JPH0662875A - Production of bio-polyester - Google Patents

Production of bio-polyester

Info

Publication number
JPH0662875A
JPH0662875A JP4240132A JP24013292A JPH0662875A JP H0662875 A JPH0662875 A JP H0662875A JP 4240132 A JP4240132 A JP 4240132A JP 24013292 A JP24013292 A JP 24013292A JP H0662875 A JPH0662875 A JP H0662875A
Authority
JP
Japan
Prior art keywords
tank
activated sludge
biopolyester
polyester
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4240132A
Other languages
Japanese (ja)
Inventor
Takamichi Soejima
副島敬道
Masako Shibayama
柴山雅子
Yasuko Niimura
新村泰子
Takashi Tomosawa
友沢孝
Katsuo Sato
佐藤勝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP4240132A priority Critical patent/JPH0662875A/en
Publication of JPH0662875A publication Critical patent/JPH0662875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to utilize discharge water in a feed source of carbon by putting a part of activated sludge taken out from an aerobic tank in a bio-polyester producing tank and then giving a carbon source to activated sludge in the bio-polyester producing tank kept in an unaerated state. CONSTITUTION:Activated sludge from an aerobic tank 15 and discharge water during treatment are charged into a precipitation tank 17 and the activated sludge 33 is precipitated in the precipitation tank 17 and the activated sludge is separated from the treated discharge water. Organic substances are removed from the treated water 22 and the treated water is discharged and simultaneously part of activated sludge 33 is returned to the first step as a return sludge. The activated sludge 32 in the aerobic tank 15 is taken out and discharge water or a carbon source for producing polyester is fed to the activated sludge 32 to produce the objective bio-polyester such as PHB in the activated sludge. At this case, even if a nitrogen source exists in the discharge water or the carbon source for producing the polyester, it offers no problem. In the bio- polyester producing tank 19, aeration is not carried out and the tank 19 is not a closed type and is kept in a improper stirring state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性汚泥を用いてバイ
オポリエステルを生産する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing biopolyester using activated sludge.

【0002】[0002]

【従来の技術】従来技術として以下の方法がある。 <イ>ポリエステル生成菌を用いる方法(特開昭57−
150393号) 例えば、 ・Alcaligenes eutrophus ・Pseudomonas oleovolans ・Bacillus megaterium 等の既知の生成菌を用いて、培養液中の増殖に必要な栄
養塩、例えば窒素、リン、無機塩類などのいずれか(あ
るいは複数)を欠乏させ、これらポリエステル生成菌を
非増殖状態にしておいて有機酸などの炭素源を豊富に供
給することが必要である。通常は、窒素を欠乏させてい
る。 <ロ>活性汚泥を用いた方法 本出願人は、活性汚泥のような多種多様の微生物集団を
培養して、PHB(ポリ−β−ヒドロキシ酪酸)を生産
する方法を発明している(特開平3−143397号公
報)。微生物は一般に繁殖のために必要な栄養素の一部
が不足すると生体合成が抑えられ、炭素源を利用してエ
ネルギー貯蔵物質を体内に蓄積し始める傾向がある。そ
こで、上記方法では、人為的に窒素を不足栄養素とし、
好気状態で炭素源を与え、微生物中でPHBを生成して
いる。
2. Description of the Related Art The following methods are known as prior art. <A> Method using polyester-producing bacteria (Japanese Patent Laid-Open No. 57-
No. 150393) For example, by using known producing bacteria such as Alcaligenes eutrophus, Pseudomonas oleovolans, and Bacillus megaterium, any one (or a plurality) of nutrient salts necessary for growth in the culture medium, such as nitrogen, phosphorus, and inorganic salts. It is necessary to supply abundant carbon sources such as organic acids by depleting these polyester-producing bacteria in a non-growing state. Usually, it is starved of nitrogen. <B> Method Using Activated Sludge The present applicant has invented a method for culturing a wide variety of microbial populations such as activated sludge to produce PHB (poly-β-hydroxybutyric acid) (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). No. 3-143397). Microorganisms generally lack biosynthesis when some of the nutrients required for reproduction are deficient, and tend to start accumulating energy storage substances in the body using carbon sources. Therefore, in the above method, nitrogen is artificially made into a deficient nutrient,
It gives a carbon source in an aerobic state and produces PHB in microorganisms.

【0003】[0003]

【発明が解決しようとする問題点】しかし、従来の方法
では、次のような問題点がある。 <イ>活性汚泥を使って排水処理を行いながら、排水中
の炭素源を原料としてPHBを生成するようなシステム
では、窒素源があるとPHBが生成しないため、排水中
の窒素分を除去する必要があった。 <ロ>好気状態でPHBを生成するため、ばっ気が必要
であり、そのための動力を必要とするのでエネルギーコ
ストが高くなる。
However, the conventional method has the following problems. <B> In a system that produces PHB from a carbon source in wastewater as a raw material while performing wastewater treatment using activated sludge, PHB is not produced in the presence of a nitrogen source, so the nitrogen content in the wastewater is removed. There was a need. <B> Since PHB is generated in an aerobic state, aeration is required, and power for that is required, resulting in high energy cost.

【0004】[0004]

【本発明の目的】本発明は、活性汚泥を用いて、窒素源
が存在していてもバイオポリエステルが生産できる方法
を提供することにある。
An object of the present invention is to provide a method for producing biopolyester using activated sludge even in the presence of a nitrogen source.

【0005】[0005]

【問題点を解決するための手段】本発明は、有機系排水
処理法で用いられる活性汚泥を用いてポリ−β−ヒドロ
キシ酪酸(PHB)やその共重合体あるいはPHA(ポ
リ−β−ヒドロキシアルカノエート)(以下PHB等バ
イオポリエステルという。)を活性汚泥菌体内に生成さ
せる方法にある。本発明は、嫌気条件と好気条件を交互
に循環する活性汚泥の好気条件下にある活性汚泥を用
い、これを非ばっ気状態において炭素源(酢酸、プロピ
オン酸、酪酸等低級脂肪酸あるいは炭素数が2つ以上の
有機酸類など)と窒素分(アンモニア性窒素等)の存在
下でPHB等バイオポリエステルを生成する方法にあ
る。この方法では、従来窒素源があると生成しなかった
が、窒素源が存在してもPHB等バイオポリエステルを
生成することができる。
The present invention uses poly-β-hydroxybutyric acid (PHB) or its copolymer or PHA (poly-β-hydroxyalkano) by using activated sludge used in an organic wastewater treatment method. Ate) (hereinafter referred to as biopolyester such as PHB) in the activated sludge cells. The present invention uses an activated sludge under an aerobic condition of an activated sludge that alternately circulates anaerobic conditions and aerobic conditions, and uses this activated carbon in a non-aeration state as a carbon source (acetic acid, propionic acid, butyric acid or other lower fatty acid or carbon). This is a method for producing a biopolyester such as PHB in the presence of a nitrogen component (such as ammoniacal nitrogen) in the presence of two or more organic acids). In this method, biopolyesters such as PHB can be produced even in the presence of a nitrogen source, which has not been produced in the past with a nitrogen source.

【0006】以下、図面を用いて本発明の実施例を説明
する。 <イ>排水処理装置1 排水(有機物含有液)21は、図1のような活性汚泥3
1、32、33を有する嫌気槽13、好気槽15、沈殿
槽17からなる排水処理装置1で処理され、処理水22
として排出される。活性汚泥は、最初、都市終末処理場
から採取したものを使用した。この中には多種多数の菌
類が含まれている。排水21は、表1の成分を含むもの
を用いた。
Embodiments of the present invention will be described below with reference to the drawings. <A> Wastewater treatment device 1 Wastewater (organic matter-containing liquid) 21 is activated sludge 3 as shown in FIG.
The treated water 22 is treated by the wastewater treatment device 1 including the anaerobic tank 13, which has 1, 32, and 33, the aerobic tank 15, and the precipitation tank 17.
Is discharged as. The activated sludge used at the beginning was taken from an urban end-of-life treatment plant. This contains a wide variety of fungi. The drainage 21 used the thing containing the component of Table 1.

【0007】[0007]

【表1】 嫌気槽13は11.7リットル、好気槽15は18.7
リットルあり、両槽の活性汚泥濃度は約6,500mg
/リットル、排水供給量は2リットル/hr、返送汚泥
量は10リットル/hrで運転する。排水21は、下水
やし尿あるいは有機系排水または一般に言う排水でなく
ても有機酸等を含んだ活性汚泥の基質となるような培養
液でも良い。排水21は、排水溜11からポンプ12で
吸い上げられる。そして、吸い上げられた排水は、ポン
プ18で沈澱槽17から返送される活性汚泥33と混合
されて、嫌気槽13へ入る。
[Table 1] Anaerobic tank 13 is 11.7 liters, aerobic tank 15 is 18.7 liters.
There is a liter, the concentration of activated sludge in both tanks is about 6,500 mg
/ Liter, the amount of waste water supplied is 2 liters / hr, and the amount of returned sludge is 10 liters / hr. The wastewater 21 may be sewage, night urine, organic wastewater, or not generally called wastewater, but may be a culture solution that serves as a substrate for activated sludge containing an organic acid or the like. The drainage 21 is sucked up by the pump 12 from the drainage reservoir 11. Then, the sucked waste water is mixed with the activated sludge 33 returned from the settling tank 17 by the pump 18, and enters the anaerobic tank 13.

【0008】<ロ>嫌気槽13 嫌気槽13は密閉型であり、槽内の活性汚泥31により
槽内液中の溶存酸素は消費されて、嫌気状態になってい
る。活性汚泥31は排水と共にモータ14により攪拌さ
れ、嫌気槽13内を移動する。嫌気槽13から出た活性
汚泥と処理中の排水は、次に好気槽15に入る。
<B> Anaerobic tank 13 The anaerobic tank 13 is of a closed type, and the activated sludge 31 in the tank consumes the dissolved oxygen in the liquid in the tank to be in an anaerobic state. The activated sludge 31 is stirred by the motor 14 together with the drainage, and moves in the anaerobic tank 13. The activated sludge discharged from the anaerobic tank 13 and the wastewater being treated then enter the aerobic tank 15.

【0009】<ハ>好気槽15 好気槽15内の活性汚泥32と処理中の排水は、ブロワ
ー等により空気16が取り入れられ、ばっ気を受け、好
気処理が行われる。好気槽13から出た活性汚泥と処理
中の排水は、次に沈殿槽17に入る。
<C> Aerobic tank 15 The activated sludge 32 in the aerobic tank 15 and the wastewater being treated are aerated by the air 16 taken in by a blower or the like to receive aeration. The activated sludge discharged from the aerobic tank 13 and the wastewater being treated then enter the settling tank 17.

【0010】<ニ>沈殿槽17 沈殿槽17内の活性汚泥33は沈殿し、活性汚泥と処理
された排水が分離される。処理水22は有機物が除去さ
れ、排出される。一方、活性汚泥33の一部は、返送汚
泥として最初に戻る。
<D> Settling tank 17 The activated sludge 33 in the settling tank 17 is settled, and the activated sludge and the treated wastewater are separated. Organic matters are removed from the treated water 22 and the treated water 22 is discharged. On the other hand, a part of the activated sludge 33 returns first as return sludge.

【0011】<ホ>バイオポリエステル生成槽19 好気槽15内にある活性汚泥32を取り出して、これに
排水あるいはポリエステル生成用の炭素源を供給し、当
該活性汚泥内にPHB等バイオポリエステルを生成させ
る。この場合、排水あるいはポリエステル生成用の炭素
源中に窒素源があっても問題はない。バイオポリエステ
ル生成槽19は、ばっ気は行われず、しかも嫌気槽のよ
うな密閉型ではなく、槽内で適度な攪拌状態が保たれて
おれば良い。この様な状態を非ばっ気と呼ぶ。
<E> Biopolyester production tank 19 The activated sludge 32 in the aerobic tank 15 is taken out, and drainage or a carbon source for polyester production is supplied to this to produce biopolyester such as PHB in the activated sludge. Let In this case, there is no problem even if there is a nitrogen source in the waste water or the carbon source for polyester production. The biopolyester production tank 19 does not perform aeration, and is not a closed type like an anaerobic tank, and may be maintained in a proper stirring state in the tank. Such a state is called non-abnormal.

【0012】以下に、第1のバイオポリエステル生成例
を示す。 <イ>第1のバイオポリエステル生成例 図2において、バイオポリエステル生成槽19として、
三角フラスコを用い、シリコ栓で封をした例を示す。生
成条件は表2の条件とし、144時間、25度Cの恒温
室内で培養を行う。phは燐酸バッファーで7.0に調
整してある。炭素源として酪酸を用い、全有機炭素(T
OC)濃度が3,000mg/リットルとなるよう与
え、窒素分(硫酸アンモニウムを使用)を与えないケー
ス(炭素C/窒素N比=∞のケース)と与えたケース
(C/N=20とC/N=10)について、それぞれば
っ気を行った場合とばっ気を行わない場合を振とう培養
し、PHB等バイオポリエステルの生成を行う。PHB
等バイオポリエステルの抽出方法は、144時間後培養
液全量を取り出し遠心分離機で集菌し、汚泥を乾燥させ
る。乾燥汚泥を90度Cのクロロホルムで抽出処理を
し、抽出液にヘキサンを添加してPHB等バイオポリエ
ステルを析出させ、過乾燥後、重量を測定する。
The first example of bio-polyester production is shown below. <A> First example of biopolyester production In FIG. 2, as the biopolyester production tank 19,
An example of using an Erlenmeyer flask and sealing with a silicon stopper is shown. The production conditions are those shown in Table 2, and the cells are cultured for 144 hours in a thermostatic chamber at 25 ° C. The pH is adjusted to 7.0 with a phosphate buffer. Using butyric acid as a carbon source, total organic carbon (T
OC) concentration was 3,000 mg / liter and no nitrogen component (ammonium sulfate was used) was given (carbon C / nitrogen N ratio = ∞ case) and given case (C / N = 20 and C / For N = 10), shaking culture is performed with and without aeration to produce biopolyester such as PHB. PHB
In the method for extracting biopolyester, etc., after 144 hours, the whole amount of the culture solution is taken out, the cells are collected by a centrifuge, and the sludge is dried. The dried sludge is subjected to extraction treatment with chloroform at 90 ° C., hexane is added to the extract to precipitate biopolyester such as PHB, and after overdrying, the weight is measured.

【0013】[0013]

【表2】 この好気槽から採取した活性汚泥の培養開始から144
時間後の汚泥内生成PHB量を表3に示す。
[Table 2] 144 from the start of cultivation of activated sludge collected from this aerobic tank
Table 3 shows the amount of PHB produced in the sludge after the elapse of time.

【0014】[0014]

【表3】 表3から分るように、ばっ気条件の場合(実験2)は窒
素源があると(C/N=20、10のケース)、PHB
等バイオポリエステルの生成はほんのわずかである(乾
燥汚泥重量あたり0.2〜0.5%)。一方、非ばっ気
の場合は、窒素源があってもその生成量は、窒素のない
ケース(C/N=∞)とほぼ同量である(乾燥汚泥重量
あたり8.7〜11.5%(実験1))。
[Table 3] As can be seen from Table 3, in the aeration condition (Experiment 2), when the nitrogen source is present (C / N = 20, 10 cases), PHB
The production of iso-biopolyester is negligible (0.2-0.5% per dry sludge weight). On the other hand, in the case of non-aeration, the production amount is almost the same as the case without nitrogen (C / N = ∞) even if there is a nitrogen source (8.7 to 11.5% per dry sludge weight). (Experiment 1)).

【0015】<ロ>バイオポリエステル生成の経時変化 実験3とほぼ同一の生成条件で行われ、PHB等バイオ
ポリエステルの生成蓄積の経時変化を示したグラフを、
図3〜5に示す。各グラフから窒素の存在の有無にかか
わらず、各ケースとも培養開始後PHB等バイオポリエ
ステル蓄積がいったん最大となった後、減少傾向を示し
ている。各グラフとも144時間後のPHB等バイオポ
リエステルの蓄積率は、表2の実験3とほぼ同じ値を示
している。以上の結果より、活性汚泥は、非ばっ気条件
で窒素の有無にかかわらず、TOCを消費しPHB等バ
イオポリエステルを蓄積することが分かる。その蓄積量
は培養後、24〜48時間で乾燥汚泥重量当たり23〜
28%である(図3〜5の右側の目盛り参照)。なお、
図表においてPHBはPHB等バイオポリエステルを言
う。
<B> Time-dependent change in biopolyester production A graph showing the time-dependent change in production and accumulation of biopolyester such as PHB, which was carried out under almost the same production conditions as in Experiment 3,
Shown in FIGS. From each graph, regardless of the presence or absence of nitrogen, in each case, the biopolyester accumulation such as PHB once became maximum after the start of the culture, and then showed a decreasing tendency. In each graph, the accumulation rate of biopolyester such as PHB after 144 hours shows almost the same value as in Experiment 3 of Table 2. From the above results, it is understood that activated sludge consumes TOC and accumulates biopolyester such as PHB under non-aeration conditions regardless of the presence or absence of nitrogen. The accumulated amount is 23 ~ per dry sludge weight in 24 ~ 48 hours after culturing.
28% (see the scale on the right side of FIGS. 3-5). In addition,
In the figures, PHB means biopolyester such as PHB.

【0016】以下に第2のバイオポリエステル生成例を
示す。 <イ>第2のバイオポリエステル生成例 図1の嫌気槽13内の活性汚泥31が体内にバイオポリ
エステルを生成するため、嫌気槽13がバイオポリエス
テル生成槽の役割も兼用している。そこで、図1の嫌気
槽13における嫌気度がさ程強くなくても、処理水質の
問題がないような場合、たとえば嫌気槽内のDO濃度が
0〜1mg/リットル、酸化還元電位(ORP)が−1
00〜+100mV程度の嫌気度でも、最終の処理水質
が排水基準を達成するような事例の場合には、図2の装
置の流れの一つの変形として、嫌気槽をそのままバイオ
ポリエステル生成槽と兼用させるような装置が可能であ
る。この場合、嫌気槽13から活性汚泥31を取り出
し、第1の生成例と同様に、凍結乾燥させ、乾燥汚泥か
らバイオポリエステルを生成することが出来る。
A second biopolyester production example is shown below. <A> Second biopolyester production example Since the activated sludge 31 in the anaerobic tank 13 of FIG. 1 produces biopolyester in the body, the anaerobic tank 13 also serves as a biopolyester production tank. Therefore, even if the anaerobic tank 13 in FIG. 1 is not so strong in the degree of anaerobicity, if there is no problem in the treated water quality, for example, the DO concentration in the anaerobic tank is 0 to 1 mg / liter, and the redox potential (ORP) is -1
In the case where the final treated water quality achieves the effluent standard even with an anaerobic degree of about 00 to +100 mV, the anaerobic tank is also used as it is as a biopolyester production tank as a modification of the flow of the apparatus of FIG. Such devices are possible. In this case, the activated sludge 31 can be taken out from the anaerobic tank 13 and freeze-dried in the same manner as in the first production example to produce biopolyester from the dried sludge.

【0017】[0017]

【発明の効果】本発明は、以上説明したように次のよう
な格別な効果を得ることができる。 <イ>バイオポリエステル生成槽への炭素源供給に際
し、窒素分が存在していてもバイオポリエステルが生成
できるので、例えば本発明のシステムを有機系排水処理
に適用する場合、排水中の窒素分を取り除くことなく、
排水をそのまま炭素の供給源として利用できる。 <ロ>バイオポリエステル生成槽では、ばっ気が不必要
となるので、ばっ気動力が不要となり、省エネルギー的
なシステムを得ることができる。 <ハ>嫌気槽をバイオポリエステル生成槽と兼用するこ
とにより、嫌気槽から取り出された活性汚泥から直接バ
イオポリエステルを生成することが出来る。
As described above, the present invention can obtain the following special effects. <B> When supplying the carbon source to the biopolyester production tank, biopolyester can be produced even if nitrogen content is present. Therefore, for example, when the system of the present invention is applied to organic wastewater treatment, the nitrogen content in the wastewater is reduced. Without removing
Wastewater can be used as it is as a carbon source. <B> Since aeration is unnecessary in the biopolyester production tank, aeration power is not required and an energy-saving system can be obtained. <C> By using the anaerobic tank also as the biopolyester production tank, the biopolyester can be produced directly from the activated sludge taken out from the anaerobic tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】排水処理装置の全体図[Fig. 1] Overall view of wastewater treatment equipment

【図2】バイオポリエステル生成槽の図Figure 2: Diagram of biopolyester production tank

【図3】窒素がない場合のバイオポリエステルの蓄積量
の経時変化図
[Fig. 3] Time-dependent change diagram of accumulated amount of biopolyester in the absence of nitrogen

【図4】窒素がある場合のバイオポリエステルの蓄積量
の経時変化図
FIG. 4 is a time-dependent change diagram of the accumulated amount of biopolyester in the presence of nitrogen.

【図5】窒素が更にある場合のバイオポリエステルの蓄
積量の経時変化図
FIG. 5: Time-dependent change diagram of accumulated amount of biopolyester when nitrogen is further present

───────────────────────────────────────────────────── フロントページの続き (72)発明者 友沢孝 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 佐藤勝雄 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Tomozawa 1-25-1 Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation (72) Inventor Katsuo Sato 1-25-1 Nishishinjuku, Shinjuku-ku, Tokyo Within Taisei Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活性汚泥と有機物含有液が順次、嫌気槽、
好気槽及び沈殿槽に移送され、活性汚泥が該沈殿槽から
取り出され該嫌気槽に返送され、有機物含有液が該沈殿
槽から排水処理される排水処理装置において、 該好気槽から一部活性汚泥を取出し、バイオポリエステ
ル生成槽に入れ、 非ばっ気状態の該バイオポリエステル生成槽で活性汚泥
に炭素源を与え、 該バイオポリエステル生成槽で得られた活性汚泥からバ
イオポリエステルを抽出する、 ことを特徴とするバイオポリエステルの生成方法。
1. An activated air sludge and an organic matter-containing liquid are sequentially fed to an anaerobic tank,
In the wastewater treatment equipment in which the activated sludge is transferred to the aerobic tank and the sedimentation tank, the activated sludge is taken out of the sedimentation tank and returned to the anaerobic tank, and the organic matter-containing liquid is discharged from the sedimentation tank, a part of the aerobic tank is discharged. Taking out the activated sludge and putting it in a biopolyester production tank, supplying a carbon source to the activated sludge in the non-aerated biopolyester production tank, and extracting the biopolyester from the activated sludge obtained in the biopolyester production tank, A method for producing a biopolyester, characterized by:
【請求項2】活性汚泥と有機物含有液が順次、嫌気槽、
好気槽及び沈殿槽に移送され、活性汚泥が該沈殿槽から
取り出され該嫌気槽に返送され、有機物含有液が該沈殿
槽から排水処理される排水処理装置において、 該嫌気槽から一部活性汚泥を取り出し、 該嫌気槽から取り出された活性汚泥からバイオポリエス
テルを抽出する、 ことを特徴とするバイオポリエステルの生成方法。
2. An activated air sludge and an organic matter-containing liquid are successively supplied in an anaerobic tank,
In the wastewater treatment equipment in which the activated sludge is transferred to the aerobic tank and the sedimentation tank, the activated sludge is taken out of the sedimentation tank and returned to the anaerobic tank, and the organic matter-containing liquid is discharged from the sedimentation tank, the activated sludge is partially activated from the anaerobic tank. A method for producing biopolyester, characterized in that sludge is taken out and biopolyester is extracted from the activated sludge taken out from the anaerobic tank.
JP4240132A 1992-08-18 1992-08-18 Production of bio-polyester Pending JPH0662875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240132A JPH0662875A (en) 1992-08-18 1992-08-18 Production of bio-polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240132A JPH0662875A (en) 1992-08-18 1992-08-18 Production of bio-polyester

Publications (1)

Publication Number Publication Date
JPH0662875A true JPH0662875A (en) 1994-03-08

Family

ID=17054979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240132A Pending JPH0662875A (en) 1992-08-18 1992-08-18 Production of bio-polyester

Country Status (1)

Country Link
JP (1) JPH0662875A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400569A2 (en) * 2002-09-06 2004-03-24 Universita' Degli Studi Di Roma "La Sapienza" Process to obtain biodegradable polymers from waste and enriched activated sludge
EP2265659A2 (en) 2008-03-28 2010-12-29 The Coca-Cola Company Bio-based polyethylene terephthalate polymer and method of making the same
EP2403894A2 (en) 2009-03-03 2012-01-11 The Coca-Cola Company Bio-based polyethylene terephthalate packaging and method of making thereof
CN102976486A (en) * 2012-12-05 2013-03-20 宁波天安生物材料有限公司 Material for water treatment
CN103298753A (en) * 2010-08-18 2013-09-11 威立雅水务技术支持公司 Method of treating municipal wastewater and producing biomass with biopolymer production potential
JP2013226071A (en) * 2012-04-25 2013-11-07 Hiroshima Univ Apparatus and method for manufacturing polyhydroxyalkanoate
JP2016509532A (en) * 2013-01-11 2016-03-31 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Biological wastewater treatment process improves polyhydroxyalkanoate accumulation capacity in mixed culture biomass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400569A2 (en) * 2002-09-06 2004-03-24 Universita' Degli Studi Di Roma "La Sapienza" Process to obtain biodegradable polymers from waste and enriched activated sludge
EP1400569A3 (en) * 2002-09-06 2004-06-30 Universita' Degli Studi Di Roma "La Sapienza" Process to obtain biodegradable polymers from waste and enriched activated sludge
EP2265659A2 (en) 2008-03-28 2010-12-29 The Coca-Cola Company Bio-based polyethylene terephthalate polymer and method of making the same
EP2403894A2 (en) 2009-03-03 2012-01-11 The Coca-Cola Company Bio-based polyethylene terephthalate packaging and method of making thereof
CN103298753A (en) * 2010-08-18 2013-09-11 威立雅水务技术支持公司 Method of treating municipal wastewater and producing biomass with biopolymer production potential
JP2013226071A (en) * 2012-04-25 2013-11-07 Hiroshima Univ Apparatus and method for manufacturing polyhydroxyalkanoate
CN102976486A (en) * 2012-12-05 2013-03-20 宁波天安生物材料有限公司 Material for water treatment
JP2016509532A (en) * 2013-01-11 2016-03-31 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Biological wastewater treatment process improves polyhydroxyalkanoate accumulation capacity in mixed culture biomass
US9688555B2 (en) 2013-01-11 2017-06-27 Veolia Water Solutions & Technologies Support Biological wastewater treatment processes that enhances the capacity for polyhydroxyalkanoate accumulation in a mixed culture biomass

Similar Documents

Publication Publication Date Title
Van Loosdrecht et al. Biological phosphate removal processes
US6616844B2 (en) Method for treating high-concentrated organic wastewater using bio-maker
US5651891A (en) Wastewater treatment process
US6712970B1 (en) Sewage treatment process with phosphorus removal
CA2784620C (en) Method of treating wastewater and producing an activated sludge having a high biopolymer production potential
US5733455A (en) Wastewater treatment process
AU2011292811B2 (en) Method of treating municipal wastewater and producing biomass with biopolymer production potential
US5393427A (en) Process for the biological treatment of wastewater
JP2008284427A (en) Apparatus and method for treating waste water
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2000512906A (en) Wastewater treatment method using intermittent discharge type long aeration process
JP2000093998A (en) Method and apparatus for treating high-concentration waste water
Danesh et al. Volatile fatty acid production and uptake in biological nutrient removal systems with process separation
JPH0662875A (en) Production of bio-polyester
Jobbágy et al. Implementation of glycogen accumulating bacteria in treating nutrient-deficient wastewater
JP2002361279A (en) Method and apparatus for treating waste water
JP3387244B2 (en) Anaerobic treatment method
Shimizu et al. An anaerobic fluidized pellet bed bioreactor process for simultaneous removal of organic, nitrogenous and phosphorus substances
AU3574899A (en) Improved wastewater treatment process
KR100440811B1 (en) Method and apparatus of treating organic waste water
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
JP2563015B2 (en) Biological treatment method of organic wastewater
CN116216979A (en) Intensive magnetic medium sewage treatment system and technology
CN116332421A (en) Organic wastewater treatment system and treatment method