JPH0662348B2 - Porous ceramic composite material and method for producing the same - Google Patents

Porous ceramic composite material and method for producing the same

Info

Publication number
JPH0662348B2
JPH0662348B2 JP19299188A JP19299188A JPH0662348B2 JP H0662348 B2 JPH0662348 B2 JP H0662348B2 JP 19299188 A JP19299188 A JP 19299188A JP 19299188 A JP19299188 A JP 19299188A JP H0662348 B2 JPH0662348 B2 JP H0662348B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
compact
carbide
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19299188A
Other languages
Japanese (ja)
Other versions
JPH0244078A (en
Inventor
明 可児
Original Assignee
イーグル工業株会社社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株会社社 filed Critical イーグル工業株会社社
Priority to JP19299188A priority Critical patent/JPH0662348B2/en
Publication of JPH0244078A publication Critical patent/JPH0244078A/en
Publication of JPH0662348B2 publication Critical patent/JPH0662348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質セラミックス複合材料およびその製造方
法に関し、特に、多孔質炭化ケイ素セラミックスの表面
を窒化ケイ素で被覆した多孔質セラミックス複合材料お
よびその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a porous ceramic composite material and a method for producing the same, and particularly to a porous ceramic composite material in which the surface of porous silicon carbide ceramics is coated with silicon nitride and the same. The present invention relates to a manufacturing method.

〔従来技術および解決しようとする問題点〕[Prior art and problems to be solved]

一般に、炭化ケイ素セラミックスは総合的にすぐれた耐
熱性を有する構造材料として知られているが、急激な加
熱や冷却の熱変化に対する耐久性、すなわち耐熱衝撃性
にやや難点があることが知られている。
Generally, silicon carbide ceramics is known as a structural material having excellent heat resistance as a whole, but it is known that its durability against thermal changes due to rapid heating and cooling, that is, thermal shock resistance is somewhat difficult. There is.

また、窒化ケイ素セラミックスは、上記の耐熱衝撃性に
すぐれた構造材料であることが知られている。
Further, it is known that silicon nitride ceramics is a structural material excellent in the above thermal shock resistance.

そして、上記炭化ケイ素セラミックスに微細な連通気孔
が形成された、多孔質炭化ケイ素セラミックスは、特開
昭62年第297279号に記載された方法によって製
造されることは知られていて、この多孔質炭素ケイ素セ
ラミックスにあっても、前記と同様に耐熱衝撃性にやや
難点があり、温度変化の大きい場所、例えば、高温ガス
用のフィルターなどの構造材料としては耐性が充分でな
く、温度変化の大きい場所でも使用できるような耐熱衝
撃性の向上が望まれていた。
And it is known that the porous silicon carbide ceramics in which fine continuous air holes are formed in the silicon carbide ceramics are produced by the method described in JP-A-62-297279. Similar to the above, carbon silicon ceramics also have some difficulty in thermal shock resistance, and are not sufficiently resistant as a structural material such as a filter for high-temperature gas where there is a large temperature change, and the temperature change is large. It has been desired to improve the thermal shock resistance so that it can be used even in places.

本発明は総合的にすぐれた耐熱性を有するとともに、耐
熱衝撃性にもすぐれた多孔質セラミックス複合材料およ
びその製造方法を提供することを目的としている。
It is an object of the present invention to provide a porous ceramic composite material having excellent heat resistance as well as excellent thermal shock resistance and a method for producing the same.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するために本発明の多孔質セラミック
ス複合材料は、微細な連通気孔を有するとともに、前記
連通気孔内表面を含む表層部分を窒化ケイ素材で構成
し、この窒化ケイ素材が1〜25体積%であり、残り7
5〜99体積%が炭化ケイ素材からなり、前記連通気孔
の気孔率が10〜50体積%である構成を有しており、
また、本発明の多孔質セラミックス複合材料の製造方法
は、平均粒径50〜300μmの炭化ケイ素粒子の表面
に、炭化物換算量で3〜15重量%の炭化性有機物を被
覆し、被覆された炭化ケイ素粒子の粉末を有機物炭化処
理後の成形体かさ密度が1.7〜2.1g/cm3になる
ような条件で成形し、得られた成形体を非酸化性雰囲気
で焼成して成形体中の炭化性有機物を炭化させ、次いで
炭化処理後の成形体を1450℃以上で溶融ケイ素と接
触させて成形体にケイ素を浸透させ、成形体中の有機物
炭化物とケイ素とを反応させ炭化ケイ素とするととも
に、成形体表面にケイ素を過剰に供給し、さらに、この
ケイ素を過剰に供給した成形体に窒素またはアンモニア
ガスを接触反応させて成形体表面のケイ素を窒化ケイ素
に変換する手段を有している。
In order to achieve the above-mentioned object, the porous ceramic composite material of the present invention has a fine continuous air hole, and the surface layer portion including the inner surface of the continuous air hole is constituted by a silicon nitride material, and the silicon nitride material is 1 25% by volume, the remaining 7
5 to 99% by volume is made of a silicon carbide material, and the porosity of the continuous ventilation holes is 10 to 50% by volume.
Further, the method for producing a porous ceramic composite material of the present invention is a method in which the surface of silicon carbide particles having an average particle size of 50 to 300 μm is coated with 3 to 15% by weight of a carbonaceous equivalent of a carbonizing organic material, and the coated carbonization is performed. The powder of silicon particles is molded under the condition that the bulk density of the compact after carbonization of the organic matter is 1.7 to 2.1 g / cm 3 , and the compact obtained is fired in a non-oxidizing atmosphere. The carbonizable organic substance therein is carbonized, and then the carbonized molded product is brought into contact with molten silicon at 1450 ° C. or higher to allow silicon to penetrate into the molded product, and the organic compound carbide in the molded product is reacted with silicon to form silicon carbide. In addition, it has means for excessively supplying silicon to the surface of the molded body, and further for converting the silicon on the surface of the molded body into silicon nitride by reacting nitrogen or ammonia gas with the molded body having excessively supplied silicon. There.

〔作用〕[Action]

本発明は上記の構成および手段を採用したことにより、
炭化ケイ素/窒化ケイ素からなる多孔質セラミックス複
合材料は温度変化の大きい場所の構造材料として有用な
耐熱衝撃性にすぐれるとともに、総合的にすぐれた耐熱
性を有するものであり、その炭化ケイ素/窒化ケイ素か
らなる多孔質セラミックス複合材料を簡便に製造できる
こととなる。
The present invention, by adopting the above configuration and means,
Porous ceramic composites composed of silicon carbide / silicon nitride have excellent thermal shock resistance, which is useful as a structural material in places with large temperature changes, and also have excellent overall heat resistance. The porous ceramic composite material made of silicon can be easily produced.

〔発明の具体的な構成〕[Specific configuration of the invention]

以下、本発明による炭化ケイ素/窒化ケイ素からなる多
孔質セラミックス複合材料について詳述する。
Hereinafter, the porous ceramic composite material made of silicon carbide / silicon nitride according to the present invention will be described in detail.

平均粒径50〜300μmの炭化ケイ素粒子は研削材と
して市販されており、本発明の原材料としての炭化ケイ
素粒子の粉末はこれをそのまま用いることができる。
Silicon carbide particles having an average particle size of 50 to 300 μm are commercially available as an abrasive, and the powder of silicon carbide particles as a raw material of the present invention can be used as it is.

一般に、炭化ケイ素の粒子径が大きいほど製品の気孔径
が大きくなるから、所望の製品気孔径に応じて用いる炭
化ケイ素の粒子径を適宜選択する。
Generally, the larger the particle size of silicon carbide, the larger the pore size of the product. Therefore, the particle size of silicon carbide used is appropriately selected according to the desired product pore size.

なお、平均粒径が50μmよりも小さいと、ケイ素溶融
処理を行う成形体における炭化ケイ素粒子間の空隙が小
さくなりすぎて空隙がケイ素により埋めつくされ易く、
必要な気孔率を確保できなくなる。
If the average particle size is less than 50 μm, the voids between the silicon carbide particles in the molded body that undergoes the silicon melting treatment become too small, and the voids are easily filled with silicon,
It becomes impossible to secure the required porosity.

また反対に粒子径が300μmを越えると、炭化ケイ素
粒子同士の結合箇所が少なくなるため、多孔質セラミッ
クス複合材料の強度が不充分となる。
On the other hand, if the particle size exceeds 300 μm, the number of bonding points between the silicon carbide particles decreases, so that the strength of the porous ceramic composite material becomes insufficient.

上記の炭化ケイ素粒子の被覆に用いる炭化性有機物とし
ては、なんらかの溶剤に溶けて炭化ケイ素粒子の被覆が
可能な溶液を形成し、かつ非酸化性雰囲気で焼成される
と高収率で炭素化するもの、例えばフェノール樹脂、フ
ラン樹脂などの熱硬化性樹脂やピッチ等を用いることが
できる。
The carbonizing organic substance used for coating the silicon carbide particles described above is dissolved in some solvent to form a solution capable of coating the silicon carbide particles, and carbonizes in a high yield when fired in a non-oxidizing atmosphere. For example, a thermosetting resin such as phenol resin or furan resin, pitch, or the like can be used.

被覆工程は、炭化性有機物の溶液と炭化ケイ素粒子の粉
末とを撹拌機を用いてよく混合した後、引き続き撹拌し
ながら加熱して乾燥することにより行うことができる。
The coating step can be carried out by thoroughly mixing the solution of the carbonizable organic substance and the powder of silicon carbide particles with a stirrer, and subsequently heating and drying with stirring.

また、流動層コーティング法によっても可能である。It is also possible to use a fluidized bed coating method.

被覆された炭化性有機物は次の焼成工程で炭化し、形成
された炭化物が溶融ケイ素の反応対象となるので、炭化
性有機物の好適被覆量は用いる炭化性有機物の炭素収率
により異なる。
The coated carbonized organic matter is carbonized in the subsequent firing step, and the formed carbide is the reaction target of the molten silicon. Therefore, the suitable coating amount of the carbonized organic matter varies depending on the carbon yield of the carbonized organic matter used.

したがって、包括的な上記炭化性有機物の好適被覆量は
炭化物換算量により示すのが適当で、その値は炭化ケイ
素の重量基準で3〜15%、特に好ましくは5〜12%
である。
Therefore, it is appropriate that the comprehensive coating amount of the above-mentioned carbonizable organic substance is indicated by the equivalent amount of carbide, and the value is 3 to 15%, particularly preferably 5 to 12% based on the weight of silicon carbide.
Is.

3%以下では炭化ケイ素粒子上に形成される炭素被覆が
連続相になり得ず、したがって、反応で生じる炭化ケイ
素による炭化ケイ素粒子の結合が不充分となり、強度の
低い製品しか得られない。
If it is less than 3%, the carbon coating formed on the silicon carbide particles cannot be a continuous phase, so that the bonding of the silicon carbide particles by the silicon carbide generated in the reaction is insufficient and only a product having low strength can be obtained.

また15%以上にすることは製品の気孔率を低下させる
だけで、無益である。
Further, if it is 15% or more, it only reduces the porosity of the product and is useless.

なお、被覆工程では、炭化性有機物とともに、次の成形
工程における成形性向上のための助剤を炭化性ケイ素粒
子に付着させてもよい。
In the coating step, an auxiliary agent for improving the moldability in the next molding step may be attached to the carbonized silicon particles together with the carbonizable organic material.

この助剤としては、炭化性有機物の炭化温度以下の温度
で熱分解を起こし飛散してしまうもの、例えばパラフィ
ン、ワックス、ステアリン酸、熱可塑性合成樹脂(例え
ばアクリル樹脂、メタクリル樹脂等)等が適当である。
As this auxiliary agent, those which cause thermal decomposition and scatter at a temperature lower than the carbonization temperature of the carbonizable organic matter, for example, paraffin, wax, stearic acid, thermoplastic synthetic resin (eg acrylic resin, methacrylic resin, etc.) are suitable. Is.

被覆を終わった炭化ケイ素粒子の粉末は、必要量を成形
金型に入れ、単軸プレスなどを用いて圧縮成形する。こ
の場合の成形条件は、有機物炭化処理後の成形体のかさ
密度が1.7〜2.1g/cm3になるような条件とす
る。
The powder of the silicon carbide particles that have been coated is put in a required amount in a molding die and compression-molded using a single-screw press or the like. In this case, the molding conditions are such that the bulk density of the molded body after the organic substance carbonization treatment is 1.7 to 2.1 g / cm 3 .

かさ密度が1.7g/cm3に満たないときは、実用上必
要な強度を有する製品を得るこが困難となる。
If the bulk density is less than 1.7 g / cm 3 , it becomes difficult to obtain a product having the strength required for practical use.

一方、2.1g/cm2を越える高密度のものでは、それ
にともない小さくなった粒子間空隙にもケイ素が入り込
むため、多孔質セラミックス材料を得ることができな
い。
On the other hand, if the density is higher than 2.1 g / cm 2 , silicon will also enter the interparticle voids that have become smaller, and a porous ceramic material cannot be obtained.

成形体のかさ密度は、成形圧、成形温度などを調整する
ことにより、所望の値のものとすることができる。
The bulk density of the molded product can be set to a desired value by adjusting the molding pressure, the molding temperature and the like.

得られた成形体は、まず非酸化性の雰囲気で約500〜
1200℃に加熱し、成形体中の炭化性有機物を炭化さ
せる。(分解性の成形助剤を用いた場合は、それを炭化
性有機物に先だって分解させる。) 炭化性有機物の炭化は揮発性物質の遊離をともなうた
め、形成される炭化物は多数の微細な連通気孔を有する
ものとなる。
The obtained molded product is first about 500 to 500 in a non-oxidizing atmosphere.
It heats at 1200 degreeC and carbonizes the carbonizable organic substance in a molded object. (When a decomposable molding aid is used, it is decomposed prior to carbonizing organic matter.) Since carbonization of carbonizing organic matter is accompanied by liberation of volatile substances, the formed carbide has many fine open pores. Will have.

この後、真空中または不活性ガス中で、成形体を金属ケ
イ素の融点である1450℃以上、好ましくは1450
〜1700℃に加熱して、溶融ケイ素と接触させる。
Thereafter, the molded body is heated in a vacuum or in an inert gas at a melting point of metallic silicon of 1450 ° C. or higher, preferably 1450 ° C.
Heat to ~ 1700 ° C to contact molten silicon.

このための方法としては、粉末状金属ケイ素中に成形体
を埋めた状態で昇温する方法、適当なバインダーで金属
ケイ素粉末をペースト状にしたものを成形体表面に塗布
して昇温する方法、金属ケイ素粉末をシート状に成形し
たものを成形体に接触させた状態で昇温する方法などが
ある。
As a method for this, a method of raising the temperature in a state where the molded body is embedded in powdered metal silicon, a method of applying a paste of metal silicon powder with an appropriate binder to the surface of the molded body and heating it There is a method in which a sheet of metal silicon powder is heated and the temperature is raised in contact with the molded product.

このとき、溶融状態のケイ素は、成形体の有機物炭化物
部分の表面部分とともに連通気孔にも毛細管現象により
侵入し、次いで炭素と反応して前記連通気孔内表面を含
む表層部分に炭化ケイ素を生じる。
At this time, the molten silicon intrudes into the open pores together with the surface portion of the organic carbide portion of the molded body by a capillary phenomenon, and then reacts with carbon to form silicon carbide in the surface layer portion including the inner surface of the open pores.

このときのケイ素の供給量は有機物炭化物をすべて炭化
ケイ素に変換するのに必要な量と、後の窒化ケイ素化す
る工程においての窒化ケイ素が全体のセラミックス複合
材料に対して1〜25体積%になる量を接触させる。
The supply amount of silicon at this time is an amount necessary for converting all organic carbides to silicon carbide, and silicon nitride in the subsequent step of converting into silicon nitride is 1 to 25% by volume with respect to the entire ceramic composite material. Contact a certain amount.

上記のようにして有機物炭化物が炭化ケイ素に変換され
ると、基材である炭化ケイ素粒子からなる多孔質炭化ケ
イ素セラミックス中の炭化ケイ素粒子はこの反応により
生じた炭化ケイ素および未反応のケイ素と一体化する。
When the organic carbide is converted into silicon carbide as described above, the silicon carbide particles in the porous silicon carbide ceramics composed of the silicon carbide particles as the base material are integrated with the silicon carbide generated by this reaction and unreacted silicon. Turn into.

未反応のケイ素の存在形態は、反応により生じた炭化ケ
イ素を覆う網目状となっている。
The existing form of unreacted silicon is a network that covers the silicon carbide generated by the reaction.

次に、上記の表面に未反応ケイ素が存在する多孔質セラ
ミックス成形体をその未反応ケイ素が窒素ガスと反応す
る温度の1250〜1500℃に保持し、その成形体に
窒素ガスまたはアンモニアガスを供給し、上記の未反応
ケイ素を窒素ガスまたはアンモニアガスと反応させ、前
記の工程で炭化ケイ素粒子との反応により生じた炭化ケ
イ素が形成された多孔質セラミックス成形体の表面を覆
うように窒化ケイ素の層を形成する。
Next, the porous ceramics compact having unreacted silicon on the surface is maintained at a temperature of 1250 to 1500 ° C. at which the unreacted silicon reacts with nitrogen gas, and nitrogen gas or ammonia gas is supplied to the compact. Then, the above-mentioned unreacted silicon is reacted with nitrogen gas or ammonia gas, and the silicon nitride of silicon nitride is formed so as to cover the surface of the porous ceramics formed body in which the silicon carbide produced by the reaction with the silicon carbide particles in the above step is formed. Form the layers.

上記の表面に窒化ケイ素の層を形成する反応時間は、2
〜20時間程度であり、全体の多孔質セラミックス複合
材料の1〜25体積%となるように形成する。
The reaction time for forming the silicon nitride layer on the surface is 2
It is about 20 hours, and it is formed so as to be 1 to 25% by volume of the whole porous ceramics composite material.

一方、炭化ケイ素は、全体の多孔質セラミックス複合材
料の75〜99体積%となる。
On the other hand, silicon carbide accounts for 75 to 99% by volume of the entire porous ceramic composite material.

また、上記の製造工程を経て形成された多孔質セラミッ
クス複合材料の前記連通気孔の気孔率は10〜50体積
%となる。
In addition, the porosity of the continuous ventilation holes of the porous ceramics composite material formed through the above manufacturing process is 10 to 50% by volume.

上記のようにして得られる本発明による多孔質セラミッ
クス複合材料は、その連通気孔内の表面を含む表層部分
に形成される窒化ケイ素の層が炭化ケイ素に比較して耐
熱衝撃性にすぐれており、多孔質セラミックス複合材料
の連通気孔を高温のガスが通過した場合には、このガス
は炭化ケイ素に直接接触することがなく、その表層を被
覆する耐熱衝撃性にすぐれた窒化ケイ素と接触するので
耐熱衝撃性は大幅に向上することとなるとともに、基材
である炭化ケイ素の耐熱性および機械的強度はそのまま
保持されている。
The porous ceramic composite material according to the present invention obtained as described above, the layer of silicon nitride formed in the surface layer portion including the surface in the continuous ventilation hole is excellent in thermal shock resistance as compared with silicon carbide, When a high-temperature gas passes through the continuous pores of the porous ceramics composite material, this gas does not come into direct contact with silicon carbide, but with silicon nitride that has excellent thermal shock resistance and covers the surface layer, so that heat resistance is improved. The impact resistance is greatly improved, and the heat resistance and mechanical strength of the silicon carbide as the base material are maintained as they are.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成したことにより、基材である
炭化ケイ素セラミックスの耐熱性および機械的強度はそ
のまま保持されるとともに、その連通気孔内の表面を含
む表層部分に形成される窒化ケイ素の層が炭化ケイ素に
比較して耐熱衝撃性にすぐれているので、全体の多孔質
セラミックス複合材料としての耐熱衝撃性は大幅に向上
するものであり、また、これらのすぐれた特性を有する
多孔質セラミックス複合材料を簡便な工程で製造するこ
とができるなどのすぐれた効果を有するものである。
Since the present invention is configured as described above, the heat resistance and mechanical strength of the silicon carbide ceramics that is the base material are maintained as they are, and the silicon nitride ceramics formed on the surface layer portion including the surface in the communicating holes are Since the layer has better thermal shock resistance than silicon carbide, the overall thermal shock resistance of the porous ceramic composite material is significantly improved, and the porous ceramics having these excellent properties are also improved. It has an excellent effect that a composite material can be manufactured by a simple process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】微細な連通気孔を有するとともに、前記連
通気孔内表面を含む表層部分を窒化ケイ素材で構成し、
この窒化ケイ素材が1〜25体積%であり、残り75〜
99体積%が炭化ケイ素材からなり、前記連通気孔の気
孔率が10〜50体積%であることを特徴とする多孔質
セラミックス複合材料。
1. A surface layer portion having fine air vents and including an inner surface of the air vents is made of a silicon nitride material,
This silicon nitride material is 1 to 25% by volume, and the remaining 75 to
99% by volume is made of a silicon carbide material, and the porosity of the continuous ventilation holes is 10 to 50% by volume.
【請求項2】平均粒径50〜300μmの炭化ケイ素粒
子の表面に、炭化物換算量で3〜15重量%の炭化性有
機物を被覆し、被覆された炭化ケイ素粒子の粉末を有機
物炭化処理後の成形体かさ密度が1.7〜2.1g/cm
3になるような条件で成形し、得られた成形体を非酸化
性雰囲気で焼成して成形体中の炭化性有機物を炭化さ
せ、次いで炭化処理後の成形体を1450℃以上で溶融
ケイ素と接触させて成形体にケイ素を浸透させ、成形体
中の有機物炭化物とケイ素とを反応させ炭化ケイ素とす
るとともに、成形体表面にケイ素を過剰に供給し、さら
に、このケイ素を過剰に供給した成形体に窒素またはア
ンモニアガスを接触反応させて成形体表面のケイ素を窒
化ケイ素に変換することを特徴とする多孔質セラミック
ス複合材料の製造方法。
2. The surface of silicon carbide particles having an average particle size of 50 to 300 μm is coated with 3 to 15% by weight of a carbonaceous organic substance in terms of carbide, and the powder of the coated silicon carbide particles after the carbonization treatment with an organic substance is performed. Molded product has a bulk density of 1.7-2.1 g / cm
Molded under conditions such that the resulting product becomes 3 , and the resulting molded product is fired in a non-oxidizing atmosphere to carbonize the carbonizable organic matter in the molded product, and the carbonized product is then treated with molten silicon at 1450 ° C or higher. Silicon is infiltrated into the compact by contacting it, and the organic carbide and silicon in the compact are reacted with each other to form silicon carbide, and silicon is excessively supplied to the surface of the compact, and further, this excessive silicon is supplied. A method for producing a porous ceramics composite material, which comprises reacting nitrogen or ammonia gas with a body to convert silicon on the surface of the compact into silicon nitride.
JP19299188A 1988-08-02 1988-08-02 Porous ceramic composite material and method for producing the same Expired - Fee Related JPH0662348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19299188A JPH0662348B2 (en) 1988-08-02 1988-08-02 Porous ceramic composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19299188A JPH0662348B2 (en) 1988-08-02 1988-08-02 Porous ceramic composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0244078A JPH0244078A (en) 1990-02-14
JPH0662348B2 true JPH0662348B2 (en) 1994-08-17

Family

ID=16300408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19299188A Expired - Fee Related JPH0662348B2 (en) 1988-08-02 1988-08-02 Porous ceramic composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0662348B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684427B2 (en) * 1989-09-19 1997-12-03 株式会社日立製作所 Composite ceramic structure
JP3578533B2 (en) * 1995-11-13 2004-10-20 株式会社リコー Image display control device
JP4641845B2 (en) * 2005-03-28 2011-03-02 太平洋セメント株式会社 Coated porous structure and method for producing coated porous structure
CN105541334B (en) * 2015-12-10 2017-10-24 武汉科技大学 Silicon carbide-based composite foamed ceramic of perforated muscle structure and preparation method thereof
CN113941707A (en) * 2021-10-18 2022-01-18 广东昭信照明科技有限公司 Enhanced aluminum-based silicon carbide LED heat dissipation packaging substrate and preparation method thereof

Also Published As

Publication number Publication date
JPH0244078A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
CA1157242A (en) Method of making thermal-shock resistant molded articles on the basis of silicon carbide
JPS6410470B2 (en)
JP2006290670A (en) Fiber reinforced silicon carbide composite material, and method of manufacturing the same
JPS5844630B2 (en) silicone carbide material
CN101323536A (en) Boron nitride porous ceramic thermal insulation material, preparation and use thereof
US4957811A (en) Components of silicon-infiltrated silicon carbide having a porous surface, and process for the production thereof
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JP2003238265A (en) Method of manufacturing hollow body made from fiber- reinforced ceramic material
JP2004002144A (en) Method for manufacturing molding consisting of fiber-reinforced ceramic material
JP5665122B2 (en) Silicon carbide heat-resistant ultralight porous structure material and method for producing the same
JPH0662348B2 (en) Porous ceramic composite material and method for producing the same
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
JPH0362643B2 (en)
EP0178753A1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPS6366783B2 (en)
JPH0826848A (en) Production of porous sic molding
JPH0818886B2 (en) Method for producing porous silicon carbide material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
JP3450875B2 (en) Method for producing porous silicon carbide material
JPH06102530B2 (en) Method for manufacturing graphite molded body
JPH02102177A (en) Porous corrosion-resistant material and production thereof
JPH05132373A (en) Production of porous silicon carbide composite material
JP3342508B2 (en) Method for producing impermeable carbonaceous plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees