JPH0662594B2 - Recovery method of ethylene oxide - Google Patents

Recovery method of ethylene oxide

Info

Publication number
JPH0662594B2
JPH0662594B2 JP60139175A JP13917585A JPH0662594B2 JP H0662594 B2 JPH0662594 B2 JP H0662594B2 JP 60139175 A JP60139175 A JP 60139175A JP 13917585 A JP13917585 A JP 13917585A JP H0662594 B2 JPH0662594 B2 JP H0662594B2
Authority
JP
Japan
Prior art keywords
tower
ethylene oxide
liquid
absorption
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60139175A
Other languages
Japanese (ja)
Other versions
JPS62475A (en
Inventor
行彦 柿本
宣明 梶本
勇 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60139175A priority Critical patent/JPH0662594B2/en
Priority to CA000512407A priority patent/CA1284334C/en
Priority to AU59269/86A priority patent/AU590888B2/en
Priority to DE8686108722T priority patent/DE3688444T2/en
Priority to EP86108722A priority patent/EP0207448B1/en
Priority to KR1019860005200A priority patent/KR920003199B1/en
Priority to CN86104909A priority patent/CN1019270B/en
Publication of JPS62475A publication Critical patent/JPS62475A/en
Priority to US07/127,488 priority patent/US4875909A/en
Publication of JPH0662594B2 publication Critical patent/JPH0662594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Epoxy Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エチレンを銀触媒の存在下、分子状酸素含有
ガスにより接触気相酸化して得られるエチレンオキシド
を生成する方法に関するものである。さらに詳しくは、
エチレンを銀触媒の存在下、分子状酸素含有ガスにより
接触気相酸化して得られるエチレンオキシドを含む反応
生成ガスを吸収塔へ導びき吸収液に吸収させてエチレン
オキシドを回収し、ついでエチレンオキシドを含む吸収
液を放散塔へ送り加熱により放散塔頂よりエチレンオキ
シドを放散し放散塔底部より抜き出した液の一部は吸収
塔へ導き吸収液として循環使用する工程において放散塔
の加熱エネルギーを低減させるエチレンオキシドの回収
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing ethylene oxide obtained by catalytic vapor-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. For more details,
The reaction product gas containing ethylene oxide, which is obtained by catalytic vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst, is led to an absorption tower and absorbed in the absorbing liquid to recover ethylene oxide, and then the absorption containing ethylene oxide. The liquid is sent to the stripping tower and ethylene oxide is stripped from the top of the stripping tower by heating, and a part of the liquid extracted from the bottom of the stripping tower is introduced to the absorption tower and recycled as an absorbing liquid. It is about the method.

(従来の技術) エチレンオキシドを回収する工程において、反応生成ガ
スを水を主とする吸収液に吸収させエチレンオキシド水
溶液として回収し、この水溶液からエチレンオキシドを
放散せしめてエチレンオキシドを得ている。エチレンオ
キシドは一般につぎのようにして回収される。エチレン
と分子状酸素含有ガスとを銀触媒上で接触気相酸化して
生成するエチレンオキシドを含む反応生成ガスを吸収塔
へ導びき水を主とする吸収液と向流接触させエチレンオ
キシド水溶液として回収し、ついでエチレンオキシド放
散塔へ送り放散塔底部を加熱蒸気で加熱することによっ
てエチレンオキシドを水溶液から放散させ放散塔底部よ
り実質的にエチレンオキシドを含まない水溶液は吸収液
として循環使用し、放散塔頂部より放散されるエチレン
オキシド、水、二酸化炭素、不活性ガス(窒素、アルゴ
ン、メタン、エタン、)の他ホルムアルデヒド等の低沸
点不純物およびアセトアルデヒド、酢酸等の高沸点不純
物を含む放散物を脱水工程、軽質分分離工程および重質
分分離工程の各々を経て精製しエチレンオキシドを製造
することができる。
(Prior Art) In the step of recovering ethylene oxide, a reaction product gas is absorbed by an absorption liquid mainly containing water and recovered as an ethylene oxide aqueous solution, and ethylene oxide is diffused from this aqueous solution to obtain ethylene oxide. Ethylene oxide is generally recovered as follows. A reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene and a molecular oxygen-containing gas on a silver catalyst is introduced to an absorption tower and counter-currently contacted with an absorption liquid mainly containing water to recover an ethylene oxide aqueous solution. Then, it is sent to an ethylene oxide stripping tower and ethylene oxide is stripped from the aqueous solution by heating the bottom of the stripping tower with heating steam. Of ethylene oxide, water, carbon dioxide, inert gas (nitrogen, argon, methane, ethane, etc.) and low boiling point impurities such as formaldehyde and high boiling point impurities such as acetaldehyde and acetic acid are dehydrated and separated into light components. And purifying ethylene oxide through each of the heavy and heavy separation processes to produce ethylene oxide. It can be.

(発明が解決しようとする問題点) しかしながら、このようなエチレンオキシドの回収方法
はエチレンオキシド放散塔における加熱蒸気量を多量に
消費する問題があった。従来の方法は、100〜130
℃のエチレンオキシド放散塔底部液をエチレンオキシド
吸収塔底部液と熱交換させ、熱量の回収を行った後、冷
却して吸収塔の吸収液としていた。本発明はこれらのエ
チレンオキシド回収工程における省エネルギーについて
研究した結果、エチレンオキシド放散塔底液のエネルギ
ーの有効利用に着眼し本発明を完成した。
(Problems to be Solved by the Invention) However, such a method for recovering ethylene oxide has a problem of consuming a large amount of heating vapor in the ethylene oxide stripping tower. The conventional method is 100-130.
The liquid at the bottom of the ethylene oxide stripping tower at 0 ° C. was heat-exchanged with the liquid at the bottom of the ethylene oxide absorption tower, and after recovering the amount of heat, it was cooled to obtain the absorption liquid in the absorption tower. As a result of research on energy saving in these ethylene oxide recovery steps, the present invention was completed with the aim of effectively utilizing the energy of the bottom liquid of the ethylene oxide stripping column.

(問題点を解決するための手段) 本発明は、エチレンを銀触媒の存在下、分子状酸素含有
ガスと接触気相酸化して生成したエチレンオキシドを含
有する反応生成ガスを吸収塔へ導入し吸収液と向流接触
させ、吸収塔頂部よりのガスは炭酸ガス吸収工程および
/またはエチレン酸化反応工程へ循環し、エチレンオキ
シドを含む吸収塔底液は放散塔へ供給し、放散塔頂部か
らエチレンオキシドを放散せしめ、放散塔底部より抜き
出した液の一部は吸収塔へ導き吸収液として循環使用
し、残部はその液に含まれるエチレングリコールを濃縮
するため副生エチレングリコール濃縮塔へ送る工程にお
いて、放散塔底部より抜き出した液をフラッシュ処理
し、気相部と液相部に分離し、気相部は圧縮して放散塔
底部へ導入し、液相部は吸収塔の吸収液とすることを特
徴とするエチレンオキシドの回収方法に関するものであ
る。本発明において吸収塔へ供給される吸収液の温度は
5〜40℃、好ましくは10〜35℃であり、吸収液の
組成はPHが5〜12、好ましくは6〜11、エチレング
リコール濃度が1〜40重量%、好ましくは5〜30重
量%、消泡剤濃度が0.1ppm以上、好ましくは1〜1
00ppm、残り水の範囲に制御される。吸収液中のエチ
レングリコール濃度を一定に保持するため吸収塔とエチ
レンオキシド放散塔とを循環する吸収液の一部を放散塔
底部から抜き出し副生エチレングリコール濃縮塔へ送
り、必要により新鮮な水が導入され制御される。PHの調
節は、たとえばカリウム、ナトリウムのようなアルカリ
金属の水酸化物や炭酸塩等の吸収液に溶解する化合物を
添加することにより行うのが好ましく、添加剤は具体的
には水酸化カリウムまたは水酸化ナトリウムが好まし
い。
(Means for Solving Problems) The present invention introduces a reaction product gas containing ethylene oxide produced by catalytic vapor-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst into an absorption tower for absorption. The solution is brought into countercurrent contact with the liquid, the gas from the top of the absorption tower circulates to the carbon dioxide absorption step and / or the ethylene oxidation reaction step, the absorption tower bottom liquid containing ethylene oxide is supplied to the stripping tower, and ethylene oxide is stripped from the top of the stripping tower. In the process of sending a part of the liquid extracted from the bottom of the stripping tower to the absorption tower and circulating it as an absorbing liquid, and sending the rest to the by-product ethylene glycol concentration tower to concentrate the ethylene glycol contained in the liquid, the stripping tower. The liquid extracted from the bottom is flushed, separated into a gas phase part and a liquid phase part, the gas phase part is compressed and introduced to the bottom of the stripping tower, and the liquid phase part is the absorption liquid of the absorption tower. The present invention relates to a method for recovering ethylene oxide, which is characterized in that In the present invention, the temperature of the absorption liquid supplied to the absorption tower is 5 to 40 ° C., preferably 10 to 35 ° C., and the composition of the absorption liquid is PH 5 to 12, preferably 6 to 11, ethylene glycol concentration 1 -40% by weight, preferably 5-30% by weight, antifoaming agent concentration is 0.1 ppm or more, preferably 1-1
It is controlled to the range of 00 ppm and the remaining water. To keep the ethylene glycol concentration in the absorption liquid constant, a part of the absorption liquid that circulates in the absorption tower and the ethylene oxide diffusion tower is extracted from the bottom of the diffusion tower and sent to the by-product ethylene glycol concentration tower, where necessary fresh water is introduced. And controlled. The pH is preferably adjusted by adding a compound that is soluble in an absorbing solution such as a hydroxide or carbonate of an alkali metal such as potassium or sodium. Specifically, the additive is potassium hydroxide or Sodium hydroxide is preferred.

消泡剤は、エチレンオキシド、副生エチレングリコール
等に不活性であり、吸収液の消泡効果を有するものであ
ればいかなる消泡剤でも使用でき、代表的な例としては
エマルジョンが吸収液への分散性、希釈安定性、熱安定
性が優れているので効果的である。
The defoaming agent is inert to ethylene oxide, by-product ethylene glycol, etc., and any defoaming agent can be used as long as it has a defoaming effect on the absorbing solution. It is effective because it has excellent dispersibility, dilution stability, and thermal stability.

吸収塔の操作条件は、反応生成ガス中のエチレンオキシ
ド濃度が0.05〜5容量%、好ましくは0.1〜4容
量%であり、吸収塔の操作圧は2〜40Kg/cm2G、好
ましくは10〜30Kg/cm2Gである。
The operating conditions of the absorption tower are such that the concentration of ethylene oxide in the reaction product gas is 0.05 to 5% by volume, preferably 0.1 to 4% by volume, and the operating pressure of the absorption tower is 2 to 40 kg / cm 2 G, preferably Is 10 to 30 kg / cm 2 G.

放散塔の操作条件は、放散塔頂圧力0〜1kg/cm2G、
好ましくは0.3〜0.6kg/cm2G、放散塔頂温度8
5〜110℃、放散塔底温度110〜130℃、放散塔
底エチレンオキシド濃度は10ppm以下、好ましくは
0.5ppm以下である。
The operating conditions of the stripping tower are: the stripping tower top pressure 0 to 1 kg / cm 2 G,
Preferably 0.3-0.6 kg / cm 2 G, stripping tower top temperature 8
5 to 110 ° C., the bottom temperature of the stripping tower is 110 to 130 ° C., and the ethylene oxide concentration in the bottom of the stripping tower is 10 ppm or less, preferably 0.5 ppm or less.

本発明の特徴は放散塔底部より出る液を常圧又はわずか
に減圧で操作されるフラッシュタンクへ導入し、低圧水
蒸気を発生させる。この水蒸気の発生は吸熱的であり溶
液の温度の低下をもたらす効果がある。発生した水蒸気
は、電気駆動の遠心式圧縮機またはスクリュウ式圧縮機
あるいは往復動式圧縮機により昇圧され放散塔底部の気
相部へ供給され放散塔の加熱源の一部となり、放散塔の
加熱源の水蒸気の削減を持たらす。さらに低圧水蒸気を
発生した残部の液は吸収塔底部からの液と熱交換され熱
回収される。
A feature of the present invention is that the liquid discharged from the bottom of the stripping column is introduced into a flash tank operated at normal pressure or slightly reduced pressure to generate low-pressure steam. The generation of water vapor is endothermic and has the effect of lowering the temperature of the solution. The generated steam is pressurized by an electrically driven centrifugal compressor, screw compressor, or reciprocating compressor and supplied to the gas phase at the bottom of the stripping tower to become part of the heat source of the stripping tower, heating the stripping tower. Bring down the source water vapor. Further, the remaining liquid that generated low-pressure steam is heat-exchanged with the liquid from the bottom of the absorption tower to recover heat.

一方、吸収塔底液は低圧水蒸気を発生した残部の液と熱
交換された後、フラッシユタンクにて軽質分ガスを分離
した後、放散塔頂部へ供給されてエチレンオキシドは放
散される。本発明において放散塔より放散されるもの
は、大部分がエチレンオキシドおよび水、少部分が二酸
化炭素および微量の酸素、エチレン、不活性ガス(窒
素、アルゴン、メタン、エタン)、ホルムアルデヒド等
の低沸点不純物、アセトアルデヒドおよび酢酸等の高沸
点不純物からなる放散物である。
On the other hand, the absorption tower bottom liquid is heat-exchanged with the remaining liquid that has generated low-pressure steam, and then the light fraction gas is separated in a flush tank, and then is supplied to the top of the stripping tower to release ethylene oxide. What is diffused from the stripping tower in the present invention is mostly low-boiling impurities such as ethylene oxide and water, a small portion of carbon dioxide and a trace amount of oxygen, ethylene, an inert gas (nitrogen, argon, methane, ethane), formaldehyde and the like. , A high-boiling point impurity such as acetaldehyde and acetic acid.

本発明をさらに詳しく述べるために図1に基づいて説明
する。
The present invention will be described in more detail with reference to FIG.

図−1においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、充填塔
あるいは棚段塔形式の吸収塔(2)の下部へ供給し、導
管(24)より吸収塔(2)の上部へ、温度40℃以
下、pH=6以上、エチレングリコール濃度=1〜20重
量%、消泡剤(水溶性シリコンエマルション)濃度=1
〜50ppmおよび残部は水から成る吸収液を導入し、反
応生成ガスと向流接触させ反応生成ガス中のエチレンオ
キシドを吸収液に吸収させた。ここで反応生成ガス中の
99重量%以上のエチレンオキシドが回収される。吸収
塔(2)の塔頂より吸収しなかったエチレン、酸素、二
酸化炭素、不活性ガス(窒素、アルゴン、メタン、エタ
ン)、アルデヒド、酸性物質等のガスは導管(3)を通
して炭酸ガス吸収工程および/または酸化反応工程へ循
環される。
In FIG. 1, a reaction product gas containing ethylene oxide, which is produced by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst, is passed through a conduit (1) through a packed tower or a plate tower type absorption tower ( 2) to the lower part, and from the conduit (24) to the upper part of the absorption tower (2), the temperature is 40 ° C or lower, pH = 6 or higher, ethylene glycol concentration = 1 to 20% by weight, antifoaming agent (water-soluble silicone emulsion). ) Concentration = 1
An absorption liquid consisting of ˜50 ppm and the balance being water was introduced and countercurrently contacted with the reaction product gas so that the ethylene oxide in the reaction product gas was absorbed by the absorption liquid. Here, 99% by weight or more of ethylene oxide in the reaction product gas is recovered. Gases such as ethylene, oxygen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane), aldehydes and acidic substances that have not been absorbed from the top of the absorption tower (2) are absorbed through the conduit (3) in the carbon dioxide absorption step. And / or recycled to the oxidation reaction step.

エチレンオキシド吸収工程においてエチレンオキシドの
他、エチレン、酸素、二酸化炭素、不活性ガス(窒素、
アルゴン、メタン、エタン、)ならびにエチレン酸化反
応工程で生成したホルムアルデヒド等の低沸点不純物、
アセトアルデヒド、酢酸等の高沸点不純物もその実質量
が同時に吸収される。
In the ethylene oxide absorption process, in addition to ethylene oxide, ethylene, oxygen, carbon dioxide, inert gas (nitrogen,
Argon, methane, ethane, and low boiling impurities such as formaldehyde produced in the ethylene oxidation reaction step,
High boiling impurities such as acetaldehyde and acetic acid are simultaneously absorbed in substantial amounts.

吸収塔(2)の塔底液を導管(4)、熱交換器(5)へ
送り放散塔底液と熱交換し温度70〜110℃に高め、
導管(6)により、気液分離タンク(7)へ送られ、一
部エチレンオキシド、水を含む不活性ガスの軽質分ガス
が導管(8)により分離される。軽質分ガスをフラッシ
ュした残部の吸収液を導管(9)を通して圧力0.1〜
2Kg/cm2G、温度90〜120℃の放散塔(10)の
上部へ供給し、放散塔(10)の加熱器(12)へ導管
(13)を通して水蒸気またはダウサム(米国ダウ社熱
媒体商品)等の加熱媒体を供給して、または直接放散塔
の底部に水蒸気を導入して加熱し、放散塔(10)の底
部よりエチレンオキシドを実質的に含まない温度100
〜130℃の放散塔底液の一部は導管(14)および導
管(16)を通してフラッシュタンク(41)へ供給さ
れ、常圧あるいは若干減圧の圧力迄圧力が下げられ低圧
蒸気を発生させ、溶液の温度の低下をもたらす。フラッ
シュタンク(41)で発生した低圧蒸気は導管(42)
を通して蒸気圧縮機(43)に送られ放散塔(10)の
塔底圧力0.5kg/cm2Gよりわずかに高い圧力迄圧縮
され導管(44)により放散塔(10)底部の気相部に
送入される。フラッシュタンク(41)でフラッシュし
た残部の液は導管(45)を通して熱交換器(5)およ
び冷却器(18)を通して、導管(21)より水、導管
(22)より水酸化カリウム水溶液および導管(23)
より消泡剤(水溶性シリコンエマルシヨン)を添加し、
導管(24)を通して吸収塔(2)に導入することがで
きる。
The bottom liquid of the absorption tower (2) is sent to the conduit (4) and the heat exchanger (5) to exchange heat with the diffusion bottom liquid, and the temperature is raised to 70 to 110 ° C.
It is sent to the gas-liquid separation tank (7) through the conduit (6), and the light component gas of the inert gas partially containing ethylene oxide and water is separated through the conduit (8). The remaining absorption liquid after flushing the light component gas is passed through the conduit (9) and the pressure is set to 0.1 to 0.1.
It is supplied to the upper part of the stripping tower (10) at 2 kg / cm 2 G and a temperature of 90 to 120 ° C., and it passes through a conduit (13) to a heater (12) of the stripping tower (10) through a conduit (13). ) Or the like, or by directly introducing steam into the bottom of the stripping tower to heat it, and heating at a temperature of 100 at which ethylene oxide is not substantially contained from the bottom of the stripping tower (10).
A part of the bottom liquid of the stripping tower at ˜130 ° C. is supplied to the flash tank (41) through the conduit (14) and the conduit (16), and the pressure is reduced to atmospheric pressure or slightly reduced pressure to generate low-pressure steam, and the solution is generated. Result in a decrease in temperature. The low pressure steam generated in the flash tank (41) is introduced into the conduit (42).
Through a vapor compressor (43) and is compressed to a pressure slightly higher than the bottom pressure of 0.5 kg / cm 2 G of the desorption column (10) by a conduit (44) to a gas phase section at the bottom of the desorption column (10). Sent in. The remaining liquid flashed in the flash tank (41) is passed through the conduit (45), the heat exchanger (5) and the cooler (18), through the conduit (21), water, and through the conduit (22), an aqueous potassium hydroxide solution and the conduit ( 23)
Add a defoamer (water-soluble silicone emulsion),
It can be introduced into the absorption tower (2) through a conduit (24).

一方、放散塔(10)の塔底より導管(14)を通して
抜き出した残部の吸収液は導管(15)を通して副生エ
チレングリコール濃縮塔に送ることができる。
On the other hand, the remaining absorption liquid extracted from the bottom of the stripping tower (10) through the conduit (14) can be sent to the by-product ethylene glycol concentration tower through the conduit (15).

本発明をさらに詳しく述べるために従来公知の方法を図
−2に基づいて説明する。
In order to describe the present invention in more detail, a conventionally known method will be described with reference to FIG.

図−2においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、充填塔
あるいは棚段塔形式の吸収塔(2)の下部へ供給し、導
管(24)より吸収塔(2)の上部へ吸収液を導入し、
反応生成ガスと向流接触させ、反応生成ガス中の99重
量%以上のエチレンオキシドを回収し、吸収塔(2)の
塔頂より吸収しなかったエチレン、酸素、二酸化炭素、
不活性ガス(窒素、アルゴン、メタン、エタン)、アル
デヒド、酸性物質等のガスは導管(3)を通して二酸化
炭素吸収工程および/または酸化反応工程へ循環され
る。この吸収工程においてエチレンオキシドの他、エチ
レン、酸素、二酸化炭素、不活性ガス(窒素、アルゴ
ン、メタン、エタン、)ならびにエチレン酸化反応工程
で生成したホルムアルデヒド等の低沸点不純物、アセト
アルデヒド、酢酸等の高沸点不純物もその実質量が同時
に吸収される。吸収塔(2)の塔底液を導管(4)を通
して熱交換器(5)へ送り放散塔底液と熱交換して温度
70〜110℃に高め、導管(6)により気液分離タン
ク(7)へ送られ不活性ガスが導管(8)により分離さ
れる。一部エチレンオキシド、水を含む液は導管(9)
を通して塔頂圧力0.1〜2Kg/cm2G、温度90〜1
20℃の放散塔(10)の上部へ供給し、放散塔(1
0)の加熱器(12)より水蒸気またはダウサム(ダウ
社商品)等の加熱媒体で加熱するか、または直接放散塔
(10)の下部へ水蒸気を導入する加熱方式により加熱
し、吸収液中に含まれるエチレンオキシドの99重量%
以上を放散せしめ、放散塔(10)の底部よりエチレン
オキシドを実質的に含まない温度100〜130℃の放
散塔底液の一部は導管(14)および導管(16)を通
して熱交換器(5)で放散塔(10)の供給液と熱交換
し、さらに冷却器(18)により冷却し、ついで吸収液
中のエチレングリコール濃度を調節するため新鮮な水を
導管(21)を通して導入し。吸収液中のpHを調節する
ため導管(22)を通して水酸化カリウム水溶液を添加
し、吸収液中の消泡剤濃度を調節するため導管(23)
を通して消泡剤を導入することができる。エチレンを分
子状酸素で酸化する酸化工程およびエチレンオキシド放
散工程の間で吸収液中にエチレンオキシドと水との加水
反応で生成する副生エチレングリコールおよびホルムア
ルデヒド等の低沸点不純物、アセトアルデヒドおよび酢
酸等の高沸点不純物の増加を防ぐため放散塔(10)の
塔底より導管(14)および(15)を通して放散塔
(10)の底液を抜き出し、濃縮工程に送られる。
In FIG. 2, a reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through a conduit (1) and a packed tower or a plate tower type absorption tower ( 2) is supplied to the lower part, and the absorption liquid is introduced from the conduit (24) to the upper part of the absorption tower (2),
The reaction product gas was brought into countercurrent contact with the reaction product gas to recover 99% by weight or more of ethylene oxide, and ethylene, oxygen, carbon dioxide, which was not absorbed from the top of the absorption tower (2),
Inert gases (nitrogen, argon, methane, ethane), aldehydes, acidic substances and other gases are circulated through the conduit (3) to the carbon dioxide absorption step and / or the oxidation reaction step. In this absorption process, in addition to ethylene oxide, ethylene, oxygen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane, etc.) and low boiling impurities such as formaldehyde produced in the ethylene oxidation reaction process, high boiling points such as acetaldehyde and acetic acid. A substantial amount of impurities is absorbed at the same time. The bottom liquid of the absorption tower (2) is sent to the heat exchanger (5) through the conduit (4) and exchanges heat with the diffusion bottom liquid to raise the temperature to 70 to 110 ° C., and the gas-liquid separation tank ( 7) and the inert gas is separated by the conduit (8). Liquid containing part of ethylene oxide and water is piped (9)
Through column top pressure 0.1 to 2 kg / cm 2 G, temperature 90 to 1
It is supplied to the upper part of the diffusion tower (10) at 20 ° C., and the diffusion tower (1
Heated by steam or a heating medium such as Dowsome (commercially available from Dow) from the heater (12) of 0), or directly by a heating method of introducing steam to the lower part of the stripping tower (10) to obtain the absorption liquid. 99% by weight of ethylene oxide contained
The above is diffused, and a part of the bottom liquid of the stripping tower at a temperature of 100 to 130 ° C. which does not substantially contain ethylene oxide from the bottom of the stripping tower (10) is passed through the conduit (14) and the conduit (16) to the heat exchanger (5). At that time, heat exchange is performed with the feed liquid of the stripping tower (10), cooling is performed by a cooler (18), and then fresh water is introduced through a conduit (21) to adjust the ethylene glycol concentration in the absorbing liquid. An aqueous potassium hydroxide solution is added through a conduit (22) to adjust the pH in the absorbing liquid, and a conduit (23) to adjust the concentration of the defoaming agent in the absorbing liquid.
An antifoaming agent can be introduced through. Low boiling point impurities such as by-produced ethylene glycol and formaldehyde, and high boiling points such as acetaldehyde and acetic acid, which are produced by the hydrolysis reaction of ethylene oxide and water in the absorption liquid between the oxidation step of oxidizing ethylene with molecular oxygen and the ethylene oxide emission step In order to prevent the increase of impurities, the bottom liquid of the stripping column (10) is withdrawn from the bottom of the stripping column (10) through conduits (14) and (15) and sent to the concentration step.

(実施例) 以下、実施例により本発明をさらに詳細に説明する。し
かし本発明はこの実施例のみによって本発明の範囲を規
制するものでない。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention does not limit the scope of the present invention by this embodiment alone.

実施例1 図−1においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、棚段塔
形式の吸収塔(2)の下部へ供給し、導管(24)より
吸収塔(2)の上部へ、温度29.6℃、pH=6、エチ
レングリコール濃度=9.0重量%、消泡剤(水溶性シ
リコンエマルション)濃度=3ppmおよび残部は水から
成る吸収液を導入し、反応生成ガスと向流接触させ反応
生成ガス中のエチレンオキシドを吸収液に吸収させた。
ここで反応生成ガス中の99重量%以上のエチレンオキ
シドが回収される。吸収塔(2)の塔頂より吸収しなか
ったエチレン、酸素、二酸化炭素、不活性ガス(窒素、
アルゴン、メタン、エタン)、アルデヒド、酸性物質等
のガスは導管(3)を通して炭酸ガス吸収工程および/
または酸化反応工程へ循環した。
Example 1 In FIG. 1, a reaction product gas containing ethylene oxide produced by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through a conduit (1) and a plate column type absorption tower ( 2) is supplied to the lower part and the conduit (24) is supplied to the upper part of the absorption tower (2) at a temperature of 29.6 ° C., pH = 6, ethylene glycol concentration = 9.0% by weight, an antifoaming agent (water-soluble silicone emulsion). ) Concentration = 3 ppm and the balance was water, and an absorption liquid was introduced and countercurrently contacted with the reaction product gas to absorb ethylene oxide in the reaction product gas into the absorption liquid.
Here, 99% by weight or more of ethylene oxide in the reaction product gas is recovered. Ethylene, oxygen, carbon dioxide, inert gas (nitrogen, nitrogen, etc.) not absorbed from the top of the absorption tower (2)
Gases such as argon, methane, ethane), aldehydes, acidic substances, etc. are passed through the conduit (3) to the carbon dioxide absorption step and / or
Alternatively, it was recycled to the oxidation reaction step.

吸収塔(2)の塔底液を導管(4)、熱交換器(5)、
導管(6)により、気液分離タンク(7)へ送られ、一
部エチレンオキシド、水を含む不活性ガスの軽質分ガス
が導管(8)により分離される。軽質分ガスをフラッシ
ュした残部の吸収液を導管(9)を通して放散塔(1
0)の上部へ供給し、放散塔(10)の加熱器(12)
へ導管(13)を通して水蒸気を供給して加熱し、放散
塔(10)の底部より実質的にエチレンオキシドを含ま
ない放散塔底液を導管(14)を通して抜き出し、その
一部は導管(16)を通してフラッシュタンク(41)
へ供給され、常圧あるいは若干減圧の圧力まで圧力が下
げられ低圧蒸気を発生させ、溶液の温度の低下をもたら
す。フラッシュタンク(41)で発生した低圧蒸気は導
管(42)を通して蒸気圧縮機(43)に送られ放散塔
(10)の塔底圧力0.5kg/cm2Gよりわずかに高い
圧力迄圧縮され導管(44)により放散塔(10)底部
の気相部に送入される。フラッシュタンク(41)でフ
ラッシュした残りの液は導管(45)を通して熱交換器
(5)および冷却器(18)を通して、導管(21)よ
り水、導管(22)より水酸化カリウム水溶液および導
管(23)より消泡剤(水溶性シリコンエマルシヨン)
を添加し、導管(24)を通して吸収塔(2)に導入す
ることができる。
The bottom liquid of the absorption tower (2) is fed with a conduit (4), a heat exchanger (5),
It is sent to the gas-liquid separation tank (7) through the conduit (6), and the light component gas of the inert gas partially containing ethylene oxide and water is separated through the conduit (8). The residual absorption liquid after flushing the light gas is passed through the conduit (9) to the diffusion tower (1
0) and the heater (12) of the stripping tower (10).
Steam is supplied through the conduit (13) to heat and the stripping bottom liquid containing substantially no ethylene oxide is withdrawn from the bottom of the stripping tower (10) through the conduit (14), part of which is passed through the conduit (16). Flash tank (41)
And is reduced to a pressure of normal pressure or slightly reduced pressure to generate low-pressure steam, which lowers the temperature of the solution. The low-pressure vapor generated in the flash tank (41) is sent to the vapor compressor (43) through the conduit (42) and compressed to a pressure slightly higher than the bottom pressure of 0.5 kg / cm 2 G of the desorption tower (10). By (44), it is fed into the vapor phase section at the bottom of the stripping tower (10). The remaining liquid flushed in the flash tank (41) is passed through the conduit (45), the heat exchanger (5) and the cooler (18), the water is supplied through the conduit (21), the potassium hydroxide aqueous solution is supplied through the conduit (22), and the conduit (22). 23) Defoamer (water-soluble silicone emulsion)
Can be added and introduced into the absorption tower (2) through the conduit (24).

一方、放散塔(10)の塔底より導管(14)を通して
抜き出した残部の吸収液は導管(15)を通して副生エ
チレングリコール濃縮塔に送った。表−1にこのプロセ
スの操作条件を一括して表示する。
On the other hand, the remaining absorption liquid extracted from the bottom of the stripping tower (10) through the conduit (14) was sent to the by-product ethylene glycol concentration tower through the conduit (15). Table 1 shows the operating conditions of this process all together.

比較例1 図−2においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、棚段塔
形式の吸収塔(2)の下部へ供給し、導管(24)より
吸収塔(2)の上部へ吸収液を導入し、温度29.6
℃、pH=6、エチレングリコール濃度=9.0重量%、
消泡剤(水溶性シリコンエマルシヨン)濃度=3ppmお
よび残部は水から成る吸収液を導入し、反応生成ガスと
向流接触させ反応生成ガス中のエチレンオキシドを吸収
液に吸収させた。吸収塔(2)の塔頂より吸収しなかっ
たエチレン、酸素、二酸化炭素、不活性ガス(窒素、ア
ルゴン、メタン、エタン)、アルデヒド、酸性物質等の
ガスは導管(3)を通して炭酸ガス吸収工程および/ま
たは酸化反応工程へ循環した。吸収塔(4)の塔底液は
導管(4)、熱交換器(5)、導管(6)により、気液
分離タンク(7)へ送られ、一部エチレンオキシド、水
を含む不活性ガスが導管(8)により分離される。軽質
分ガスをフラッシュした残部の吸収液を導管(9)を通
して放散塔(10)の上部へ供給した。放散塔(10)
の加熱器(12)へ導管(13)を通して水蒸気を供給
して加熱し、放散塔(10)の底部より実質的にエチレ
ンオキシドを含まない放散塔塔底液を導管(14)を通
して抜き出し、その一部は導管(16)を通して熱交換
器(5)および冷却器(18)を通して、導管(21)
より水、導管(22)より水酸化カリウム水溶液および
導管(23)より消泡剤(水溶性シリコンエマルシヨ
ン)が添加され、導管(24)より吸収塔塔頂部へ供給
される。
Comparative Example 1 In FIG. 2, a reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through a conduit (1) and a plate column type absorption tower ( 2), and the absorption liquid is introduced from the conduit (24) to the upper part of the absorption tower (2) at a temperature of 29.6.
° C, pH = 6, ethylene glycol concentration = 9.0% by weight,
An antifoaming agent (water-soluble silicone emulsion) concentration = 3 ppm and the balance of water was introduced, and the mixture was countercurrently contacted with the reaction product gas to absorb ethylene oxide in the reaction product gas. Gases such as ethylene, oxygen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane), aldehydes and acidic substances that have not been absorbed from the top of the absorption tower (2) are absorbed through the conduit (3) in the carbon dioxide absorption step. And / or recycled to the oxidation reaction step. The bottom liquid of the absorption tower (4) is sent to a gas-liquid separation tank (7) through a conduit (4), a heat exchanger (5) and a conduit (6), and an inert gas containing ethylene oxide and water is partially generated. Separated by conduit (8). The remaining absorption liquid after flushing the light gas was fed to the upper part of the stripping column (10) through the conduit (9). Dispersion tower (10)
Steam is supplied to the heater (12) through the conduit (13) for heating, and the bottom liquid of the desorption column, which is substantially free of ethylene oxide, is withdrawn through the conduit (14) from the bottom of the desorption column (10). A part through a conduit (16), through a heat exchanger (5) and a cooler (18), through a conduit (21)
Water, an aqueous potassium hydroxide solution from a conduit (22), and an antifoaming agent (water-soluble silicone emulsion) from a conduit (23) are added, and the mixture is supplied to the top of the absorption tower through a conduit (24).

一方、放散塔(10)の塔底より導管(14)を通して
抜き出した残部の吸収液は導管(15)を通して副生エ
チレングリコール濃縮塔に送った。表−2にこのプロセ
スの操作条件を一括して表示する。
On the other hand, the remaining absorption liquid extracted from the bottom of the stripping tower (10) through the conduit (14) was sent to the by-product ethylene glycol concentration tower through the conduit (15). Table 2 shows the operating conditions of this process all together.

(発明の効果) 本発明の方法によれば、エチレンオキシド放散塔底液を
フラッシュするときに発生した蒸気がフラッシュドラム
から分離され、圧縮手段によりエチレンオキシド放散塔
底部の圧力より少し高めに圧縮されエチレンオキシド放
散塔底部に導入することにより、エチレンオキシド放散
塔を加熱するに要する加熱熱量を大幅に減少することが
可能となる効果を発揮するものである。さらにこの方法
を実施することによってエチレンオキシド吸収塔に送る
吸収液を冷却する冷却水の熱負荷が低減される。
(Effects of the Invention) According to the method of the present invention, the vapor generated when flushing the bottom liquid of the ethylene oxide stripping tower is separated from the flash drum, and is compressed to a little higher than the pressure at the bottom of the ethylene oxide stripping tower by the compression means. By introducing it into the bottom of the tower, the effect of making it possible to greatly reduce the amount of heating required to heat the ethylene oxide stripping tower is exhibited. Further, by carrying out this method, the heat load of the cooling water for cooling the absorption liquid sent to the ethylene oxide absorption tower is reduced.

【図面の簡単な説明】[Brief description of drawings]

図−1は、本発明のエチレンオキシド回収方法の好まし
い具体例を示す一例である。 図−2は、本発明に関連する公知のエチレンキシド回収
方法を示す一例である。 (2)……吸収塔 (5)……熱交換器 (7)……気液分離タンク (10)……放散塔 (12)……加熱器 (18)……冷却器 (41)……フラッシュタンク (43)……圧縮機
FIG. 1 is an example showing a preferred specific example of the ethylene oxide recovery method of the present invention. FIG. 2 is an example showing a known ethylene oxide recovery method related to the present invention. (2) …… Absorption tower (5) …… Heat exchanger (7) …… Gas-liquid separation tank (10) …… Dissipation tower (12) …… Heater (18) …… Cooler (41) …… Flash tank (43) …… Compressor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エチレンを銀触媒の存在下、分子状酸素含
有ガスと接触気相酸化して生成したエチレンオキシドを
含有する反応生成ガスを吸収塔へ導入して吸収液と向流
接触させ、吸収塔頂部よりのガスは炭酸ガス吸収工程お
よび/またはエチレン酸化反応工程へ循環し、エチレン
オキシドを含む吸収塔底液はエチレンオキシド放散塔へ
供給し、放散塔頂部からエチレンオキシドを放散せし
め、放散塔底部より抜き出した液は吸収塔および副生エ
チレングリコール濃縮塔へ送る工程において、放散塔底
部より抜き出した液をフラッシュ処理し、気相部と液相
部に分離し、気相部は圧縮して放散塔へ導入し、液相部
は吸収塔の吸収液とすることを特徴とするエチレンオキ
シドの回収方法。
1. A reaction product gas containing ethylene oxide produced by catalytic vapor-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is introduced into an absorption tower and is brought into countercurrent contact with the absorbing liquid to absorb it. The gas from the tower top is circulated to the carbon dioxide absorption step and / or ethylene oxidation reaction step, the absorption tower bottom liquid containing ethylene oxide is supplied to the ethylene oxide stripping tower, ethylene oxide is stripped off from the stripping tower top, and withdrawn from the stripping tower bottom. In the process of sending the liquid to the absorption tower and the by-product ethylene glycol concentrating tower, the liquid extracted from the bottom of the stripping tower is subjected to flash treatment, separated into a gas phase portion and a liquid phase portion, and the gas phase portion is compressed to the stripping tower. A method for recovering ethylene oxide, characterized in that the liquid phase is introduced into the absorption liquid of an absorption tower.
JP60139175A 1985-06-27 1985-06-27 Recovery method of ethylene oxide Expired - Lifetime JPH0662594B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60139175A JPH0662594B2 (en) 1985-06-27 1985-06-27 Recovery method of ethylene oxide
CA000512407A CA1284334C (en) 1985-06-27 1986-06-25 Method for recovery of ethylene oxide
AU59269/86A AU590888B2 (en) 1985-06-27 1986-06-26 Method for recovery of ethylene oxide
DE8686108722T DE3688444T2 (en) 1985-06-27 1986-06-26 METHOD FOR RECOVERY OF ETHYLENE OXIDE.
EP86108722A EP0207448B1 (en) 1985-06-27 1986-06-26 Method for recovery of ethylene oxide
KR1019860005200A KR920003199B1 (en) 1985-06-27 1986-06-27 Method for recovery of ethylene oxide
CN86104909A CN1019270B (en) 1985-06-27 1986-06-27 Method for recovery of ethylene oxide
US07/127,488 US4875909A (en) 1985-06-27 1987-12-01 Method for recovery of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139175A JPH0662594B2 (en) 1985-06-27 1985-06-27 Recovery method of ethylene oxide

Publications (2)

Publication Number Publication Date
JPS62475A JPS62475A (en) 1987-01-06
JPH0662594B2 true JPH0662594B2 (en) 1994-08-17

Family

ID=15239318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139175A Expired - Lifetime JPH0662594B2 (en) 1985-06-27 1985-06-27 Recovery method of ethylene oxide

Country Status (1)

Country Link
JP (1) JPH0662594B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320005A (en) * 1976-08-08 1978-02-23 Nippon Soken Inc Internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320005A (en) * 1976-08-08 1978-02-23 Nippon Soken Inc Internal combustion engine

Also Published As

Publication number Publication date
JPS62475A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
EP3127904B1 (en) Process for producing ethylene oxide
US4221727A (en) Ethylene oxide recovery
EP0207490B1 (en) Method for purification of ethylene oxide
WO2022083396A1 (en) Method for producing vinyl acetate
EP2980081B1 (en) Method for producing ethylene oxide
JP2013209255A (en) Method for recovering carbon dioxide in production process of ethylene oxide
EP2980082B1 (en) Ethylene oxide production process
JPH0676205B2 (en) High-purity carbon dioxide recovery method
JPH0625199B2 (en) Method for purifying ethylene oxide
JPH0662594B2 (en) Recovery method of ethylene oxide
GB2093726A (en) Isothermal absorption of ethylene oxide
JPH0655734B2 (en) Recovery method of ethylene oxide
TWI331145B (en)
JP6368117B2 (en) Method for producing ethylene oxide
JP6538922B2 (en) Method of producing ethylene oxide
JP2013082675A (en) Propylene oxide recovery method
JP6522078B2 (en) Method of producing ethylene oxide
JP6538921B2 (en) Method of producing ethylene oxide
JPH0791282B2 (en) Method for purifying ethylene oxide
KR920001767B1 (en) Method for purification of ethylene oxide
JPH0655733B2 (en) Recovery method of ethylene oxide
JPH08127573A (en) Recovery of ethylene oxide
JPS6210076A (en) Method of recovering ethylene oxide
JPS6212771A (en) Purification of ethylene oxide
JP2002145821A (en) Method for producing acrolein