JPH0663061B2 - Method for manufacturing magnetic disk substrate material - Google Patents

Method for manufacturing magnetic disk substrate material

Info

Publication number
JPH0663061B2
JPH0663061B2 JP61207431A JP20743186A JPH0663061B2 JP H0663061 B2 JPH0663061 B2 JP H0663061B2 JP 61207431 A JP61207431 A JP 61207431A JP 20743186 A JP20743186 A JP 20743186A JP H0663061 B2 JPH0663061 B2 JP H0663061B2
Authority
JP
Japan
Prior art keywords
annealing
magnetic disk
disk substrate
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61207431A
Other languages
Japanese (ja)
Other versions
JPS6362853A (en
Inventor
栄喜 碓井
日出男 藤本
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61207431A priority Critical patent/JPH0663061B2/en
Publication of JPS6362853A publication Critical patent/JPS6362853A/en
Publication of JPH0663061B2 publication Critical patent/JPH0663061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度Al−Mg系合金を使用した磁気ディスクサ
ブストレート用素材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a material for a magnetic disk substrate using a high-purity Al-Mg alloy.

[従来技術] 磁気ディスクサブストレートの材料としては従来、0.4
〜0.7重量%の遷移金属(主にFe,Mn)を含有するJIS508
6合金材料が用いられている。
[Prior Art] Conventionally, the material of the magnetic disk substrate is 0.4.
JIS 508 containing ~ 0.7 wt% transition metal (mainly Fe, Mn)
6 alloy materials are used.

この技術においては、0.4〜0.7%の遷移金属を含有せし
めることにより、素材をサブストレートへ加工する過程
で生ずる歪を除去するための焼鈍によって発生するおそ
れのある2次再結晶(巨大結晶)の発生を抑制してい
る。
In this technique, by containing 0.4 to 0.7% of a transition metal, secondary recrystallization (giant crystal) which may be generated by annealing for removing strain generated in the process of processing the material into a substrate is formed. The occurrence is suppressed.

しかし、JIS5086合金材料を用いた磁気ディスクサブス
トレートでは、磁気ディスクサブストレート中の金属間
化合物の微細化を行なうことができず、従って、近年の
磁気ディスクの高記録密度化に対応することができな
い。
However, in the magnetic disk substrate using JIS5086 alloy material, it is not possible to miniaturize the intermetallic compound in the magnetic disk substrate, and thus it is not possible to cope with the recent increase in recording density of magnetic disks. .

そこで、近年は、Mn,Cr,Ti等の遷移金属の添加量を抑制
した高純度Al−Mg系合金よりなる材料が用いられてお
り、かかる材料を用いた磁気ディスクサブストレート用
素材の製造方法としては、450〜560℃で均熱後、熱間圧
延し、次いで、55〜90%の加工率で冷間圧延する技術が
知られている。
Therefore, in recent years, materials made of high-purity Al-Mg-based alloys in which the addition amount of transition metals such as Mn, Cr, and Ti are suppressed have been used, and a method for producing a material for a magnetic disk substrate using such a material. For example, there is known a technique of soaking at 450 to 560 ° C, hot rolling, and then cold rolling at a working rate of 55 to 90%.

[発明が解決しようとする問題点] しかし、従来の上記技術には次のような問題点がある。[Problems to be Solved by the Invention] However, the above-described conventional techniques have the following problems.

一般に、磁気ディスクサブストレートは次の工程に従っ
て素材を加工することにより製造される。
Generally, a magnetic disk substrate is manufactured by processing a material according to the following steps.

(イ)打ち抜き (金型打ち抜き) (ロ)歪取り焼鈍(350〜400℃) (ハ)粗加工 (端面、及び表面粗加工) (ニ)焼鈍 (350〜420℃) (ホ)表面の鏡面加工(ダイヤモンドターニング、ポリ
ッシュ) ここで冷間加工率を55〜90%の範囲で行なう理由は、冷
間加工率を高くすることにより素材強度を高くし、打抜
き加工時のエッジ部のダレを小さくするためである。
(A) Punching (die punching) (b) Strain relief annealing (350 to 400 ° C) (c) Roughing (end face and surface roughening) (d) Annealing (350 to 420 ° C) (e) Surface mirror surface Machining (diamond turning, polishing) The reason for performing the cold working rate in the range of 55 to 90% is to increase the cold working rate to increase the material strength and reduce the sagging of the edge during punching. This is because

しかしながら従来用いられてきた0.4〜0.7%の遷移金属
を含むAl−Mg系合金では問題にならなかったが、高純度
アルミニウム地金を用いたAl−Mg系合金では次のような
問題点が生じてくる。
However, although it has not been a problem with Al-Mg alloys containing 0.4 to 0.7% of transition metals that have been used conventionally, the following problems occur with Al-Mg alloys using high-purity aluminum ingot. Come on.

この様なAl−Mg系合金よりなる素材は2次再結晶温度
が低いため高温焼鈍すると2次再結晶(巨大結晶)を生
じる場合がある。
Since a material made of such an Al-Mg alloy has a low secondary recrystallization temperature, secondary recrystallization (giant crystal) may occur when it is annealed at a high temperature.

巨大結晶粒を有する素材は表面仕上げ加工において結晶
粒間段差を生じるため、磁気ディスクサブストレートと
して充分な性能が得られない。
Since a material having huge crystal grains has a step between crystal grains during surface finishing, sufficient performance cannot be obtained as a magnetic disk substrate.

一方、焼鈍温度を低くすれば2次再結晶は防止できる
ものの、磁気ディスクサブストレートの重要な特性であ
るフラットネス向上が安定して行えない。フラットネス
向上については高温焼鈍が好ましい。
On the other hand, although the secondary recrystallization can be prevented by lowering the annealing temperature, the flatness, which is an important characteristic of the magnetic disk substrate, cannot be stably improved. High temperature annealing is preferable for improving flatness.

そこで、2次再結晶温度が高く、高温焼鈍においても2
次再結晶が生じない高純度Al−Mg系合金よりなる磁気デ
ィスクサブストレート用素材が希求されている。
Therefore, the secondary recrystallization temperature is high, and even in high temperature annealing,
A material for a magnetic disk substrate made of a high-purity Al-Mg-based alloy that does not cause secondary recrystallization has been desired.

本発明は高温焼鈍においても巨大結晶粒を生じない高純
度Al−Mg系合金よりなる磁気ディスクサブストレート用
素材の製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for producing a material for a magnetic disk substrate, which is made of a high-purity Al-Mg-based alloy that does not generate huge crystal grains even at high temperature annealing.

[問題点を解決するための手段] 上記問題点は、遷移元素含有量が0.2重量%未満であるA
l−Mg系合金よりなる磁気ディスクサブストレート用素
材であって、熱間圧延及び該熱間圧延後の冷間圧延によ
り製造する磁気ディスクサブストレート用素材の製造方
法において、該冷間圧延における最終の冷間加工率を20
〜50%の範囲で行なうことを特徴とする磁気ディスクサ
ブストレート用素材の製造方法によって解決される。
[Means for Solving Problems] The above problem is that the content of the transition element is less than 0.2% by weight.
A material for a magnetic disk substrate made of an l-Mg alloy, which is the final in the cold rolling in the method for manufacturing the material for a magnetic disk substrate produced by hot rolling and cold rolling after the hot rolling. Cold working rate of 20
This is solved by a method for producing a material for a magnetic disk substrate, which is characterized by being performed in a range of up to 50%.

以下に本発明をより詳細に説明する。The present invention will be described in more detail below.

本発明により製造される素材は、遷移元素含有量が0.2
重量%未満であるAl−Mg系合金よりなる。
The material produced by the present invention has a transition element content of 0.2.
It is composed of an Al-Mg alloy that is less than wt%.

遷移元素含有量が0.2重量%以上では、Fe,Mn,Ti等の遷
移金属は金属間化合物を作って晶出し、この晶出した金
属間化合物は磁気ディスクサブストレートの高記録密度
化を阻害するからである。
When the content of the transition element is 0.2% by weight or more, transition metals such as Fe, Mn, and Ti form intermetallic compounds and crystallize, and the crystallized intermetallic compounds impede high recording density of the magnetic disk substrate. Because.

本発明では最終の実質冷間圧延の加工率を20〜50%、よ
り好ましくは30〜45%の範囲とする。
In the present invention, the final substantially cold rolling working rate is set in the range of 20 to 50%, more preferably 30 to 45%.

熱間圧延及び冷間圧延はたとえば次のように行なえばよ
い。
The hot rolling and cold rolling may be performed as follows, for example.

熱間圧延における圧延終了温度がAl−Mg系合金の再結
晶温度(300〜340℃)である場合には熱間圧延終了後再
結晶温度以上で、かつ巨大結晶粒を生じない温度範囲で
焼鈍を行った後20〜50%冷間圧延を行う方法。
When the rolling end temperature in hot rolling is the recrystallization temperature (300 to 340 ° C) of the Al-Mg alloy, annealing is performed at a temperature range higher than the recrystallization temperature after the hot rolling and without forming large crystal grains. After 20% to 50% cold rolling.

熱間圧延における圧延終了温度が再結晶温度未満(25
0〜300℃)である場合、あるいは充分に再結晶温度以上
にコントロールできない場合には熱間圧延終了後、再結
晶温度以上でかつ巨大結晶粒を生じない温度範囲で焼鈍
を行った後20〜50%の冷間圧延を行う方法 目的とする素材の板厚が薄い場合には、冷間圧延の工
程途中で再結晶温度以上、巨大結晶粒を生じる温度未
満、具体的には300〜400℃で中間焼鈍を行った後、最終
の冷間圧延を20〜50%加工率の範囲で行う方法 等の方法が採用できる。
The rolling end temperature in hot rolling is less than the recrystallization temperature (25
0 to 300 ° C.), or if the temperature cannot be controlled sufficiently above the recrystallization temperature, after hot rolling is completed, annealing is performed within the temperature range above the recrystallization temperature and at which large crystal grains are not generated Method of performing 50% cold rolling When the plate thickness of the target material is thin, it is higher than the recrystallization temperature during the cold rolling process and lower than the temperature at which huge crystal grains are generated, specifically 300 to 400 ° C. After the intermediate annealing is performed in, the final cold rolling may be performed in the range of 20 to 50% working rate.

本発明において冷間加工率を20〜50%の範囲に限定した
のは次の理由による。
The reason why the cold working ratio is limited to the range of 20 to 50% in the present invention is as follows.

冷間加工率が20%未満の場合は、実用的な焼鈍温度範囲
(350〜430℃)で焼鈍すると2次再結晶、巨大結晶粒は
生じないものの1次再結晶粒の結晶粒が粗大化し、表面
の仕上げ工程において結晶粒段差が大きくなる。また充
分な強度も得られないため打ち抜き時のエッジダレが大
きくなる等の問題があり磁気ディスクサブストレートと
して充分な性能が得られない。
If the cold working ratio is less than 20%, annealing does not occur in the practical annealing temperature range (350 to 430 ° C), but secondary recrystallization and large crystal grains do not occur, but the primary recrystallized grains become coarse. In the surface finishing step, the crystal grain step becomes large. Further, since sufficient strength cannot be obtained, there is a problem that the edge sag at the time of punching becomes large, and sufficient performance cannot be obtained as a magnetic disk substrate.

また冷間加工率が50%を越えると、1次再結晶粒は充分
に小さくなり強度も向上するが、素材をサブストレート
へ加工(打抜き、粗加工、表面の鏡面加工等)する際に
発生する歪を除去するために行なう歪取り焼鈍により2
次再結晶を生じ易くなるため好ましくない。
If the cold working rate exceeds 50%, the primary recrystallized grains will be sufficiently small and the strength will be improved, but this will occur when processing the material into a substrate (punching, roughing, surface mirror finishing, etc.). The strain relief annealing performed to remove the strain
Secondary recrystallization is likely to occur, which is not preferable.

[発明の実施例] 以下本発明を実施例により更に詳細に説明する。[Examples of the Invention] The present invention will be described in more detail with reference to Examples.

(実施例1) 第1表に示す組成のAl−Mg系合金を溶製した。第1表に
おいて、合金No.1及び合金No.2は、遷移金属含有量(F
e,Mn,Cr,Tiの含有量の合計)は本発明の範囲内である。
一方、合金No.3は、Fe,Mn,Cr,Tiの含有量の合計が本発
明の範囲より多い比較例である。
(Example 1) An Al-Mg alloy having the composition shown in Table 1 was melted. In Table 1, alloy No. 1 and alloy No. 2 are transition metal contents (F
The total content of e, Mn, Cr and Ti) is within the scope of the present invention.
On the other hand, alloy No. 3 is a comparative example in which the total content of Fe, Mn, Cr and Ti is higher than the range of the present invention.

上記により溶製した鋳塊を熱間圧延、冷間圧延により、
4m/m厚板とした。この板より14インチ(355.6mm)サ
イズのディスクブランクを打ち抜き、350℃×4hrの焼鈍
(1段目焼鈍)を行った後、第2表に示す各種の焼鈍温
度で焼鈍(2段目焼鈍)を行った。
Hot-rolling the ingot produced by the above, by cold rolling,
It was a 4 m / m thick plate. A 14 inch (355.6 mm) size disk blank was punched from this plate, annealed at 350 ° C. for 4 hours (first step annealing), and then annealed at various annealing temperatures shown in Table 2 (second step annealing). I went.

熱間圧延条件、冷間圧延条件、焼鈍条件は第2表に示す
通りであり、また打ち抜き時のダレ、冷間加工後の強
度、最終焼鈍後の結晶粒径も第2表に示す通りである。
The hot rolling condition, the cold rolling condition and the annealing condition are as shown in Table 2, and the sagging during punching, the strength after cold working, and the grain size after the final annealing are also as shown in Table 2. is there.

第2表に示すように、冷間加工率が14%と本発明範囲よ
り低い比較例(No.6)では打抜き時にダレが発生した。
また、冷間加工率が54%と本発明範囲より高い比較例
(No.7)では、375℃における焼鈍において巨大結晶粒
が発生した。
As shown in Table 2, in the comparative example (No. 6) having a cold working ratio of 14%, which is lower than the range of the present invention, sagging occurred during punching.
Further, in the comparative example (No. 7) having a cold working ratio of 54%, which is higher than the range of the present invention, huge crystal grains were generated during annealing at 375 ° C.

それに対し、本発明の実施例(No.1〜No.4)においては
打抜き時にもダレは発生せず、また、巨大結晶粒発生は
No.4を除きなかった。No.4についても425℃という高温
において始めて発生した。
On the other hand, in the examples (No. 1 to No. 4) of the present invention, sagging did not occur even at the time of punching, and giant crystal grains were not generated.
No. 4 was not removed. No. 4 also occurred for the first time at a high temperature of 425 ° C.

(実施例2) 実施例1で用いたNo.5の熱間圧延終了材を370℃×4hrに
焼鈍し、その後0〜70%の各種の冷間圧延を行った。こ
の板をシャー切断後350×4hrの焼鈍(1段目焼鈍)を行
い、第3表に示す各種の焼鈍温度で焼鈍(2段目焼鈍)
を行った。
(Example 2) The No. 5 hot-rolled material used in Example 1 was annealed at 370 ° C x 4 hours, and then various cold rolling of 0 to 70% was performed. This plate was shear cut, annealed at 350 x 4 hr (first-stage annealing), and annealed at various annealing temperatures shown in Table 3 (second-stage annealing).
I went.

冷間圧延加工率、冷間圧延後及び最終焼鈍後の結晶粒径
は第3表に示す通りである。
Table 3 shows the cold rolling working ratio, the crystal grain size after cold rolling and after the final annealing.

第3表において、No.9は冷間加工率が15%である比較例
であり、No.13,No.14は冷間加工率がそれぞれ60%,80%
である比較例である。No.10〜No.12は本発明の実施例で
ある。
In Table 3, No. 9 is a comparative example with a cold working rate of 15%, and No. 13 and No. 14 have a cold working rate of 60% and 80%, respectively.
Is a comparative example. No. 10 to No. 12 are examples of the present invention.

第3表に示すように、No.9は打抜き時にダレが発生し、
No.13,No.14は400℃における焼鈍で巨大結晶粒が発生し
ている。
As shown in Table 3, No. 9 caused sagging when punching,
No.13 and No.14 have large crystal grains generated by annealing at 400 ℃.

それに対し、本発明の実施例においてはダレの発生もな
く、また、425℃の焼鈍においても巨大結晶粒の発生が
ない。
On the other hand, in the examples of the present invention, no sagging occurs, and no large crystal grains occur even at 425 ° C. annealing.

(実施例3) 実施例1で用いたNo.4の熱間圧延終了材を所定の板厚ま
で冷間圧延した後中間焼鈍(第1段目焼鈍)を340×4hr
の条件で行い、更に冷間圧延により、1.5mmの冷間圧延
材とした。この圧延材より95mmφ×25mmのディスクブラ
ンクを打ち抜き、340℃×4hrの焼鈍(1段目焼鈍)を行
った後、第4表に示す各種の焼鈍温度で焼鈍(2段目焼
鈍)を行った。
(Example 3) The No. 4 hot-rolled material used in Example 1 was cold-rolled to a predetermined plate thickness and then subjected to intermediate annealing (first-stage annealing) for 340 x 4 hours.
The above conditions were followed by cold rolling to obtain a cold rolled material of 1.5 mm. A disk blank of 95 mmφ × 25 mm was punched from this rolled material, annealed at 340 ° C. × 4 hr (first step annealing), and then annealed at various annealing temperatures shown in Table 4 (second step annealing). .

冷間圧延条件、打ち抜き時のエッジ部のダレ、冷間圧延
後の強度、最終焼鈍後の結晶粒径は第4表に示す通りで
ある。
Table 4 shows cold rolling conditions, edge sagging during punching, strength after cold rolling, and grain size after final annealing.

本発明の実施例(No.16〜19)においてはいずれも打抜
き時にダレは発生しなかった。また、No.19を除き400℃
における焼鈍によっても巨大結晶粒の発生は認められな
かった。冷間圧延における圧延率が45%と高いNo.19
は、400℃においてはじめて巨大結晶粒の発生が認めら
れた。
In each of the examples (Nos. 16 to 19) of the present invention, sagging did not occur during punching. In addition, except for No. 19, 400 ℃
Generation of large crystal grains was not recognized even by the annealing in. No. 19 with high rolling rate of 45% in cold rolling
The formation of large crystal grains was first observed at 400 ℃.

それに対し、従来例(No.20)では375℃における焼鈍に
よって巨大結晶粒の発生が認められた。
On the other hand, in the conventional example (No. 20), generation of huge crystal grains was recognized by annealing at 375 ° C.

[発明の効果] 上述した実施例で明らかな通り、遷移金属含有量が0.2
%未満の高純度Al−Mg系についても、冷間加工率を20〜
50%の範囲にコントロールすることにより、ブランク打
ち抜き時のダレは発生せず、1次再結晶粒径もコントロ
ールでき、かつ375℃近傍の高温における焼鈍によって
も巨大結晶粒を生じさせることのない、磁気ディスクサ
ブストレート用素材を提供できるようになった。
[Effects of the Invention] As is clear from the above-mentioned examples, the transition metal content is 0.2
% For high purity Al-Mg systems with
By controlling in the range of 50%, sagging at blank punching does not occur, primary recrystallized grain size can be controlled, and giant crystal grains do not occur even when annealed at a high temperature near 375 ° C. We are now able to provide materials for magnetic disk substrates.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】遷移元素含有量が0.2重量%未満であるAl
−Mg系合金よりなる磁気ディスクサブストレート用素材
であって、熱間圧延及び該熱間圧延後の冷間圧延により
製造する磁気ディスクサブストレート用素材の製造方法
において、該冷間圧延における冷間加工率を20〜50%の
範囲で行なうことを特徴とする磁気ディスクサブストレ
ート用素材の製造方法。
1. An Al having a transition element content of less than 0.2% by weight.
-A magnetic disk substrate material made of an Mg-based alloy, wherein in the method for producing a magnetic disk substrate material which is manufactured by hot rolling and cold rolling after the hot rolling, cold in the cold rolling A method for producing a material for a magnetic disk substrate, which is characterized in that the processing rate is in the range of 20 to 50%.
JP61207431A 1986-09-02 1986-09-02 Method for manufacturing magnetic disk substrate material Expired - Fee Related JPH0663061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207431A JPH0663061B2 (en) 1986-09-02 1986-09-02 Method for manufacturing magnetic disk substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207431A JPH0663061B2 (en) 1986-09-02 1986-09-02 Method for manufacturing magnetic disk substrate material

Publications (2)

Publication Number Publication Date
JPS6362853A JPS6362853A (en) 1988-03-19
JPH0663061B2 true JPH0663061B2 (en) 1994-08-17

Family

ID=16539645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207431A Expired - Fee Related JPH0663061B2 (en) 1986-09-02 1986-09-02 Method for manufacturing magnetic disk substrate material

Country Status (1)

Country Link
JP (1) JPH0663061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081699B2 (en) * 1988-10-28 1996-01-10 株式会社神戸製鋼所 Method for manufacturing an alloy mirror-finished substrate for magnetic disk
CN104941999B (en) * 2015-06-30 2017-01-11 辽宁科技大学 Rolling method of high-purity aluminum magnesium alloy substrate for mechanical hard disk
JP6640958B1 (en) * 2018-11-15 2020-02-05 株式会社神戸製鋼所 Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639699A (en) * 1979-09-10 1981-04-15 Toshiba Corp Acoustic transducer
JPS5698461A (en) * 1980-01-08 1981-08-07 Kobe Steel Ltd Manufacture of al alloy plate for magnetic disk
JPS57185961A (en) * 1981-05-11 1982-11-16 Kobe Steel Ltd Production of al-based alloy plate for magnetic disc substrate
JPS5816059A (en) * 1981-07-20 1983-01-29 Kobe Steel Ltd Manufacture of al alloy plate for magnetic disc substrate
JPS6112845A (en) * 1984-06-28 1986-01-21 Sukai Alum Kk Al-base alloy plate for magnetic disc and its manufacture

Also Published As

Publication number Publication date
JPS6362853A (en) 1988-03-19

Similar Documents

Publication Publication Date Title
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
US4929285A (en) Aluminum sheet product having reduced earing and method of making
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
US5437746A (en) Aluminum alloy sheet for discs having good platability
US2768915A (en) Ferritic alloys and methods of making and fabricating same
JPH059674A (en) Manufacture of aluminum alloy sheet excellent in formability
JPH0663061B2 (en) Method for manufacturing magnetic disk substrate material
US4609408A (en) Process for manufacturing aluminum thin strip and foil having a large fraction of cube texture
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP4477999B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
JP2766482B2 (en) Manufacturing method of rolled aluminum base alloy plate
US3413165A (en) Hot rolling process for making grain oriented silicon iron sheet
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JP7132415B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP4477998B2 (en) Method for manufacturing aluminum alloy plate for magnetic disk, aluminum alloy plate for magnetic disk, and aluminum alloy substrate for magnetic disk
JPH10310836A (en) Aluminum alloy clad sheet for high capacitance magnetic disk substrate, excellent in recyclability, and its production
JPS634050A (en) Manufacture of aluminum-alloy substrate for magnetic disk
JPH0585630B2 (en)
JPH0310168B2 (en)
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP7252395B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JPH082448B2 (en) Manufacturing method of aluminum foil
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JPH0346541B2 (en)
JP3197774B2 (en) Hot rolling method of Al-Li alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees