JPH0662944B2 - Method for producing manganese-activated zinc silicate phosphor - Google Patents

Method for producing manganese-activated zinc silicate phosphor

Info

Publication number
JPH0662944B2
JPH0662944B2 JP62105341A JP10534187A JPH0662944B2 JP H0662944 B2 JPH0662944 B2 JP H0662944B2 JP 62105341 A JP62105341 A JP 62105341A JP 10534187 A JP10534187 A JP 10534187A JP H0662944 B2 JPH0662944 B2 JP H0662944B2
Authority
JP
Japan
Prior art keywords
phosphor
zinc silicate
manganese
activated zinc
silicate phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62105341A
Other languages
Japanese (ja)
Other versions
JPS63268788A (en
Inventor
潤一 畠田
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP62105341A priority Critical patent/JPH0662944B2/en
Publication of JPS63268788A publication Critical patent/JPS63268788A/en
Publication of JPH0662944B2 publication Critical patent/JPH0662944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、螢光ランプ用マンガン付活珪酸亜鉛螢光体
に関する。
TECHNICAL FIELD The present invention relates to a manganese-activated zinc silicate phosphor for a fluorescent lamp.

[従来の技術とその問題点] 一般にマンガン付活珪酸亜鉛螢光体を螢光ランプに用い
ると、1ワット当り125ルーメンと非常に明るい輻射
をすることが知られているが、該マンガン付活珪酸亜鉛
螢光体の製造コストが極めて安価であるにもかかわら
ず、実際には螢光ランプにほとんど用いられない。なぜ
なら、該マンガン付活珪酸亜鉛螢光体では、螢光ランプ
における光束の劣化が極めて著しいからである。
[Prior Art and Its Problems] It is generally known that when a manganese-activated zinc silicate phosphor is used for a fluorescent lamp, it emits a very bright radiation of 125 lumens per watt. Despite the extremely low manufacturing cost of zinc silicate phosphors, they are practically rarely used in fluorescent lamps. This is because in the manganese-activated zinc silicate phosphor, the deterioration of the luminous flux in the fluorescent lamp is extremely remarkable.

このため、螢光ランプ点灯時におけるマンガン付活珪酸
亜鉛螢光体の光束の劣化を改善するための提案が成され
ている。例えば、第196回螢光体同学会講演予稿には、
マンガン付活珪酸亜鉛螢光体の粒子表面にシリカゲル又
はマグネシウムの硫化物をコートすることが提案されて
いる。
Therefore, a proposal has been made to improve the deterioration of the luminous flux of the manganese-activated zinc silicate phosphor when the fluorescent lamp is turned on. For example, in the proceedings of the 196th Symposium on Fluoroscopic Society,
It has been proposed to coat the particle surfaces of manganese-activated zinc silicate phosphors with silica gel or magnesium sulfide.

しかしながら、上述の提案にもかかわらず、従来、螢光
ランプ点灯時におけるマンガン付活珪酸亜鉛螢光体の光
束劣化を解消することができず、白色螢光ランプ用螢光
体、例えば、ハロ燐酸カルシウム螢光体や三波長型螢光
ランプの緑色成分、例えば、セリウム及びテルビウム付
活燐酸ランタン螢光体に代わって、螢光ランプ用螢光体
としてマンガン付活珪酸亜鉛螢光体が用いられるまで至
らなかった。
However, in spite of the above-mentioned proposal, conventionally, it is not possible to eliminate the luminous flux deterioration of the manganese-activated zinc silicate phosphor at the time of lighting the fluorescent lamp, and the phosphor for the white fluorescent lamp, for example, halophosphoric acid. A green component of a calcium fluorescent material or a three-wavelength type fluorescent lamp, for example, a manganese-activated zinc silicate fluorescent material is used as a fluorescent lamp fluorescent material in place of a cerium- and terbium-activated lanthanum phosphate fluorescent material. It didn't reach.

[発明が解決しようとする問題点] この発明は、上述の事情に鑑みなされたものであって、
その目的とするところは、螢光ランプの点灯時光束劣化
の極めて少ないマンガン付活珪酸亜鉛螢光体を工業的に
安価に製造できるマンガン付活珪酸亜鉛螢光体の製造方
法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances.
The purpose of the invention is to provide a method for producing a manganese-activated zinc silicate phosphor capable of industrially producing a manganese-activated zinc silicate phosphor with extremely little deterioration of luminous flux during lighting of a fluorescent lamp. is there.

[発明の概要] 本発明者等は、マンガン付活珪酸亜鉛螢光体の組成が2
(ZnO)・SiO:Mnと表され、該組成中の二酸
化硅素(SiO)の一部が水洗時の水と反応すること
により吸着力の強いケイ酸(SiO・nHO)成分
に変わることにより、螢光ランプ点灯時、該ケイ酸成分
が螢光ランプの水銀(Hg)等を吸着し、これにより、
該螢光ランプの光束の劣化が生起すると考えて、以下の
ような方法により、工業的に簡単な方法で、螢光ランプ
の点灯時光束劣化の極めて少ないマンガン付活珪酸亜鉛
螢光体を得ることができることを新規に見い出した。
SUMMARY OF THE INVENTION The present inventors have found that the composition of manganese-activated zinc silicate phosphor is 2
(ZnO) .SiO 2 : Mn, which is a silicic acid (SiO 2 · nH 2 O) component having a strong adsorptive power because a part of silicon dioxide (SiO 2 ) in the composition reacts with water during washing with water. When the fluorescent lamp is turned on, the silicic acid component adsorbs mercury (Hg), etc. of the fluorescent lamp by changing to
Considering that the luminous flux of the fluorescent lamp is deteriorated, a manganese-activated zinc silicate phosphor having extremely little luminous flux deterioration at the time of lighting of the fluorescent lamp is obtained by an industrially simple method by the following method. I have newly found that I can do it.

即ち、この発明の方法は、焼成によりマンガンを珪酸亜
鉛の螢光体母体に導入して螢光体粒子を得、まず、該螢
光体粒子表面にポリビニルアルコールからなる有機高分
子を少量付着させ、次いで、1000℃〜1300℃の
温度範囲の還元性雰囲気中に不活性ガスと螢光体粒子を
噴霧し、螢光体粒子を還元性雰囲気中数秒間通過させて
螢光体粒子の表面を処理することを特徴としている。
That is, the method of the present invention obtains phosphor particles by introducing manganese into a phosphor matrix of zinc silicate by firing, and first, a small amount of an organic polymer composed of polyvinyl alcohol is attached to the surface of the phosphor particles. Then, an inert gas and phosphor particles are sprayed in a reducing atmosphere in the temperature range of 1000 ° C. to 1300 ° C., and the phosphor particles are passed through the reducing atmosphere for a few seconds so that the surface of the phosphor particles is covered. It is characterized by processing.

[作用] 螢光体粒子を不活性ガスと共に1000℃〜1300℃
の温度範囲の還元性雰囲気中に噴霧するにより、螢光体
表面には二酸化珪素でなく窒化珪素化合物の層が均一に
形成される。これにより、ランプ塗布時の劣化特性が改
善される。
[Operation] Fluorescent particles together with an inert gas at 1000 ° C to 1300 ° C
By spraying in a reducing atmosphere in the temperature range of 1, a layer of silicon nitride compound instead of silicon dioxide is uniformly formed on the surface of the phosphor. This improves the deterioration characteristics when the lamp is applied.

[実施例] 以下、この発明の実施例に基づいて説明する。[Examples] Hereinafter, examples of the present invention will be described.

(実施例1) まず、この発明の実施例1の説明に先立ち、この発明の
実施例に用いたマンガン付活珪酸亜鉛螢光体の製造方法
について説明する。
Example 1 First, prior to the description of Example 1 of the present invention, a method of manufacturing the manganese-activated zinc silicate phosphor used in the examples of the present invention will be described.

螢光体原料として酸化亜鉛、二酸化珪素及び弗化マンガ
ンを調量し、これら螢光体原料をボールミルで充分粉砕
混合し、アルミナルツボに充填し、1300℃2時間空
気中で焼成した。得られたマンガン付活珪酸亜鉛螢光体
中マンガン量は珪酸亜鉛の母体1モルに対し約0.05
モルで反応されたものである。
Zinc oxide, silicon dioxide and manganese fluoride were weighed as the phosphor raw materials, and these phosphor raw materials were sufficiently pulverized and mixed in a ball mill, filled in an alumina crucible, and fired in air at 1300 ° C. for 2 hours. The amount of manganese in the obtained manganese-activated zinc silicate phosphor was about 0.05 with respect to 1 mol of the zinc silicate matrix.
It has been reacted in moles.

次に、その表面に有機高分子としてポリビニルアルコー
ルを0.1重量%加えて乾燥され、このマンガン付活珪
酸亜鉛螢光体2kg(平均粒径16μm)を用いて噴霧焼
成した。不活性ガスとしてNを10〜201/分で直
径1センチのアルミナ製パイプ内に送出させた。該アル
ミナパイプ内は加熱手段により1200℃に加熱されて
おり、パイプの長さは2メートルであり、パイプ内での
螢光体の処理時間は3秒であった。
Next, 0.1% by weight of polyvinyl alcohol as an organic polymer was added to the surface and dried, and 2 kg of this manganese-activated zinc silicate phosphor (average particle size 16 μm) was used for spray firing. N 2 as an inert gas was delivered at a rate of 10 to 201 / min into an alumina pipe having a diameter of 1 cm. The inside of the alumina pipe was heated to 1200 ° C. by a heating means, the length of the pipe was 2 meters, and the treatment time of the fluorescent substance in the pipe was 3 seconds.

このようにして得られた本発明の螢光体と、焼成後、水
洗、篩、乾燥した従来の螢光体とを、夫々、1%ニトロ
セルロース酢酸ブチル溶液(バインダ)にて直径27セ
ンチのガラス直管内に5gの割合で厚さ10〜20μm
で塗布してランプを製作し、光束劣化試験を行った。
The thus obtained phosphor of the present invention and the conventional phosphor after baking, which had been washed with water, sieved and dried, were each treated with a 1% nitrocellulose butyl acetate solution (binder) to have a diameter of 27 cm. Thickness of 10 to 20 μm in a straight glass tube at a rate of 5 g
Was applied to prepare a lamp, and a luminous flux deterioration test was performed.

その結果、従来の螢光体では、初期光束に対する100
時間経過後の劣化特性が86.1%(図面中破線a)で
あったのに対し、本発明の螢光体では、初期光束に対す
る100時間経過後の劣化特性が92.1%(図面中実
線1)であり、光束劣化特性が6.0%も向上した。
As a result, in the conventional fluorescent material, 100
The deterioration characteristic after the passage of time was 86.1% (broken line a in the drawing), whereas in the phosphor of the present invention, the deterioration characteristic after 100 hours has passed with respect to the initial luminous flux is 92.1% (in the drawing). The solid line 1) indicates that the luminous flux deterioration characteristic is improved by 6.0%.

(実施例2) パイプの温度を1000℃に保持すること、及びパイプ
内で5秒で螢光体を通過させること以外、実施例1と同
様に試作し、また、同様な光束劣化試験を行った。
(Example 2) A prototype was made in the same manner as in Example 1 except that the temperature of the pipe was maintained at 1000 ° C and the phosphor was allowed to pass through the pipe in 5 seconds, and the same luminous flux deterioration test was performed. It was

その結果、従来の螢光体では、初期光束に対する100
時間経過後の劣化特性が86.1%(図面中破線a)で
あったのに対し、本発明の螢光体では、初期光束に対す
る100時間経過後の劣化特性が91.1%(図面中実
線2)であり、光束劣化特性が5.0%も向上した。
As a result, in the conventional fluorescent material, 100
The deterioration characteristic after the passage of time was 86.1% (broken line a in the drawing), whereas in the phosphor of the present invention, the deterioration characteristic after 100 hours has passed with respect to the initial luminous flux is 91.1% (in the drawing). The solid line 2) indicates that the luminous flux deterioration characteristic is improved by 5.0%.

[発明の効果] この発明の方法によれば、簡単な螢光体の噴霧工程によ
り、従来のコート法では、改善できなかった螢光ランプ
点灯時の光束劣化の改善したマンガン付活珪酸亜鉛螢光
体が得られる。
[Effects of the Invention] According to the method of the present invention, a manganese-activated zinc silicate fluorescent material having improved luminous flux deterioration at the time of lighting a fluorescent lamp, which could not be improved by the conventional coating method, by a simple fluorescent substance spraying step. A light body is obtained.

また、この発明の方法によれば、三波長型螢光ランプの
緑色成分として工業的に安価な螢光体が得られる。
Further, according to the method of the present invention, an industrially inexpensive phosphor can be obtained as a green component of a three-wavelength fluorescent lamp.

【図面の簡単な説明】[Brief description of drawings]

図面は、この発明の螢光体を用いた螢光ランプにおける
時間に対する光出力の低下を示すグラフ図である。
The drawings are graphs showing the decrease in light output with time in a fluorescent lamp using the phosphor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】焼成によりマンガンを珪酸亜鉛の螢光体母
体に導入して螢光体粒子を得、まず、該螢光体粒子表面
にポリビニルアルコールからなる有機高分子を少量付着
させ、次いで、1000℃〜1300℃の温度範囲の還
元性雰囲気中に不活性ガスと螢光体粒子を噴霧し、螢光
体粒子を還元性雰囲気中数秒間通過させて螢光体粒子の
表面を処理することを特徴とするマンガン付活珪酸亜鉛
螢光体の製造方法。
1. Manganese is introduced into a zinc silicate phosphor matrix by firing to obtain phosphor particles. First, a small amount of an organic polymer composed of polyvinyl alcohol is attached to the surface of the phosphor particles, and then, Spraying an inert gas and phosphor particles into a reducing atmosphere in the temperature range of 1000 ° C to 1300 ° C, and allowing the phosphor particles to pass through the reducing atmosphere for several seconds to treat the surface of the phosphor particles. A method for producing a manganese-activated zinc silicate phosphor, which comprises:
JP62105341A 1987-04-28 1987-04-28 Method for producing manganese-activated zinc silicate phosphor Expired - Lifetime JPH0662944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105341A JPH0662944B2 (en) 1987-04-28 1987-04-28 Method for producing manganese-activated zinc silicate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105341A JPH0662944B2 (en) 1987-04-28 1987-04-28 Method for producing manganese-activated zinc silicate phosphor

Publications (2)

Publication Number Publication Date
JPS63268788A JPS63268788A (en) 1988-11-07
JPH0662944B2 true JPH0662944B2 (en) 1994-08-17

Family

ID=14405032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105341A Expired - Lifetime JPH0662944B2 (en) 1987-04-28 1987-04-28 Method for producing manganese-activated zinc silicate phosphor

Country Status (1)

Country Link
JP (1) JPH0662944B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456982B1 (en) * 2002-02-28 2004-11-10 한국과학기술연구원 Preparation of Green Phosphors for Plasma Display Panel
US7465413B2 (en) 2004-05-11 2008-12-16 Panasonic Corporation Phosphor and plasma display panel using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237581A (en) * 1975-09-19 1977-03-23 Toshiba Corp Method of producing fluorescent substance

Also Published As

Publication number Publication date
JPS63268788A (en) 1988-11-07

Similar Documents

Publication Publication Date Title
CA1060942A (en) Alumina coatings for mercury vapor lamps
JP2811485B2 (en) Firing and milling process for the production of manganese activated zinc silicate phosphor
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
JP2002025502A (en) Low pressure mercury gas discharge lamp including outer bulb
US4748391A (en) Yellow green barium lanthanum silicate oxyapatite phosphor, a fluorescent lamp containing the same, and a method thereof
JPH0662944B2 (en) Method for producing manganese-activated zinc silicate phosphor
JPS6118952B2 (en)
JP2002212553A (en) Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp
JP3832024B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
KR960000475B1 (en) Fluorescent material and method for preparing therof
JP3783329B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
EP0052940A1 (en) Luminescent materials
US4757233A (en) Efficient UV-emitting phosphors based on cerium-activated calcium pyrophosphate and lamps containing the same
JPS63268787A (en) Production of zinc silicate fluorescent substance activated with manganese
JPS5940176B2 (en) fluorescent material
JPH02173182A (en) Fluorescent lamp emitting light of pink color
JP2536752B2 (en) Fluorescent body
JPH02170888A (en) Production of blue light-generating fluorescent material
KR840000652B1 (en) Fluorescent substance composition
JPS6244792B2 (en)
US4594178A (en) Process for producing a yellow emitting phosphor
JPS6014059B2 (en) fluorescent surface
JPS63154787A (en) Phosphor
JP5051079B2 (en) Rare earth phosphate