JPH0662066A - Phase setting method for non-linear distortion compensating circuit - Google Patents

Phase setting method for non-linear distortion compensating circuit

Info

Publication number
JPH0662066A
JPH0662066A JP4210568A JP21056892A JPH0662066A JP H0662066 A JPH0662066 A JP H0662066A JP 4210568 A JP4210568 A JP 4210568A JP 21056892 A JP21056892 A JP 21056892A JP H0662066 A JPH0662066 A JP H0662066A
Authority
JP
Japan
Prior art keywords
phase
output
quadrature
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4210568A
Other languages
Japanese (ja)
Inventor
Norio Kubo
徳郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4210568A priority Critical patent/JPH0662066A/en
Publication of JPH0662066A publication Critical patent/JPH0662066A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To correctly set the phase of an output carrier wave from a local oscillator to an orthogonal demodulator for compensating non-linear distortion even in the case of continuous transmission in which there is no lamp bit in the case of burst transmission. CONSTITUTION:This method is provided with a monitor 1 for monitoring the levels of signals I and Q in two analog systems inputted to an orthogonal modulator 50, and the monitor detects the state of turning the levels of both of analog signals of two systems inputted to the orthogonal modulator 50 to a level higher than a prescribed threshold value Vth. In such a state, phase difference is measured between the phases of outputs I' and Q' of an orthogonal demodulator 70 and the phase of the input of the orthogonal modulator, and the phase of the output of the orthogonal demodulator is set so as to eliminate the phase difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は4相位相変調QPSK等の直
交変調された無線のディジタル変調信号を電力増幅し連
続的に送信する場合の送信回路に係り、特に其の送信回
路の終段の電力効率を良くする為に非線形増幅する高出
力増幅器の出力の非線形歪を、その変調入力と復調出力
のベースバンド領域にて補償し、高出力増幅器の入出力
特性を線形化する非線形歪補償付き送信回路の位相設定
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission circuit for power amplification of a quadrature phase modulated QPSK or other quadrature modulated wireless digital modulation signal for continuous transmission, and more particularly to a final stage of the transmission circuit. Non-linear distortion compensation that compensates for the non-linear distortion of the output of the high-output amplifier that performs non-linear amplification in order to improve the power efficiency in the baseband region of its modulation input and demodulation output, and linearizes the input / output characteristics of the high-output amplifier. To a phase setting method for a transmission circuit with a switch.

【0002】無線のディジタル変調の通信方式として
は、無線周波数の有効利用の点から、QPSK等の直交変調
方式の使用が必要不可欠となっており、その際に、発生
歪の無い線形の高出力の送信回路が必要となるが、終段
の高出力増幅器を線形領域で動作させると、その送信電
力/消費電力比の所謂電力効率が悪くなり、駆動電源を
含めた送信装置の小形化および一定電源における稼働時
間の長時間化が困難となる。従って送信回路の高出力増
幅器は電力効率の良い非線形領域で動作させた上、その
非線形歪を補償する歪補償回路を設けて、送信回路全体
として入出力特性の線形化を図る。連続送信の場合の非
線形歪補償付き送信回路としては、送出波がバースト波
の場合と同様に、その変調入力と復調出力のベースバン
ド領域での位相差の測定と其の測定された位相差に基づ
く送信回路の線形化の為の位相設定回路が簡単な構成で
実現されることが必要である。
As a wireless digital modulation communication system, it is indispensable to use a quadrature modulation system such as QPSK from the viewpoint of effective utilization of radio frequency. At that time, linear high output without distortion is generated. However, when the final stage high output amplifier is operated in the linear region, the so-called power efficiency of the transmission power / power consumption ratio deteriorates, and the transmission device including the drive power source is downsized and fixed. It becomes difficult to increase the operating time of the power supply. Therefore, the high-output amplifier of the transmission circuit is operated in a non-linear region where power efficiency is high, and a distortion compensation circuit for compensating the non-linear distortion is provided to linearize the input / output characteristics of the entire transmission circuit. As a transmission circuit with non-linear distortion compensation in the case of continuous transmission, as in the case where the transmitted wave is a burst wave, the phase difference between the modulation input and demodulation output in the baseband region and the measured phase difference are measured. It is necessary that the phase setting circuit for linearization of the transmission circuit based on it be realized with a simple configuration.

【0003】[0003]

【従来の技術】図4に従来のバーストモードのカルテシ
アン型非線形歪補償回路付き送信回路に対するベースバ
ンド領域における位相測定と位相設定の回路の構成例を
示し、図5に其のバーストモードの送信回路における位
相設定のタイミングを示す。そして図6はその従来の位
相差測定の原理の説明図である。現在、TDMA方式の
ディジタル移動通信の開発が進められているが、その移
動機が予め定められた時間に電波をバースト状に送出す
る際のスペクトラムの拡りを抑える為に、送信するバー
スト波の立上り立下りの前後(ランプタイム)の振幅の
変化を緩かにする所謂ランプビットを設けている。この
ランプビットは、図5に示す如く、送信波の立上り時の
振幅を徐々に大きくさせる或る固定の値を持っているの
で、送信波が十分に大きくなるタイミングを、ランプタ
イムの或る時点と定める事ができて、そのタイミング
で、歪補償の為の位相差の測定と位相の設定とを行って
いる。
2. Description of the Related Art FIG. 4 shows a configuration example of a circuit for phase measurement and phase setting in a baseband region for a conventional burst mode Cartesian nonlinear distortion compensating circuit, and FIG. 5 shows the burst mode transmission. The timing of the phase setting in the circuit is shown. FIG. 6 is an explanatory view of the principle of the conventional phase difference measurement. Currently, development of TDMA digital mobile communication is in progress, but in order to suppress the spread of the spectrum when the mobile device sends out radio waves in a burst at a predetermined time, A so-called ramp bit is provided to moderate changes in the amplitude before and after the rise and fall (ramp time). As shown in FIG. 5, the ramp bit has a fixed value that gradually increases the amplitude of the transmission wave at the rising edge. Therefore, the timing at which the transmission wave becomes sufficiently large is set at a certain time of the ramp time. The phase difference is measured and the phase is set for distortion compensation at that timing.

【0004】歪補償の為の位相差の測定は、図6に示す
如く、図4の直交変調器MOD(50)の入力の2系列のベー
スバンド信号I,Q より、測定の基準となる位相θ= tan
-1 Q/ Iを求め、直交復調器DEM(70)の出力の2系列のベ
ースバンド信号I',Q' より、復調出力の位相θ' = tan
-1 Q' /I' を求める。そして変調入力と復調出力との位
相の差Δθ= θ−θ' を求める。そしてこの位相差Δθ
分だけ、出力の直交復調器DEM(70)への局部発振器LO(9
0)の搬送波の位相を、無限移相器EPS(80) により、その
増減を行い、位相差Δθが零となるように設定してい
る。そして図4の従来の位相測定と位相制御の回路EPS-
CONT(130)は、同図のベースバンド回路MODBB (10)からD
A変換器DAC(20),低域フィルタ(30),歪加算器(40)を通
り, 直交変調器MOD(50)へ入力する二系列のベースバン
ド信号I,Q を入力し、図6の如く、位相差測定の基準と
なる入力側位相θ = tan-1Q /I を求める。次に、直交
変調器MOD(50)の出力を電力効率の良い非線形領域で電
力増幅した高出力増幅器HPA(60)の出力Poutを直交位相
の局部搬送波で復調する直交復調器DEM(70)の出力で変
調器MOD(50) の入力側へ帰還するベースバンド信号I',
Q'を、ADコンバータADC(120)で変換して位相測定と位
相制御の回路EPS-CONT(130) へ入力し、入力側と同様に
出力側位相θ'= tan-1 Q'/I'を求める。そして基準の入
力位相θと出力位相θ'の位相差Δθ= θ−θ' を求
め、この位相差Δθ分だけ、直交復調器DEM(70)への局
部発振器LO(90)の出力の搬送波の位相の増減を行って位
相差Δθを無くするが、其の位相の増減は、前記位相差
の測定と位相制御の回路EPS-CONT(130)にて測定した位
相差Δθと外部(図示しないTDMA制御部)からのバース
ト信号とで生成した位相設定の制御データを、DAコン
バータDAC(140)にて変換したアナログの制御信号X,Y に
より、其の移相量が定まる無限移相器EPS(80)を制御し
前記位相差Δθを無くす様に位相の制御が行われる構成
となっていた。
As shown in FIG. 6, the measurement of the phase difference for distortion compensation is performed by using the two series of baseband signals I and Q at the input of the quadrature modulator MOD (50) shown in FIG. θ = tan
-1 Q / I is calculated, and the phase of demodulated output θ '= tan
-1 Find Q '/ I'. Then, the phase difference Δθ = θ−θ ′ between the modulation input and the demodulation output is obtained. And this phase difference Δθ
Local oscillator LO (9) to the output quadrature demodulator DEM (70).
The phase of the carrier wave of (0) is set by the infinite phase shifter EPS (80) so that the phase difference Δθ becomes zero. And the conventional phase measurement and phase control circuit EPS- in FIG.
CONT (130) is the baseband circuit MODBB (10) shown in the figure.
The two series of baseband signals I and Q to be input to the quadrature modulator MOD (50) through the A converter DAC (20), the low pass filter (30) and the distortion adder (40) are input and Thus, the input side phase θ = tan -1 Q / I, which is the reference for the phase difference measurement, is obtained. Next, the quadrature demodulator DEM (70) that demodulates the output Pout of the high-output amplifier HPA (60) that power-amplifies the output of the quadrature modulator MOD (50) in a non-linear region with high power efficiency by using a local carrier of quadrature phase At the output, the baseband signal I ', which returns to the input side of the modulator MOD (50),
Q'is converted by the AD converter ADC (120) and input to the phase measurement and phase control circuit EPS-CONT (130), and the output side phase θ '= tan -1 Q' / I 'as well as the input side. Ask for. Then, the phase difference Δθ = θ−θ ′ between the reference input phase θ and the output phase θ ′ is obtained, and the phase difference Δθ is calculated by the amount of the carrier wave of the output of the local oscillator LO (90) to the quadrature demodulator DEM (70). The phase difference Δθ is eliminated by increasing / decreasing the phase, but the phase increase / decrease is measured by the phase difference measurement and phase control circuit EPS-CONT (130) and external (not shown TDMA The phase setting control data generated by the burst signal from the control unit) is converted by the DA converter DAC (140) by the analog control signals X and Y, and the infinite phase shifter EPS ( 80) is controlled to control the phase so that the phase difference Δθ is eliminated.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、直交変調
された信号を高出力増幅して送出する送信回路の出力の
送信波がバースト信号であれば、バースト波の立上り時
のランプタイムの振幅が十分に大きくなった時点で、位
相差Δθを測定し、その位相差を零とするように、無限
移相器EPS(80) により、直交復調器DEM(70)への局部発
振器LO(90)の出力搬送波の位相を設定できるが、送信波
がランプタイムの存在しない連続信号波の場合は、位相
差Δθを測定する時点で送信波の振幅が十分に大きいと
いう保証は無く、位相差の測定の誤差が大きくなる可能
性があるという問題があった。
As described above, when the transmission wave output from the transmission circuit for amplifying and transmitting the quadrature-modulated signal with high output is a burst signal, the amplitude of the ramp time at the rising edge of the burst wave. , The phase difference Δθ is measured, and the infinite phase shifter EPS (80) sets the local oscillator LO (90) to the quadrature demodulator DEM (70) so that the phase difference becomes zero. ), The phase of the output carrier can be set, but if the transmitted wave is a continuous signal wave with no ramp time, there is no guarantee that the amplitude of the transmitted wave will be sufficiently large at the time of measuring the phase difference Δθ. There is a problem that the measurement error may increase.

【0006】本発明の目的は、4相位相変調QPSK等の直
交変調信号を非線形増幅する高出力の送信回路の出力す
る送信波が、連続信号である場合の、該送信回路の変調
入力と復調出力のベースバンドにおける位相差の測定の
誤差が大きくならず、発生した非線形歪を正しく補償す
る為の直交復調器DEM(70)への局部発振器LO(90)の出力
搬送波の位相の設定ができる非線形歪補償回路における
位相設定方法を実現することにある。
An object of the present invention is to modulate and demodulate the transmission circuit when a transmission wave output from a high-output transmission circuit that non-linearly amplifies a quadrature phase modulation QPSK or other quadrature modulation signal is a continuous signal. The error of measurement of the phase difference in the output baseband does not become large, and the phase of the output carrier of the local oscillator LO (90) can be set to the quadrature demodulator DEM (70) to correctly compensate the generated nonlinear distortion. It is to realize a phase setting method in a non-linear distortion compensation circuit.

【0007】[0007]

【課題を解決するための手段】この目的達成のための本
発明の基本構成は、図1の原理図に示す如く、直交変調
器MOD(50)の入力の2系列のアナログのベースバンド信
号I,Q のレベルを常時監視するモニタ1を設け、該モニ
タ1により、直交変調器MOD(50)の入力の2系列のベー
スバンド信号I,Q のレベルが共に閾値Vth よりも大きく
なった状態(共にレベル"H" の状態) を確認する。其の
確認した状態で、無限移相器の制御回路EPS-CONT(130)
にて、直交変調器MOD(50)の入力の2系列のベースバン
ド信号I,Qの位相θと、直交復調器DEM(70)の出力の2系
列のベースバンド信号I',Q' の位相θ' との位相差Δθ
= θ−θ’の測定と、その測定した位相差Δθを無くす
様な制御信号X,Yを生成し、無限移相器EPS(80) によ
り、直交復調器DEM(70)への局部発振器(90)の出力の搬
送波の位相の設定が行われる構成とする。
The basic configuration of the present invention for achieving this object is, as shown in the principle diagram of FIG. 1, two series of analog baseband signals I at the input of the quadrature modulator MOD (50). , A state in which a monitor 1 for constantly monitoring the levels of Q is provided, and the levels of the two series of baseband signals I and Q input to the quadrature modulator MOD (50) are both higher than the threshold Vth by the monitor 1 ( Check the level "H" state together. In that state, control circuit EPS-CONT (130) for infinite phase shifter
, The phase θ of the two series of baseband signals I and Q input to the quadrature modulator MOD (50) and the phase of the two series of baseband signals I ′ and Q ′ output from the quadrature demodulator DEM (70) Phase difference from θ'Δθ
= θ−θ ′ and generate control signals X and Y that eliminate the measured phase difference Δθ, and use the infinite phase shifter EPS (80) to generate a local oscillator ( 90) Output carrier wave phase is set.

【0008】[0008]

【作用】本発明では、モニタ1 が、直交変調器MOD(50)
の入力の2系列のアナログのベースバンド信号I,Q のレ
ベルを常時監視し、其の2系列のベースバンド信号I,Q
のレベルが共に閾値Vth よりも大きくなった状態を検出
する。此の検出状態、即ち、共にレベル"H" の状態にお
いて、直交変調器MOD(50)の入力の2系列のベースバン
ド信号I,Q の位相θ= tan-1 Q/Iと直交復調器DEM(70)の
出力の2系列のベースバンド信号 I',Q'の位相θ'= tan
-1 Q'/I'との位相差Δθ= θ−θ' の測定が、無限移相
器の制御回路EPS-CONT(130) にて、先ず行われ、次に、
此の測定した位相差Δθを無くす様に制御信号X,Yを発
生する。そして、此の制御信号X,Yにより、無限移相器E
PS(80) を制御し、局部発振器(90)の出力の、直交復調
器DEM(70)への搬送波の位相の設定が行われる。
In the present invention, the monitor 1 is the quadrature modulator MOD (50).
The levels of the two series of analog baseband signals I and Q at the input of are constantly monitored, and the two series of baseband signals I and Q are monitored.
The state in which both levels become larger than the threshold value Vth is detected. In this detection state, that is, in the state where both are at level "H", the phase of two series of baseband signals I and Q at the input of the quadrature modulator MOD (50) θ = tan -1 Q / I and the quadrature demodulator DEM Phase of two baseband signals I ', Q'of the output of (70) θ' = tan
-1 Q '/ I' phase difference Δθ = θ−θ 'is measured by the control circuit EPS-CONT (130) of the infinite phase shifter first, then
The control signals X and Y are generated so as to eliminate the measured phase difference Δθ. Then, by the control signals X and Y, the infinite phase shifter E
The PS (80) is controlled to set the phase of the carrier wave of the output of the local oscillator (90) to the quadrature demodulator DEM (70).

【0009】[0009]

【実施例】図1の原理図はそのまま、本発明の実施例の
非線形歪補償回路における位相設定方法の構成を示し、
図2はその実施例の動作を説明するためのタイミングパ
ルスを得る過程を示すタイムチャートである。図1の実
施例の構成では、本発明のモニタ1は、或るレベルの閾
値Vthを持つ2つのアナログのコンパレータ1-11,1-1
2と、その2つの出力の論理積をとる AND回路1-2 と、
その AND出力により位相制御用のタイミングパルスを発
生するタイミング制御器(Timing-cont)1-3とで構成され
ている。図2のタイムチャートにより動作を説明する
と、アナログのコンパレータ1-11,1-12は、直交変調器M
OD(50)へ連続的に入力する2系列のアナログのベースバ
ンド信号である(1)Ich,Qchのレベルを常時監視し、其の
Ich,Qchのレベルが夫々、閾値Vth より大きくなった状
態"H"を検出し、(2) 検出出力"H"を、AND回路1-2 へ送
る。AND回路1-2は、Ich,Qch のレベルが共に閾値Vthよ
り大きくなった状態"H"を検出し、AND出力(3)I AND Q
を、タイミング制御器(Timing-cont)1-3へ送出する。そ
してタイミング制御器1-3 が、必要な(4) タイミングパ
ルスを発生して、無限移相器の制御部(EPS-CONT)へ出力
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS While keeping the principle diagram of FIG. 1 as it is, a configuration of a phase setting method in a non-linear distortion compensation circuit of an embodiment of the present invention is shown.
FIG. 2 is a time chart showing a process of obtaining a timing pulse for explaining the operation of the embodiment. In the configuration of the embodiment of FIG. 1, the monitor 1 of the present invention has two analog comparators 1-1 1, 1-1 having a threshold value Vth of a certain level.
2 and an AND circuit 1-2 that takes the logical product of the two outputs,
It is composed of a timing controller (Timing-cont) 1-3 which generates a timing pulse for phase control by the AND output. The operation will be described with reference to the time chart of FIG. 2. The analog comparators 1-1 1 and 1-1 2 are quadrature modulators M.
The levels of (1) Ich and Qch, which are two series of analog baseband signals that are continuously input to OD (50), are constantly monitored.
The state "H" in which the levels of Ich and Qch have become larger than the threshold value Vth is detected, and (2) the detection output "H" is sent to the AND circuit 1-2. The AND circuit 1-2 detects the state "H" in which both the Ich and Qch levels are higher than the threshold value Vth, and outputs the AND output (3) I AND Q
To the timing controller (Timing-cont) 1-3. Then, the timing controller 1-3 generates the necessary (4) timing pulse and outputs it to the control unit (EPS-CONT) of the infinite phase shifter.

【0010】図3は本発明の別の実施例(請求項2に対
応)の非線形歪補償回路における位相設定方法の構成図
である。この図3の実施例では、図1の直交変調器MOD
(50)の入力のアナログの2系列のベースバンド信号I,Q
の代りに、D/A 変換器DAC(20) でアナログ信号A に変換
される前の、ディジタルDの2系列のベースバンド信号
ID ,QD を、モニタ1を構成するディジタルのコンパレ
ータ(Digital Comp)1-1Dに取り入れ、予め与えられた参
照データ(Ref-Data)と比較して、一致した信号を、タイ
ミング制御器(Timing-cont)1-3へ送出し、必要なタイミ
ングパルスを発生している。この図3の実施例は、モニ
タ1を構成するコンパレータ回路をディジタル化してい
るので、図1のアナログの回路よりも、回路規模の縮小
化と無調整化の点で有利となっている。
FIG. 3 is a block diagram of a phase setting method in a non-linear distortion compensation circuit of another embodiment (corresponding to claim 2) of the present invention. In the embodiment of FIG. 3, the quadrature modulator MOD of FIG.
(50) input analog 2 series baseband signals I, Q
Instead of, the two series of digital D baseband signals before being converted to analog signal A by D / A converter DAC (20)
Incorporating I D and Q D into the digital comparator (Digital Comp) 1-1 D that composes the monitor 1, compares them with reference data (Ref-Data) given in advance, and determines the matched signal to the timing controller. (Timing-cont) 1-3 is being sent to generate the required timing pulse. Since the comparator circuit constituting the monitor 1 is digitized, the embodiment shown in FIG. 3 is advantageous over the analog circuit shown in FIG. 1 in that the circuit scale can be reduced and no adjustment can be made.

【0011】[0011]

【発明の効果】以上説明した如く、本発明によれば、送
信波がバースト波でない連続信号波である通信方式の送
信回路においても、非線形動作の高出力増幅器の発生す
る非線歪の補償回路のベースバンド領域における位相の
測定を誤差少なく行い、位相の設定を精度良く行うこと
を可能とする効果が得られる。
As described above, according to the present invention, even in the transmission circuit of the communication system in which the transmission wave is a continuous signal wave that is not a burst wave, the compensation circuit for the non-linear distortion generated by the non-linear operation high output amplifier is provided. It is possible to obtain an effect that the phase measurement in the base band region of 1 is performed with a small error and the phase can be set accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の非線形歪補償回路における位相設定
方法の基本構成を示す原理図
FIG. 1 is a principle diagram showing a basic configuration of a phase setting method in a nonlinear distortion compensation circuit of the present invention.

【図2】 本発明の実施例の動作を説明する為のタイミ
ングパルスを得る過程を示すタイムチャート
FIG. 2 is a time chart showing a process of obtaining a timing pulse for explaining the operation of the embodiment of the present invention.

【図3】 本発明の請求項2に対応する実施例の構成図FIG. 3 is a configuration diagram of an embodiment corresponding to claim 2 of the present invention.

【図4】 従来のバーストモードのカルテシアン型非線
形歪補償回路付き送信回路における位相測定と位相設定
の回路例
FIG. 4 is a circuit example of phase measurement and phase setting in a conventional burst mode Cartesian type nonlinear distortion compensation circuit-equipped transmission circuit.

【図5】 従来のバーストモードの送信回路における位
相設定のタイミングを示す図
FIG. 5 is a diagram showing a phase setting timing in a conventional burst mode transmission circuit.

【図6】 従来の位相差測定の原理を説明する為の図FIG. 6 is a diagram for explaining the principle of conventional phase difference measurement.

【符号の説明】[Explanation of symbols]

1はモニタ、1-11,1-12は2個のアナログの比較器、1-2
は AND回路、1-3 はタイミング制御器(Timing-cont)
、1 D はディジタルの比較器、(10)は変調ベースバン
ド回路、(20)は DA 変換器、(30)は低域フィルタ、(40)
は歪加算器、(50)は直交変調器MOD 、(60)は高出力送信
回路、(70)は直交復調器DEM 、(80)は無限移相器EPS 、
(90)は局部発振器、(100) は減算器、(110) はループス
イッチ、(120) はADコンバータ、(130) は無限移相器
の制御回路EPS-CONT、(140) はDAコンバータである。
1 is a monitor, 1-1 1 and 1-1 2 are two analog comparators, 1-2
Is an AND circuit, 1-3 is a timing controller (Timing-cont)
, 1 D is a digital comparator, (10) is a modulation baseband circuit, (20) is a DA converter, (30) is a low pass filter, (40)
Is a distortion adder, (50) is a quadrature modulator MOD, (60) is a high-power transmission circuit, (70) is a quadrature demodulator DEM, (80) is an infinite phase shifter EPS,
(90) is a local oscillator, (100) is a subtractor, (110) is a loop switch, (120) is an AD converter, (130) is an infinite phase shifter control circuit EPS-CONT, and (140) is a DA converter. is there.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 4相PSK 変調等の直交変調された信号を
増幅し連続送信する送信回路で、入力の2系列(I,Q)の
ベースバンドのディジタル信号を処理し出力するベース
バンド回路(10)と、その出力のディジタル信号(ID, QD)
をアナログ信号(A)に変換するDA変換器(20)と、低域フ
ィルタ(30)と、歪加算器(40)と、その出力で局部搬送波
を直交変調する直交変調器(50)と、其の変調出力を非線
形増幅する高出力増幅器(60)と、其の出力(Pout)を前記
局部搬送波で復調する直交復調器(70)と、該局部搬送波
の位相を任意に変移する無限移相器(80)と、該局部搬送
波を発生する局部発振器(90)と、前記直交復調器の出力
(I',Q')の歪を検出する歪検出器(100)と、其の歪の補償
信号を前記歪加算器(40)へ出力するループスイッチ(11
0)からなるカルテシアン型歪補償回路付き送信回路の前
記直交復調器(70)の出力(I',Q')の位相( θ')と前記直
交変調器(50)の入力(I,Q)の位相(θ)との位相差(Δ
θ= θ'-θ) を測定し其の位相差が無くなる様に前記直
交復調器(70)の出力(I',Q')の位相を設定する位相設定
方法において、該直交変調器( 50)の入力のアナログの
2系列の信号(I,Q)のレベルを監視するモニタ(1) を具
え、該モニタ(1) が前記直交変調器(50)の入力の2系列
のアナログ信号(I,Q)のレベルが共に所定の閾値(Vth)よ
りも高いレベルとなる状態(H)を検出した状態で、前記
直交復調器(70)の出力(I',Q')の位相と前記直交変調器
(50)の入力(I,Q)の位相との位相差(Δθ)を測定し、
其の位相差が無くなる様に前記直交復調器(70)の出力
(I',Q')の位相を設定することを特徴とする非線形歪補
償回路における位相設定方法。
1. A transmission circuit for amplifying and continuously transmitting a quadrature-modulated signal such as 4-phase PSK modulation, and a baseband circuit (2) for processing and outputting an input 2-series (I, Q) baseband digital signal. 10) and its output digital signal (I D, Q D ).
A DA converter (20) for converting the analog signal (A), a low-pass filter (30), a distortion adder (40), and a quadrature modulator (50) for quadrature modulating a local carrier with its output, A high output amplifier (60) that non-linearly amplifies the modulated output, a quadrature demodulator (70) that demodulates the output (Pout) with the local carrier, and an infinite phase shift that arbitrarily shifts the phase of the local carrier. (80), a local oscillator (90) for generating the local carrier, and the output of the quadrature demodulator
(I ', Q') distortion detector (100) to detect the distortion, the loop switch (11) that outputs the distortion compensation signal to the distortion adder (40)
0) the phase of the output (I ', Q') of the quadrature demodulator (70) of the transmission circuit with Cartesian distortion compensation circuit (θ ') and the input of the quadrature modulator (50) (I, Q ) And the phase (θ) of the phase difference (Δ
θ = θ'-θ) is measured and the phase of the output (I ', Q') of the quadrature demodulator (70) is set so that there is no phase difference. ) Input analog two-series signal (I, Q) level monitor (1) for monitoring the level of the input (2) analog signal (I) of the quadrature modulator (50). , Q) the level of both of which is higher than a predetermined threshold value (Vth) (H) is detected, the phase of the output (I ', Q') of the quadrature demodulator (70) and the quadrature Modulator
Measure the phase difference (Δθ) from the phase of the input (I, Q) of (50),
Output of the quadrature demodulator (70) so that there is no phase difference
A phase setting method in a non-linear distortion compensation circuit, characterized by setting the phase of (I ', Q').
【請求項2】 前記位相設定方法におけるモニタ(1)
が、前記DA変換器(20)によりアナログ信号(A)に変換さ
れる前の2系列のディジタル信号(ID,QD)を監視し、予
め与えられたデータ(Ref.Data)と比較して一致した信号
を出力するディジタルの比較器(1D )であることを特徴
とする請求項1記載の非線形歪補償回路における位相設
定方法。
2. A monitor in the phase setting method (1)
But the DA converter (20) by two series of digital signal before being converted to an analog signal (A) (I D, Q D) to monitor, as compared to the previously given data (Ref.Data) 2. A phase setting method in a non-linear distortion compensating circuit according to claim 1, wherein the phase setting method is a digital comparator (1 D ) for outputting a matched signal.
JP4210568A 1992-08-07 1992-08-07 Phase setting method for non-linear distortion compensating circuit Withdrawn JPH0662066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4210568A JPH0662066A (en) 1992-08-07 1992-08-07 Phase setting method for non-linear distortion compensating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4210568A JPH0662066A (en) 1992-08-07 1992-08-07 Phase setting method for non-linear distortion compensating circuit

Publications (1)

Publication Number Publication Date
JPH0662066A true JPH0662066A (en) 1994-03-04

Family

ID=16591477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4210568A Withdrawn JPH0662066A (en) 1992-08-07 1992-08-07 Phase setting method for non-linear distortion compensating circuit

Country Status (1)

Country Link
JP (1) JPH0662066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599099B1 (en) * 2005-02-07 2006-07-12 삼성전자주식회사 Receiver of wireless communication system and compensating method of i/q phase mismatching thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599099B1 (en) * 2005-02-07 2006-07-12 삼성전자주식회사 Receiver of wireless communication system and compensating method of i/q phase mismatching thereof

Similar Documents

Publication Publication Date Title
EP0982849B1 (en) Predistorter
EP1224733B1 (en) Adaptive linearization of power amplifiers
JP2967699B2 (en) Transmission device
AU705593B2 (en) Converter for converting a modulating signal with variable envelope to two modulating signals without variable envelope, transmitter using the converter and method for transmitting a modulated wave with variable envelope
US5696794A (en) Method and apparatus for conditioning digitally modulated signals using channel symbol adjustment
US7792214B2 (en) Polar modulation transmitter circuit and communications device
US20050101254A1 (en) Distortion compensating amplifier
JP3910167B2 (en) Amplifier circuit
US6795694B2 (en) Automatic gain control system
JPS5999851A (en) Signal control circuit
JP2003124821A (en) Transmitting power control circuit
US6917241B2 (en) Amplifier circuit, transmission device, amplification method, and transmission method
JPH0793546B2 (en) Amplifier
US9853608B2 (en) Temperature compensation technique for envelope tracking system
US6751268B1 (en) Bandpass predistorting expansion method and apparatus for digital radio transmission
JPH0662066A (en) Phase setting method for non-linear distortion compensating circuit
JPH04291829A (en) Distortion compensation circuit
JP2000244341A (en) Saturation preventing circuit in cartesian feedback circuit
KR100251385B1 (en) Apparatus and method for linearizing power amp with adaptive predistortion and modem error compensation
JP3865336B2 (en) High frequency power amplifier
JPH05260105A (en) Radio transmission equipment
JPH0630059A (en) Phase setting method in nonlinear distortion compensation circuit
JPH0690264A (en) Automatic carrier adjustment circuit
JP2000092145A (en) Digital system distortion compensation device and distortion compensation method therefor
JPH09181787A (en) Radio equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102