation operation, a small amount of fine-grained crystals remain in the whiskers.

〔本発明の目的〕[Purpose of the present invention]

本発明の目的は、短く湾曲の多いウイスカーや微粒子状
の炭化ケイ素結晶の副成をほとんど伴うことなく、高収
率で炭化ケイ素ウイスカーを製造する新規な方法を提供
することである。
It is an object of the present invention to provide a novel method for producing silicon carbide whiskers in high yield, with little whiskers with short curvature and by-products of silicon carbide crystals in the form of fine particles.

〔問題を解決するための手段〕[Means for solving problems]

本発明者らは、上記従来技術の問題点を解決すべく鋭意
検討した結果、ケイ素酸化物粉末と単体炭素粉末を含む
粉末を、加熱するにあたり該加熱部に通気性構造体を共
存させて加熱すれば、反応生成物が収縮することによっ
て生じる空隙が内部に適当に分散され、この結果、生成
する炭化ケイ素ウイスカーの形状の加熱位置による相異
が極めて少なくなり、かつ短く湾曲の多いウイスカーや
微粒子状の炭化ケイ素結晶が著しく減少する現象を見い
出し、本発明を完成するに到ったものである。
As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have found that when heating a powder containing a silicon oxide powder and a simple substance carbon powder, a heating element is heated in the presence of an air-permeable structure. By doing so, the voids generated by the contraction of the reaction product are dispersed appropriately inside, and as a result, the difference in the shape of the silicon carbide whiskers generated due to the heating position is extremely small, and whiskers and fine particles with short curvature are often present. The present invention has been completed by discovering a phenomenon in which the number of silicon carbide crystals in the form of crystals is significantly reduced.

即ち、本発明の炭化ケイ素ウイスカーの製造方法は、ケ
イ素酸化物粉末と単体炭素粉末を混合し、嵩比重が0.
2g/cc以下の粉末組成物を1300〜1800℃で
加熱するに当り、該加熱部に連続的な空隙を有する通気
性構造体を形成し、該粉末組成物が該構造体空隙部に充
填された状態で上記加熱を行なうことを特徴とするもの
である。
That is, in the method for producing a silicon carbide whisker of the present invention, the silicon oxide powder and the simple substance carbon powder are mixed, and the bulk specific gravity is 0.
When heating a powder composition of 2 g / cc or less at 1300 to 1800 ° C., a breathable structure having continuous voids is formed in the heating part, and the powder composition is filled in the void part of the structure. It is characterized in that the above-mentioned heating is carried out in a closed state.

〔発明の詳細な開示〕[Detailed Disclosure of the Invention]

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明で使用可能なケイ素酸化物としてはケイ石、シリ
カゲル、エアロジルなどが挙げられる。他方、単体炭素
としてはカーボンブラック、黒鉛、コークスなどが挙げ
られる。これらケイ素酸化物と単体炭素を粉砕してよく
混合することにより、嵩比重が0.2g/cc以下のケ
イ素酸化物粉末と単体炭素粉末を含む粉末組成物を得る
ことが出来る。
Examples of the silicon oxide usable in the present invention include silica stone, silica gel, aerosil and the like. On the other hand, simple carbon includes carbon black, graphite, coke and the like. By pulverizing and thoroughly mixing these silicon oxides and simple substance carbon, it is possible to obtain a powder composition containing a silicon oxide powder having a bulk specific gravity of 0.2 g / cc or less and a simple substance carbon powder.

ケイ素酸化物と単体炭素粉末を混合する装置としては、
混合過程でケイ素酸化物の粉末と単体炭素の粉末が圧密
化を生じにくいもの、例えば二重円スイ型、V型、リボ
ン型などの各混合機、あるいは気流式浮遊混合機などが
適する。
As a device for mixing silicon oxide and elementary carbon powder,
Suitable are those in which the powder of silicon oxide and the powder of elemental carbon are unlikely to be consolidated during the mixing process, for example, each mixer such as double circle type, V type, ribbon type, or air flow type floating mixer.

粉末状のケイ素酸化物と単体炭素から炭化ケイ素ウイス
カーを製造する場合、一般にウイスカーの成長には気相
が関与していると言われており、非酸化性の雰囲気下で
炭化ケイ素ウイスカーを成長させる場合、下記(1)
式、(2)式及び(3)式の様な過程を経て、炭化ケイ
素ウイスカーが成長するものと考えられる。
When producing silicon carbide whiskers from powdered silicon oxide and elemental carbon, it is generally said that the vapor phase is involved in the growth of the whiskers, and the silicon carbide whiskers are grown in a non-oxidizing atmosphere. In the following case (1)
It is considered that the silicon carbide whiskers grow through the processes of formulas (2) and (3).

SiO2(s)+C(s)→SiO2(g)+CO(g)・・・(1) SiO(g)+3CO(g)→SiO+2CO2(g)・・・・(2) CO2(g)+C(s)→2CO(g)・・・・・・・・・(3) 従ってSiOガスおよびCOガスをいかに効率よく、か
つ均一に発生させるかが重要となる。
SiO 2 (s) + C (s) → SiO 2 (g) + CO (g) ・ ・ ・ (1) SiO (g) + 3CO (g) → SiO + 2CO 2 (g) ・ ・ ・ ・ (2) CO 2 (g ) + C (s) → 2CO (g) ... (3) Therefore, it is important to efficiently and uniformly generate SiO gas and CO gas.

このためには、ケイ素酸化物粉末と単体炭素粉末が、可
能な限り極力均一に混合された粉末組成物となっている
ことが望ましい。かくのごとく可能な限り極力均一な混
合を得るためには、ケイ素酸化物粉末と単体炭素粉末は
夫々微細である程好ましく、粒径がサブミクロン単位程
度のものが特に望ましい。
For this purpose, it is desirable that the silicon oxide powder and the elemental carbon powder are mixed as uniformly as possible in a powder composition. As described above, in order to obtain a mixture as uniform as possible, the silicon oxide powder and the simple substance carbon powder are preferably as fine as possible, and particularly preferably those having a particle size of submicron unit.

本発明において粉末組成物比表面積は、粉体状固形物の
平均粒子径を簡便に示す尺度として用いられる。もとも
と粉体状固形物はそれぞれ固有の形状、粒子径分布を有
するので、粉体全体について粒子径、粒子径分布を正確
に測定し表示することは極めて困難であって、このため
固形物の表面に吸着する物質、例えば窒素ガスの量を測
定し、これを平均粒子径に対応する尺度として用いるこ
とが便利に行われており、本発明においてもこれを用い
ることにする。窒素吸着比表面積が大きいことは、即
ち、平均粒子径が小さいことを意味する。
In the present invention, the specific surface area of the powder composition is used as a simple measure of the average particle size of the powdery solid matter. Originally, each powdery solid has a unique shape and particle size distribution, so it is extremely difficult to accurately measure and display the particle size and particle size distribution of the entire powder. It is convenient to measure the amount of a substance, such as nitrogen gas, that is adsorbed on the, and use this as a scale corresponding to the average particle diameter, and this is also used in the present invention. A large nitrogen adsorption specific surface area means that the average particle diameter is small.

この様にして得られたケイ素酸化物粉末と単体炭素粉末
を含む粉末組成物は、高周波加熱炉、通電抵抗加熱炉な
どを用いて1300〜1800℃、好ましくは1400
〜1600℃に加熱することによって、一応炭化ケイ素
ウイスカーとすることができる。
The powder composition containing the silicon oxide powder and the elemental carbon powder obtained in this manner is heated to 1300 to 1800 ° C., preferably 1400 ° C., using a high frequency heating furnace, an electric resistance heating furnace, or the like.
By heating to ˜1600 ° C., it can be made into a silicon carbide whisker.

しかしながら、単にこの様にして得られた炭化ケイ素ウ
イスカーは、前述の如く、反応容器の壁面に近い部分は
長く真直ぐに成長した良好なウイスカーが得られるもの
の、中心部は短く湾曲の多いウイスカーや微粒子状結晶
が生成し、好ましくないことをすでに述べたごとく我々
は見出した。
However, the silicon carbide whiskers thus obtained are, as described above, good whiskers that grow long and straight in the part close to the wall surface of the reaction vessel, but whiskers and fine particles with a short center and many curves. We have already found that crystal-like crystals are formed, which is not preferable.

本発明は、この問題を解決するため、ケイ素酸化物粉末
と単体炭素粉末を含む粉末組成物を加熱して炭化ケイ素
ウイスカーを得るに当り、該加熱部に連続的な空隙部を
有する通気性構造体を形成し、該ケイ素酸化物粉末と単
体炭素粉末の粉末組成物が該構造体空隙部に充填された
状態で該加熱を行うことを特徴とするものである。
MEANS TO SOLVE THE PROBLEM The present invention solves this problem by heating a powder composition containing silicon oxide powder and elemental carbon powder to obtain silicon carbide whiskers. A body is formed, and the heating is performed in a state where the powder composition of the silicon oxide powder and the simple substance carbon powder is filled in the voids of the structure.

本発明で言う通気性構造体とは、本発明者等がすでに提
案している特願昭59−137091号明細書記載のも
のと同様の趣旨のものであり、下記のごとき立体的形状
の小片を構造単位とし、これを多数個積み重ねることに
よって保持された、通気が可能な連続的な空隙部を形成
した三次元的な構造体である。そして、該連続した空隙
部が1300〜1800℃の加熱によっても保持される
様な、薄肉の炭素質物質を意味する。構造単位たる立体
的小片の形状としては、円柱、円筒、円錐、球、三角
柱、三角錘、立方体、四角柱、四角錘、テトラポット形
あるいはヒモ状などが好適であり、それらの大きさは円
柱、円錐、三角柱などの場合、底面積は0.1〜20c
、好ましくは0.5〜5cm、高さは0.2〜1
0cm、好ましくは0.5〜5cmが好適であり、ヒモ
状の場合、幅は0.1〜5cm、好ましくは0.2〜2
cm、長さは0.5〜20cm、好ましくは1〜10c
mが好適である。
The breathable structure referred to in the present invention has the same meaning as that described in the specification of Japanese Patent Application No. 59-137091 already proposed by the present inventors, and has a three-dimensional small piece as described below. Is a structural unit, and is a three-dimensional structure formed by stacking a large number of the structural units and forming continuous voids capable of venting. Further, it means a thin carbonaceous material in which the continuous voids are retained even by heating at 1300 to 1800 ° C. As the shape of the three-dimensional small piece as a structural unit, a cylinder, a cylinder, a cone, a sphere, a triangular prism, a triangular pyramid, a cube, a quadrangular prism, a quadrangular pyramid, a tetrapot shape, or a string shape is suitable, and their size is a cylinder. , Cone, triangular prism, etc., the bottom area is 0.1-20c
m 2 , preferably 0.5-5 cm 2 , height 0.2-1
0 cm, preferably 0.5 to 5 cm is suitable, and in the case of a string, the width is 0.1 to 5 cm, preferably 0.2 to 2
cm, length 0.5 to 20 cm, preferably 1 to 10 c
m is preferred.

第3図は、上記のごとき通気性構造体を形成するため
の、構造単位たる小片の形状の一例を念のため図示した
ものであるが、(イ)〜(ヘ)のごとき規則的な形状の
ものに限られず、(ト)に示した馬の鞍形状のもの、
(チ)に示したテラレット状のもの、さらには(リ)長
いひも、(ヌ)短いひも状のものなど何れでもよい。こ
れらはその1種類あるいは2種類以上を、規則的にある
いは不規則に多数個積みかさねることによって、容易に
理解されるように連続的な空隙部を有する通気性構造体
は容易に形成される。
FIG. 3 shows an example of the shape of a small piece that is a structural unit for forming the breathable structure as described above as a precaution, but the regular shape as shown in (a) to (f) is shown. Not limited to the horse saddle shape shown in (g),
The terraret shape shown in (h), a long string (ri), and a short string (nu) may be used. By stacking a large number of one type or two or more types thereof in a regular or irregular manner, a breathable structure having continuous void portions can be easily formed, as will be easily understood.

この様に形成された構造体空隙部に、ケイ素酸化物粉末
と単体炭素粉末を含む粉末組成物を充填するには、ま
ず、構造単位小片を規則的もしくは不規則的に充填して
から、ケイ素酸化物粉末と単体炭素粉末を含む粉末組成
物を加えて該空隙部に流入せしめてもよいし、構造単位
小片と該組成物を充填混合してから充填層を形成しても
よい。
In order to fill the voids thus formed with the powder composition containing the silicon oxide powder and the elemental carbon powder, first, the structural unit pieces are regularly or irregularly filled, and then the silicon is added. A powder composition containing an oxide powder and a simple substance carbon powder may be added and allowed to flow into the voids, or structural unit pieces and the composition may be filled and mixed before forming a filling layer.

後者の方法を採用した場合、ケイ素酸化物粉末と単体炭
素粉末を含む粉末組成物は、これら多数個の小片が構成
する通気性構造体の共存下で加熱することによって、言
い換えればケイ素酸化物粉末と単体炭素粉末を含む粉末
組成物と多数個の小片を混合し、これを加熱炉内に充填
した状態が、多数個の小片を積み重ねたことによって生
じる空隙に、ケイ素酸化物粉末と単体炭素粉末を含む粉
末組成物が存在する状態で、1300〜1800℃に加
熱することによって、均一な形状の炭化ケイ素ウイスカ
ーを得ることができる。ここで、小片の形状としては例
えば円筒とし、小片の内部も連続的な空隙とすれば、加
熱炉内で粉末組成物が占める充填可能容積をさほど低下
させずにすむ。ケイ素酸化物粉末と単体炭素粉末を含む
粉末組成物を通気性構造体の共存下で加熱する工程にお
いて、酸素が加熱雰囲気中に存在すると単体炭素が燃焼
除去されるためアルゴン、ヘリウム、窒素などの非酸化
性雰囲気中で加熱することが好ましい。しかしながら、
通常の条件下では含炭素粉末組成物から炭化ケイ素が生
成する過程で一酸化炭素が副生し、おのずと非酸化性雰
囲気となるため、本発明において脱酸素のため特に特別
の手段を施す必要はない。
When the latter method is adopted, the powder composition containing the silicon oxide powder and the simple substance carbon powder is heated in the coexistence of the breathable structure composed of these small pieces, in other words, the silicon oxide powder. And a powder composition containing a simple substance carbon powder and a large number of small pieces are mixed and filled in a heating furnace, a silicon oxide powder and a simple substance carbon powder are formed in a void generated by stacking a large number of small pieces. A silicon carbide whisker having a uniform shape can be obtained by heating to 1300 to 1800 ° C. in the presence of the powder composition containing a. Here, if the shape of the small piece is, for example, a cylinder and the inside of the small piece is also a continuous void, the fillable volume occupied by the powder composition in the heating furnace can be prevented from being lowered so much. In the step of heating the powder composition containing the silicon oxide powder and the simple substance carbon powder in the coexistence of the breathable structure, when the oxygen is present in the heating atmosphere, the simple substance carbon is burned and removed, so that argon, helium, nitrogen, etc. It is preferable to heat in a non-oxidizing atmosphere. However,
Under normal conditions, carbon monoxide is by-produced in the process of producing silicon carbide from the carbon-containing powder composition, and naturally becomes a non-oxidizing atmosphere.Therefore, in the present invention, it is not necessary to take special measures for deoxidation. Absent.

ケイ素酸化物粉末と単体炭素粉末を含む粉末組成物と、
通気性構造体を構成する構造単位たる小片とを混合する
物質も、混合過程でケイ素炭化物粉末と単体炭素粉末を
含む粉末組成物が、圧密化を生じにくい装置、例えば二
重円スイ型、V型、リボン型などの混合機、あるいは気
流式浮遊混合機などが適する。ここで小片の重量が大き
ければこの混合過程でケイ素酸化物粉末と単体炭素粉末
を含む粉末組成物が圧密化され易く、このため小片は重
量の軽い薄肉状であることが好ましい。
A powder composition containing a silicon oxide powder and a simple carbon powder,
A substance that mixes a small piece that is a structural unit that constitutes a breathable structure is also a device in which a powder composition containing a silicon carbide powder and a simple substance carbon powder is less likely to be compacted during the mixing process, for example, a double-circle Sui type, V Type, ribbon type mixers, or air flow type floating mixers are suitable. Here, if the weight of the small piece is large, the powder composition containing the silicon oxide powder and the elemental carbon powder is likely to be compacted during this mixing process. Therefore, it is preferable that the small piece has a light weight and thin shape.

本発明における上記小片の材質は1300〜1800℃
の加熱によっても形状にさほどの変化がなく、空隙を保
つことが出来れば任意であり、数ミリメートルかそれ以
下の厚みの黒鉛、陶器、磁器、あるいはアルミナ、ジル
コニアなどの耐熱セラミックスも好適に使用可能である
が、更に望ましくはセルロース質をその主成分とする素
材、いわゆる洋紙、板紙などの紙が好適である。その理
由は、紙はそれ自身薄肉状の物質であり、また他の素材
に比較して種々の形状に加工することが容易であり、更
に価格も安いためである。これらの紙は1300〜18
00℃に加熱すれば炭化して薄肉の炭状となり、寸法は
加熱する前に比較して10〜35%の収縮が生じるが、
形状はほぼ原形をとどめ連続的な空隙は保つことができ
る。
The material of the small pieces in the present invention is 1300 to 1800 ° C.
The shape does not change much even when heated, and it is optional as long as it can maintain voids. Graphite, ceramics, porcelain with a thickness of several millimeters or less, or heat-resistant ceramics such as alumina and zirconia can also be used suitably. However, it is more preferable to use a material containing cellulosic as a main component, that is, paper such as so-called western paper or paperboard. The reason is that paper is a thin substance itself, is easy to process into various shapes as compared with other materials, and is cheap in price. These papers are 1300-18
When heated to 00 ° C, it is carbonized to become a thin charcoal, and the size shrinks by 10 to 35% compared to before heating.
The shape remains almost original and continuous voids can be maintained.

なお、セルロース質を主成分とする紙で形成した小片
は、ウイスカーが形成された後に下記のごとく燃焼除去
することができるが、該生成したウイスカーと分離して
から再使用することもできる。この場合、紙は元の形状
を保持したまま炭化せしめられているので、もはや収縮
することはなく一層好適に本発明の目的に使用すること
ができる。もちろん、初めから不活性ガス等非酸化性雰
囲気中で加熱して炭化させておいてもかまわない。
The small pieces formed of paper containing cellulosic as a main component can be burned and removed as described below after the whiskers are formed, but can also be reused after being separated from the generated whiskers. In this case, since the paper is carbonized while maintaining its original shape, it will no longer shrink and can be used more preferably for the purpose of the present invention. Of course, the carbonization may be performed by heating in a non-oxidizing atmosphere such as an inert gas from the beginning.

通気性構造体と共存するケイ素酸化物粉末と単体炭素粉
末を含む粉末組成物の嵩比重は、加熱する前の状態で
0.2g/cc以下、好ましくは0.15g/cc以下
であることが望ましい。けだし嵩比重が0.2g/cc
を超えると、加熱して得られる炭化ケイ素が粒状あるい
は湾曲した形状となり易い傾向が急激に増大するとい
う、本発明者らの実験的知見に基づくものである。
The bulk specific gravity of the powder composition containing the silicon oxide powder coexisting with the breathable structure and the simple substance carbon powder is 0.2 g / cc or less, preferably 0.15 g / cc or less before heating. desirable. Bare bulk density is 0.2 g / cc
This is based on the experimental findings of the present inventors that the tendency that the silicon carbide obtained by heating tends to become granular or curved is rapidly increased.

ケイ素酸化物粉末と単体炭素粉末を含む粉末組成物中の
ケイ素酸化物に対する炭素の割合は、C/Si(式量
比、すなわちg−アトムC/g−アトムSiと定義す
る)で少なくとも1.5以上、好ましくは2.5以上が
形状の均一な炭化ケイ素ウイスカーを得る目的で好まし
い。C/Si式量比が1.5未満では炭化ケイ素ウイス
カーの形状が不均一になりやすい傾向があり、またケイ
素酸化物が1部未反応として生成した炭化ケイ素ウイス
カー中の残存するので好ましくない。
The ratio of carbon to silicon oxide in the powder composition containing the silicon oxide powder and the elementary carbon powder is C / Si (formula ratio, that is, defined as g-atom C / g-atom Si) of at least 1. 5 or more, preferably 2.5 or more is preferable for the purpose of obtaining a silicon carbide whisker having a uniform shape. If the C / Si formula weight ratio is less than 1.5, the shape of the silicon carbide whiskers tends to be non-uniform, and the silicon oxide remains unreacted in the silicon carbide whiskers, which is not preferable.

尚、この残存したケイ素酸化物は生成した炭化ケイ素ウ
イスカーを弗化水素酸などで洗浄すれば容易に取除くこ
とは出来るがそれだけ操作が煩雑であり、またケイ素酸
化物の損失ともなる。C/Si式量比の上限は特に設け
る必要はないが、これをあまりに大にして例えばC/S
iが20〜30以上と高い条件にすることは炭素化合物
の単なる損失にしかならない。
The remaining silicon oxide can be easily removed by washing the generated silicon carbide whiskers with hydrofluoric acid or the like, but the operation is complicated and the silicon oxide is lost. It is not necessary to set the upper limit of the C / Si formula weight ratio, but if it is set too large, for example, C / S
Setting i as high as 20 to 30 or more results in mere loss of the carbon compound.

本発明の実施の結果、得られる炭化ケイ素ウイスカーに
は単体炭素が含有されている場合があるが、この残存炭
素は該ウイスカーを酸素の存在下に500〜1000℃
に加熱してこれを燃焼することにより容易に除去するこ
とができる。具体的には空気中で加熱するかまたは燃料
を過剰空気で燃焼させた酸素を含む熱ガス雰囲気下にお
くことで簡便に行うことができる。
As a result of the practice of the present invention, the obtained silicon carbide whiskers may contain elemental carbon, but this residual carbon causes the whiskers to fall in the presence of oxygen at 500 to 1000 ° C.
It can be easily removed by heating and burning it. Specifically, it can be easily carried out by heating in air or by placing the fuel in a hot gas atmosphere containing oxygen burned with excess air.

〔発明の効果〕〔The invention's effect〕

ケイ素酸化物粉末と単体炭素粉末を含む粉末組成物から
炭化ケイ素ウイスカーを製造する場合、該粉末組成物が
極めて微細であることが良好なウイスカーを高収率で得
る上で好ましいが、装置を大型化した場合にはそれのみ
では不十分である。
When a silicon carbide whisker is produced from a powder composition containing a silicon oxide powder and a simple carbon powder, it is preferable that the powder composition be extremely fine in order to obtain a good whisker with a high yield. When it becomes, it is not enough.

本発明は、該粉末組成物が本発明の通気性構造体の空隙
部に充填された状態で加熱することにより、装置を大型
化しても形状の揃った炭化ケイ素ウイスカーを高収率で
得ることを可能にしたものであり、炭化ケイ素ウイスカ
ーの工業的規模での経済的製造方法を可能にした点で産
業上の利上可能性はきわめて大なるものである。
The present invention is to obtain a silicon carbide whisker with a uniform shape in a high yield even if the apparatus is upsized by heating the powder composition in a state where the voids of the breathable structure of the present invention are filled. The industrial profitability is extremely high in that it enables an economical manufacturing method of silicon carbide whiskers on an industrial scale.

以下、実施例により本発明の実施の態様をより具体的に
説明する。
Hereinafter, embodiments of the present invention will be described more specifically with reference to Examples.

なお、実験の結果得られたウイスカーの評価は次のごと
くして行った。すなわち、電子顕微鏡映像によつて多数
(400〜600本程度)のウイスカーについてそれぞ
れ長さ(L)および幅(D)を求め、LおよびL/D
(アスペクト比)の算術平均値によってその形状を評価
す因子とした。これはウイスカーは金属、セラミックス
などに加えて補強剤として用いる場合、枝分れや湾曲が
なく直線状の形状であることが、金属等の中での分散状
態が均一になり易い点で望ましいとされていること、ま
た長さ(L)が充分に長く、更に直径(D)に対する長
さの比(アスペクト比:L/D)が大きい程、補強剤と
しての効果が大きいとされていることを考慮したもので
ある。
The whiskers obtained as a result of the experiment were evaluated as follows. That is, the length (L) and the width (D) of each of a large number (about 400 to 600) of whiskers are obtained by using an electron microscope image, and L and L / D are obtained.
The arithmetic average value of (aspect ratio) was used as a factor for evaluating the shape. When whiskers are used as a reinforcing agent in addition to metals, ceramics, etc., it is desirable that the whiskers have a linear shape without branching or curving because the dispersed state in the metal or the like tends to be uniform. And that the longer the length (L) is and the larger the ratio of the length to the diameter (D) (aspect ratio: L / D), the greater the effect as a reinforcing agent. Is taken into consideration.

実施例1 SiO粉末(比表面瀬190m/g)200gとカ
ーボンブラック(比表面積110m/g)400gを
V型混合機で混合し、SiO粉末と単体炭素粉末を含
む粉末組成物600gを得た。
Mixing the Example 1 SiO 2 powder (specific surface Seto 190m 2 / g) 200g of carbon black (specific surface area 110m 2 / g) 400g with a V mixer, a powder composition comprising an SiO 2 powder and elemental carbon powder 600g Got

このSiO粉末と単体炭素粉末を含む粉末組成物60
0gと、クラフト紙を素材とした外径15mm、長さ2
0mm、肉厚0.2mmの円筒(第3図(ロ))150
0個とを、再度V型混合機を用いて混合した後、内径1
80mm、高さ600mmの加熱空間を有する通電抵抗
炉に充填した。炉内に充填したSiOと単体炭素を含
む粉末の嵩比重は0.075g/ccであり、構造単位
たる円筒と小片と共存した状態で炉内に占める見掛け容
積は8.0であった。
Powder composition 60 containing this SiO 2 powder and elementary carbon powder
0g, outer diameter 15mm, length 2 made from kraft paper
A cylinder with a thickness of 0 mm and a thickness of 0.2 mm (Fig. 3 (b)) 150
After mixing again with a V-type mixer,
It was filled in an electric resistance furnace having a heating space of 80 mm and a height of 600 mm. The bulk specific gravity of the powder containing SiO 2 and elemental carbon filled in the furnace was 0.075 g / cc, and the apparent volume occupied in the furnace in the state of coexisting with the cylinder as the structural unit and the small pieces was 8.0.

これをアルゴン雰囲気中で1500℃2時間の加熱を行
ない炭化ケイ素を生成させた。加熱後の状態は見掛けの
容積が6.5に低下しており、円筒形のクラフト紙は
炭化して1辺が約20%の収縮を生じていたが、円筒形
の形状は実質的にとどめていた。
This was heated in an argon atmosphere at 1500 ° C. for 2 hours to generate silicon carbide. After heating, the apparent volume had dropped to 6.5, and the cylindrical kraft paper had carbonized and shrank by about 20% on one side, but the cylindrical shape remained substantially. Was there.

これを一旦冷却後空気中で700℃に加熱して、残存し
た単体炭素及び炭化したクラフト紙を燃焼除去し、更に
フッ酸水溶液で残存したSiO及びクラフト紙の灰分
等を洗浄濾過して炭化ケイ素129gを得た。粉末X線
回析スペクトル解析の結果結晶形状はβ型であり、電子
顕微鏡映像観察の結果、針状のウイスカーのみが観察さ
れ、長さ(L)、アスペクト比(L/D)の変動は小さ
く、それらの算術平均値はそれぞれ24μm、48であ
った。第1図にその電子顕微鏡を示す。
After cooling this once, it is heated to 700 ° C. in air to burn and remove the remaining elemental carbon and carbonized kraft paper, and further wash and filter the remaining SiO 2 and ash of kraft paper with a hydrofluoric acid aqueous solution to carbonize. 129 g of silicon was obtained. As a result of powder X-ray diffraction spectrum analysis, the crystal shape was β type, and as a result of electron microscope image observation, only needle-like whiskers were observed, and variations in length (L) and aspect ratio (L / D) were small. , And their arithmetic mean values were 24 μm and 48, respectively. The electron microscope is shown in FIG.

比較例1 実施例1で得たSiO粉末と単体炭素粉末を含む粉末
組成物600gを、クラフト紙を素材とした構造単位た
る円筒との混合を行わない以外は実施例1と全く同様に
して加熱し、炭化ケイ素を生成させた。炉内に充填した
状態でのSiO粉末と単体粉末を含む粉末組成物の嵩
比重は0.075/g/ccで、見掛けの容積は7.9
であつたが、加熱後の状態は見掛けの容積が3.1
に低下していた。これより実施例1と同様にして残存し
た単体炭素及びSiOを除去して炭化ケイ素151g
を得た。
Comparative Example 1 In exactly the same manner as in Example 1 except that 600 g of the powder composition containing the SiO 2 powder obtained in Example 1 and the simple substance carbon powder was not mixed with a cylinder that is a structural unit made of kraft paper. Heated to generate silicon carbide. The bulk specific gravity of the powder composition containing the SiO 2 powder and the simple substance powder in the state filled in the furnace is 0.075 / g / cc, and the apparent volume is 7.9.
However, the apparent volume after heating was 3.1.
Was falling to. From this, in the same manner as in Example 1, the remaining elemental carbon and SiO 2 were removed to obtain 151 g of silicon carbide.
Got

粉末X線回析スペクトル解折の結果結晶形状はβ型であ
り、電子顕微鏡映像観察の結果、炭化ケイ素が生成した
位置によってその形状に相異があることが観察され、見
掛けの容積が低下することによって生じた加熱炉内の炉
壁に近い厚さ約10mmの部分では、真直ぐに成長した
ウイスカーが生成していることが確認されたものの、そ
の内側には第2図の電子顕微鏡写真に示すように短く、
折れ曲がりの多いウイスカーが大量に生産していること
が観察され、L、L/Dの算術平均はそれぞれ9μm、
24であった。
As a result of powder X-ray diffraction spectrum analysis, the crystal shape was β type, and as a result of electron microscope image observation, it was observed that the shape was different depending on the position where silicon carbide was generated, and the apparent volume was reduced. Although it was confirmed that whiskers that grew straight were generated in a portion of the heating furnace having a thickness of about 10 mm, which was close to the furnace wall, the inside thereof was shown in the electron micrograph of FIG. So short,
It was observed that whiskers with many bends were produced in large quantities, and the arithmetic mean of L and L / D was 9 μm,
It was 24.

実施例2 ケイ酸ナトリウム(水ガラス)を塩酸で分解し、凝固物
を水洗乾燥して得られたシリカゲル(SiO99.7
%)を粉砕し、比表面積42m/gのシリカゲル微粉
末を得た。このシリカゲル微粉末270gとカーボンブ
ラック(比表面瀬94m/g)560gをV型混合機
で混合し、SiO粉末と単体粉末を含む粉末組成物8
30gを得た。
Example 2 A silica gel (SiO 2 99.7) obtained by decomposing sodium silicate (water glass) with hydrochloric acid and washing the coagulated product with water and drying.
%) Was pulverized to obtain silica gel fine powder having a specific surface area of 42 m 2 / g. 270 g of this silica gel fine powder and 560 g of carbon black (specific surface area 94 m 2 / g) were mixed by a V-type mixer, and a powder composition 8 containing SiO 2 powder and a simple substance powder.
30 g was obtained.

このSiO粉末と炭素粉末を含む粉末組成物830g
と、ロール紙を素材とした肉厚0.3mm、幅5mm、
長さ7cmの第3図(ヌ)のごときヒモ状小片2700
個とを、再度V型混合機を用いて混合した後、内径18
0mm、高さ600mmの加熱空間を有する通電抵抗炉
に充填した。炉内に充填したSiO粉末と炭素粉末を
含む粉末組成物の嵩比重は0.11g/ccであり、構
造単位たる円筒小片と共存した状態で炉内に占める見掛
け容積は7.5であった。
830 g of a powder composition containing this SiO 2 powder and carbon powder
And a roll paper material of 0.3 mm thickness, 5 mm width,
String-shaped small piece 2700 with a length of 7 cm as shown in Fig. 3 (nu)
After mixing again with the V type mixer again, the inner diameter 18
It was filled in an electric resistance furnace having a heating space of 0 mm and a height of 600 mm. The bulk specific gravity of the powder composition containing SiO 2 powder and carbon powder filled in the furnace was 0.11 g / cc, and the apparent volume occupied in the furnace was 7.5 in the state of coexisting with the cylindrical small piece as the structural unit. It was

これをアルゴンガス雰囲気中1600℃4時間の加熱を
行ない、炭化ケイ素を生成させた。加熱後の状態は見掛
けの容積が5.7に低下しており、ヒモ状小片は炭化
して1辺が約20%の収縮を生じていたが、ヒモ状の形
状は実質的にとどめていた。
This was heated in an argon gas atmosphere at 1600 ° C. for 4 hours to generate silicon carbide. In the state after heating, the apparent volume was reduced to 5.7, and the string-shaped small pieces were carbonized and contracted by about 20% on one side, but the string-shaped shape was substantially stopped. .

これを一旦冷却後空気中で700℃に加熱して、残存し
た単体炭素及び炭化したクラフト紙を燃焼除去し、更に
フッ酸水溶液で残存したケイ素酸化物及びクラフト紙の
灰分等を洗浄濾過して炭化ケイ素203gを得た。粉末
X線回析スペクトル解析の結果結晶形状はβ型であり、
電子顕微鏡映像観察の結果、針状のウイスカーのみが観
察され、長さ(L)、アスペクト比(L/D)の変動は
小さく、それらの算術平均値はそれぞれ18μm、35
であった。
After cooling this once, it is heated to 700 ° C. in the air to burn and remove the remaining elemental carbon and the carbonized kraft paper, and further wash and filter the remaining silicon oxide and ash of the kraft paper with an aqueous hydrofluoric acid solution. 203 g of silicon carbide was obtained. As a result of powder X-ray diffraction spectrum analysis, the crystal form was β type,
As a result of electron microscope image observation, only needle-like whiskers were observed, the fluctuations in the length (L) and the aspect ratio (L / D) were small, and the arithmetic average values thereof were 18 μm and 35, respectively.
Met.

以上、実施例及び比較例から判る通り、ケイ素酸化物粉
末と単体炭素粉末を含む粉末組成物から、炭化ケイ素ウ
イスカーを製造する場合、該粉末組成物が本発明の通気
性構造体の空隙部に充填された状態で加熱すれば、実施
例1及び2に示す様に装置を大型化しても長さ及びアス
ペクト比が均質で折れ曲がりの少ない、形状の優れたウ
イスカーが得られる。
As described above, as can be seen from Examples and Comparative Examples, when a silicon carbide whisker is produced from a powder composition containing a silicon oxide powder and a simple carbon powder, the powder composition is present in the voids of the breathable structure of the present invention. When heated in a filled state, whiskers having a uniform shape and a small number of bends, which are uniform in length and aspect ratio, can be obtained even if the apparatus is enlarged as shown in Examples 1 and 2.

これに対し本発明の通気性構造体を使用しない場合は、
比較例1に示す様に、短く折れ曲がりの多いウイスカー
が多量に混在することが理解される。
On the other hand, when the breathable structure of the present invention is not used,
As shown in Comparative Example 1, it is understood that a large amount of short whiskers with many bends are mixed.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は走査型電子顕微鏡を用いて撮影し
た炭化ケイ素ウイスカー結晶を示す写真である。倍率は
第1図は1000倍、第2図は2000倍である。 第3図は本発明において使用する通気性構造体を形成す
るための構造単位たる小片の形状の1例を示す斜視図で
ある。
1 and 2 are photographs showing silicon carbide whisker crystals taken by using a scanning electron microscope. The magnification is 1000 times in FIG. 1 and 2000 times in FIG. FIG. 3 is a perspective view showing an example of the shape of a small piece which is a structural unit for forming the breathable structure used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ケイ素酸化物粉末と単体炭素粉末を混合
し、嵩比重が0.2g/cc以下の粉末組成物を130
0〜1800℃で加熱するに当り、該加熱部に連続的な
空隙を有する通気性構造体を形成し、該粉末組成物が該
構造体空隙部に充填された状態で上記加熱を行なうこと
を特徴とする炭化ケイ素ウイスカーの製造方法。
1. A powder composition having a bulk specific gravity of 0.2 g / cc or less, which is obtained by mixing a silicon oxide powder and a simple carbon powder.
When heating at 0 to 1800 ° C., a breathable structure having continuous voids is formed in the heating portion, and the heating is performed in a state where the powder composition is filled in the voids of the structure. A method for producing a silicon carbide whisker, which is characterized.
【請求項2】通気性構造体が円柱、円筒、三角柱、四角
柱からなる群より選択される形状の小片を構造単位とし
て、立体的に多数積み重ねて構成される特許請求の範囲
第1項記載の方法。
2. A gas permeable structure comprising a plurality of small pieces each having a shape selected from the group consisting of a cylinder, a cylinder, a triangular prism, and a quadrangular prism, as a structural unit, and stacking them three-dimensionally. the method of.
【請求項3】通気性構造体の主成分がセルロース質であ
ることを特徴とする特許請求の範囲第1項もしくは2項
記載の方法。
3. The method according to claim 1 or 2, wherein the main component of the breathable structure is cellulosic.
JP61000739A 1986-01-08 1986-01-08 Method for producing silicon carbide whisker Expired - Lifetime JPH066520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000739A JPH066520B2 (en) 1986-01-08 1986-01-08 Method for producing silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000739A JPH066520B2 (en) 1986-01-08 1986-01-08 Method for producing silicon carbide whisker

Publications (2)

Publication Number Publication Date
JPS62162697A JPS62162697A (en) 1987-07-18
JPH066520B2 true JPH066520B2 (en) 1994-01-26

Family

ID=11482083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000739A Expired - Lifetime JPH066520B2 (en) 1986-01-08 1986-01-08 Method for producing silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPH066520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204399A (en) * 1989-02-01 1990-08-14 Kobe Steel Ltd Production of sic whisker
JPH02204398A (en) * 1989-02-01 1990-08-14 Kobe Steel Ltd Production of sic whisker
JPH0323300A (en) * 1989-06-17 1991-01-31 Toshiba Ceramics Co Ltd Production of silicon carbide whisker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117499A (en) * 1984-07-04 1986-01-25 Mitsui Toatsu Chem Inc Production of silicon carbide whisker

Also Published As

Publication number Publication date
JPS62162697A (en) 1987-07-18

Similar Documents

Publication Publication Date Title
US4500504A (en) Process for preparing silicon carbide whiskers
Koc et al. Synthesis of beta silicon carbide powders using carbon coated fumed silica
Van Dijen et al. The chemistry of the carbothermal synthesis of β-SiC: Reaction mechanism, reaction rate and grain growth
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
Krishnarao et al. Formation of SiC from rice husk silica-carbon black mixture: Effect of rapid heating
Krishnarao et al. Formation of SiC whiskers from compacts of raw rice husks
JPH066520B2 (en) Method for producing silicon carbide whisker
US4904622A (en) Process for the preparation of silicon carbide whiskers
EP0272773B1 (en) Process for production silicon carbide whiskers
JP3977472B2 (en) Method for producing high density isotropic graphite material having low thermal expansion coefficient
JPH0380759B2 (en)
US5080879A (en) Process for producing silicon carbide platelets and the platelets so produced
JPS58172297A (en) Manufacture of sic whisker
JPS599519B2 (en) Manufacturing method for high-grade SIC whiskers
Shimada et al. Synthesis of β-SiC whiskers from silica black ore
JP2004161507A (en) Silicon carbide nanorod and its production process
JPS5820799A (en) Preparation of silicon carbide whisker
EP0179670A2 (en) Production of silicon carbide cobweb whiskers
JP2019112239A (en) SiC POWDER, AND PRODUCTION METHO THEREOF
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH0613440B2 (en) Method for manufacturing silicon nitride whiskers
JPS5945637B2 (en) Method for manufacturing silicon carbide whiskers
JPH0522678B2 (en)
JPS63260899A (en) Production of silicon carbide whisker
JPS62265200A (en) Production of whisker of silicon carbide