JPH0661261A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH0661261A
JPH0661261A JP21153292A JP21153292A JPH0661261A JP H0661261 A JPH0661261 A JP H0661261A JP 21153292 A JP21153292 A JP 21153292A JP 21153292 A JP21153292 A JP 21153292A JP H0661261 A JPH0661261 A JP H0661261A
Authority
JP
Japan
Prior art keywords
compound semiconductor
electron beam
compound
impurity
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21153292A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakaki
裕之 榊
Yutaka Kadoya
豊 角屋
Hiroshi Noge
宏 野毛
Shinji Mitsuya
伸司 三矢
Takashi Yoshida
孝志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP21153292A priority Critical patent/JPH0661261A/en
Publication of JPH0661261A publication Critical patent/JPH0661261A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a compound semiconductor device which makes the formation of a thin film-like fine doped region possible in an operational layer without generating defect in a semiconductor crystal in a compound semiconductor whose main constituent element is a III-V compound semiconductor. CONSTITUTION:In a ultra-vacuum device, an extremely thin doped region is formed in an electron beam directing region through a first process for depositing a similar or dissimilar compound semiconductor crystal 2 on a compound semiconductor substrate 1, a second process for forming a thin film-like doped layer 5 in the electron beam directing region by directing an electron beam 3 to a compound semiconductor crystal in gaseous atmosphere 4 which contains silicon compound or carbon compound and a third process for further depositing a similar or dissimilar compound semiconductor crystal 6 on the compound semiconductor crystal 2 whereto an electron beam is directed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3族・5族化合物半導
体を主要構成要素とする化合物半導体装置の製造におけ
る不純物の添加方法に関し、特にデルタドープ等と呼ば
れる極めて薄層の不純物添加領域を用いる全ての半導体
装置の製造に使用される化合物半導体装置の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adding an impurity in the manufacture of a compound semiconductor device containing a Group 3 or Group 5 compound semiconductor as a main constituent element, and particularly uses an extremely thin layer impurity-doped region called delta doping. The present invention relates to a method for manufacturing a compound semiconductor device used for manufacturing all semiconductor devices.

【0002】[0002]

【従来の技術】半導体装置の製造において、不純物を添
加する方法としては、母体結晶形成と同時に行う方法
や、表面から母体材料への不純物元素の拡散を用いる方
法、不純物元素をイオン化して母体結晶へ打ち込む方
法、等が広く用いられている。また、結晶表面に不純物
層を堆積した上で非常に高エネルギーの電子ビーム照射
により不純物を結晶中に注入する方法もフィジカル・レ
ビュー、1984年、第B30巻、第6号、3384頁、(Physi
cal Review Vol.B30 p.3384 )に提案されている。特
に母体結晶形成と同時に行う方法において、不純物添加
領域が極めて薄い薄膜状であるような不純物添加はデル
タドーピング等と呼ばれ,高い移動度を持つトランジス
タの製造に有効であることか知られている。
2. Description of the Related Art In the manufacture of semiconductor devices, as a method of adding impurities, a method of simultaneously performing formation of a host crystal, a method of using diffusion of an impurity element from a surface to a host material, and a method of ionizing the impurity element to provide a host crystal The method of driving in is widely used. Also, a method of depositing an impurity layer on the crystal surface and then injecting the impurity into the crystal by irradiating a very high energy electron beam is a physical review, 1984, Volume B30, No. 6, page 3384, (Physi
cal Review Vol.B30 p.3384). In particular, in the method performed simultaneously with the formation of the host crystal, it is known that the impurity addition in which the impurity added region is an extremely thin thin film is called delta doping or the like and is effective for manufacturing a transistor having high mobility. .

【0003】[0003]

【発明が解決しようとする課題】前記の方法のうち、例
えば母体結晶形成と同時に行う方法においては、結晶面
内全体に形成された不純物添加層を部分的に除去する為
に光リソグラフィー等とエッチングが必要になる。不純
物元素の拡散を用いる方法においても、特定の領域のみ
に不純物添加領域を形成するために、やはり光リソグラ
フィー等が必要となる。しかし、光リソグラフィー等に
よる微細パターンは100ナノメートル程度が限界であ
り、さらに微細な不純物添加領域をもつ半導体装置を製
造する上での大きな障害となっている。
Among the above methods, for example, in the method which is carried out simultaneously with the formation of the host crystal, photolithography or the like and etching are performed to partially remove the impurity-added layer formed in the entire crystal plane. Will be required. Even in the method using the diffusion of the impurity element, photolithography or the like is still necessary to form the impurity-added region only in the specific region. However, the fine pattern formed by photolithography or the like has a limit of about 100 nm, which is a major obstacle in manufacturing a semiconductor device having a finer impurity-doped region.

【0004】また、不純物元素をイオン化して母体結晶
へ打ち込む方法においては、イオンを集束することによ
り、微細な不純物添加領域が形成し得るが、イオン照射
により半導体結晶中に欠陥が発生し、また薄膜状の不純
物添加が困難であるという欠点があった。さらに、電子
ビームにより不純物を注入する方法においても同様の欠
点を有していた。
Further, in the method of ionizing an impurity element and implanting it in a host crystal, a fine impurity-doped region can be formed by focusing ions, but ion irradiation causes defects in the semiconductor crystal, and There is a drawback that it is difficult to add thin film impurities. Furthermore, the method of implanting impurities by an electron beam has the same drawbacks.

【0005】本発明は、上記の課題を解決するものであ
って、3族・5族化合物半導体を主要構成要素とする化
合物半導体において、半導体結晶中に欠陥を生成するこ
となく、動作層に薄膜状の微細な不純物添加領域を形成
することができる化合物半導体装置の製造方法を提供す
ることを目的とするものである。
The present invention is intended to solve the above problems, and in a compound semiconductor having a Group 3 or Group 5 compound semiconductor as a main constituent element, a thin film is formed in the operating layer without generating defects in the semiconductor crystal. An object of the present invention is to provide a method for manufacturing a compound semiconductor device capable of forming a fine impurity-doped region in a shape.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、上述の問題点を解決するため、超高真空
装置内において、化合物半導体基板上に同種または異種
の化合物半導体結晶を堆積する第1の工程と、珪素化合
物または炭素化合物を含む気体雰囲気中で、化合物半導
体結晶に電子線を照射することにより電子線被照射領域
に薄膜状の不純物添加層を形成する第2の工程と、電子
線を照射した化合物半導体結晶上にさらに同種または異
種の化合物半導体結晶を堆積する第3の工程により、電
子線被照射領域にきわめて薄い不純物添加領域を形成し
た化合物半導体を作製することを特徴とするものであ
る。
In order to solve the above-mentioned problems, the method of manufacturing a semiconductor device according to the present invention deposits the same kind or different kinds of compound semiconductor crystals on a compound semiconductor substrate in an ultrahigh vacuum apparatus. And a second step in which a compound semiconductor crystal is irradiated with an electron beam in a gas atmosphere containing a silicon compound or a carbon compound to form a thin-film impurity-added layer in the electron beam irradiation region. A compound semiconductor in which an extremely thin impurity-doped region is formed in an electron beam irradiation region is manufactured by a third step of further depositing the same or different compound semiconductor crystal on the electron beam-irradiated compound semiconductor crystal. It is what

【0007】[0007]

【作用】結晶堆積および試料搬送等を全て超高真空装置
中で行った場合、結晶表面に存在する不純物原子は極め
て低い濃度に保ち得ることが、例えば角屋、他、第39
回応用物理学関連連合講演会予稿集No.1、 328頁、31
aZA4に示されている。したがって、結晶堆積を一度中断
して不純物添加等のプロセスを行った場合、この恣意的
な不純物添加以外の不純物の取り込みは超高真空装置中
であれば十分に低い濃度に抑えることが可能である。
When the crystal deposition, sample transport, etc. are all performed in an ultra-high vacuum apparatus, the impurity atoms present on the crystal surface can be kept at an extremely low concentration, for example, Kakuya et al.
Proceedings of the Joint Lectures on Applied Physics No.1, 328, 31
Shown in aZA4. Therefore, when the crystal deposition is once interrupted and a process such as impurity addition is performed, the impurity incorporation other than the arbitrary impurity addition can be suppressed to a sufficiently low concentration in the ultra-high vacuum apparatus. .

【0008】一方、珪素化合物または炭素化合物は電子
線照射により分解され、半導体表面に珪素または炭素原
子を付着する。3族・5族化合物半導体において、1分
子層以下の珪素が結晶表面に取り込まれた場合にはN型
不純物となり、1分子層以下の炭素が結晶に取り込まれ
た場合にはP型不純物となる。したがって超高真空装置
中で結晶堆積、電子線照射、結晶再堆積を行った場合、
電子線の被照射領域のみにN型あるいはP型の不純物元
素が添加される。
On the other hand, a silicon compound or a carbon compound is decomposed by electron beam irradiation to attach silicon or carbon atoms to the semiconductor surface. In Group 3 and Group 5 compound semiconductors, when silicon of one molecular layer or less is incorporated into the crystal surface, it becomes an N-type impurity, and when carbon of one molecular layer or less is incorporated into the crystal, it becomes a P-type impurity. . Therefore, when performing crystal deposition, electron beam irradiation, and crystal re-deposition in an ultra-high vacuum device,
An N-type or P-type impurity element is added only to the electron beam irradiation region.

【0009】電子線の集束は容易であり、ビーム径1ナ
ノメートル以下の電子線が得られることは周知の事実で
ある。従って、本発明の半導体装置の製造方法により、
極めて微細なN型またはP型の不純物添加領域をもつ半
導体装置が製造可能となる。また、本発明に係る不純物
添加の方法は、原理的に薄膜状の不純物添加であり、高
移動度トランジスタ等の製造に適している。
It is a well known fact that the electron beam can be easily focused and an electron beam having a beam diameter of 1 nm or less can be obtained. Therefore, according to the method for manufacturing a semiconductor device of the present invention,
It is possible to manufacture a semiconductor device having an extremely fine N-type or P-type impurity-added region. In addition, the method of adding impurities according to the present invention is, in principle, a thin film-like impurity addition, and is suitable for manufacturing a high mobility transistor or the like.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の化合物半導体装置の製造方法の1
実施例を説明するための動作層領域形成方法の手順を示
す図であり、1は化合物半導体基板、2、6は化合物半
導体結晶、3はシラン又はメタン等、4は電子線、5は
不純物添加領域(珪素又は炭素)、7は電子線照射領域
を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a method 1 for manufacturing a compound semiconductor device of the present invention.
FIG. 3 is a diagram showing a procedure of a method for forming an operation layer region for explaining an embodiment, wherein 1 is a compound semiconductor substrate, 2 and 6 are compound semiconductor crystals, 3 is silane or methane, etc., 4 is an electron beam, and 5 is impurity addition. A region (silicon or carbon), 7 indicates an electron beam irradiation region.

【0011】まず、図1(a)に示すように、第1の工
程として、化合物半導体基板1、例えばガリウムひ素の
上に同種または異種の化合物半導体結晶2、例えばガリ
ウムひ素またはアルミニウム・ガリウムひ素を分子線エ
ピタキシャル成長法等により形成する。
First, as shown in FIG. 1A, as a first step, a compound semiconductor crystal 2 of the same kind or different kind, for example, gallium arsenide or aluminum gallium arsenide is placed on a compound semiconductor substrate 1, for example, gallium arsenide. It is formed by a molecular beam epitaxial growth method or the like.

【0012】次に図1(b)に示すように、第2の工程
として、化合物半導体結晶2の表面の不純物添加領域5
にN型電導層を形成する場合にはシラン(SiH4 )4
等の気体雰囲気中で電子線3を選択的に照射し、P型電
導層を形成する場合にはメタン(CH4 )4等の気体雰
囲気中で電子線3を選択的に照射する。
Next, as shown in FIG. 1B, as a second step, an impurity-doped region 5 on the surface of the compound semiconductor crystal 2 is used.
Silane (SiH 4 ) 4 is used to form an N-type conductive layer on the
The electron beam 3 is selectively irradiated in a gas atmosphere such as, and when the P-type conductive layer is formed, the electron beam 3 is selectively irradiated in a gas atmosphere such as methane (CH 4 ) 4.

【0013】最後に図1(c)に示すように、第3の工
程として、電子線を照射した化合物半導体結晶2の上に
分子線エピタキシャル成長法等により再度同種または異
種の化合物半導体結晶6としてアルミニウム・ガリウム
ひ素等を形成する。
Finally, as shown in FIG. 1 (c), in the third step, aluminum is again used as the compound semiconductor crystal 6 of the same kind or different kind on the compound semiconductor crystal 2 irradiated with the electron beam by the molecular beam epitaxial growth method or the like.・ Form gallium arsenide.

【0014】なお、これら3つの工程は、意図しない不
純物の付着を防ぐため、全て原料ガス供給停止時の到達
真空度が1×10-8トール以下の超高真空装置内で行わ
れる。この方法は、結晶中に欠陥を生成することがない
ため、アニール等の工程なしで不純物添加領域5が活性
化され、動作領域となる。
In order to prevent unintended adhesion of impurities, all of these three steps are carried out in an ultra-high vacuum apparatus having an ultimate vacuum of 1 × 10 -8 Torr or less when the source gas supply is stopped. In this method, since no defect is generated in the crystal, the impurity-added region 5 is activated without using a step such as annealing and becomes an operation region.

【0015】図2は本発明の半導体装置の製造方法を用
いて作製した電界効果トランジスタの概略図であり、8
はドレイン電極、9はゲート電極、10はソース電極を
示す。このような電界効果トランジスタは、図1(c)
で示した化合物半導体結晶上に通常の光リソグラフィー
等を用いてソース電極10、ゲート電極9、ドレイン電
極8の各電極を形成することにより作製できる。
FIG. 2 is a schematic view of a field effect transistor manufactured by the method for manufacturing a semiconductor device according to the present invention.
Is a drain electrode, 9 is a gate electrode, and 10 is a source electrode. Such a field effect transistor is shown in FIG.
It can be manufactured by forming each of the source electrode 10, the gate electrode 9, and the drain electrode 8 on the compound semiconductor crystal shown in 1 above by using ordinary photolithography or the like.

【0016】本発明の方法を用いて作製した化合物半導
体結晶によれば、結晶表面が平坦であるので、容易に微
細な電極構造を形成することが可能となる。
According to the compound semiconductor crystal produced by the method of the present invention, since the crystal surface is flat, it is possible to easily form a fine electrode structure.

【0017】図3は本発明の半導体装置の製造方法を用
いて作製した静電ポテンシャルの周期的変調構造を備え
た化合物半導体レーザの概略を示す断面図である。本発
明の方法を用い化合物半導体基板1の上に化合物半導体
結晶6に挟まれ、動作層としてきわめて薄い不純物添加
領域5からなる面内変調周期構造を有する異種の化合物
半導体結晶2を形成することによって、利得の周期的分
布またはキャリアに対するブラッグ反射器を備え、鋭い
波長選択性を有する化合物半導体レーザを作製できる。
FIG. 3 is a sectional view showing the outline of a compound semiconductor laser having a periodic modulation structure of electrostatic potential, which is manufactured by using the method for manufacturing a semiconductor device of the present invention. By forming a heterogeneous compound semiconductor crystal 2 having an in-plane modulation periodic structure composed of an extremely thin impurity-doped region 5 as an operating layer on the compound semiconductor substrate 1 using the method of the present invention, the compound semiconductor crystal 6 is sandwiched between the compound semiconductor crystals 6. A compound semiconductor laser having a sharp wavelength selectivity can be manufactured by using a Bragg reflector for a periodic distribution of gain or carriers.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、電子線が照射さた領域にのみ、薄層の不純物
添加層が形成されるため微細な動作層領域や微小な周期
的面内電位分布を持つ化合物半導体装置が容易に形成で
きる。また、この際、超高真空装置内で電子線の照射を
行うことにより、母体結晶に欠陥を生成することがなく
なるので、欠陥を回復するアニール等の工程を必要とせ
ず、半導体装置製造の歩留りが向上する。
As is apparent from the above description, according to the present invention, since a thin impurity-doped layer is formed only in a region irradiated with an electron beam, a fine operating layer region or a minute period is formed. A compound semiconductor device having an in-plane potential distribution can be easily formed. Further, at this time, since irradiation of the electron beam in the ultra-high vacuum apparatus does not generate defects in the host crystal, steps such as annealing for recovering the defects are not required, and the yield of semiconductor device manufacturing is improved. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る化合物半導体装置の製造方法の
1実施例を説明するための動作層領域形成方法の手順を
示す図である。
FIG. 1 is a diagram showing a procedure of an operating layer region forming method for explaining one example of a method for manufacturing a compound semiconductor device according to the present invention.

【図2】 本発明の半導体装置の製造方法を用いて作製
した電界効果トランジスタの概略図である。
FIG. 2 is a schematic view of a field effect transistor manufactured by using the method for manufacturing a semiconductor device of the present invention.

【図3】 本発明の半導体装置の製造方法を用いて作製
した静電ポテンシャルの周期的変調構造を備えた半導体
レーザの概略図である。
FIG. 3 is a schematic view of a semiconductor laser provided with a periodic modulation structure of electrostatic potential, which is manufactured by using the method for manufacturing a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1…化合物半導体基板、2、6…化合物半導体結晶、3
…シラン、メタン等、4…電子線、5…不純物添加領域
(珪素または炭素)、7…電子線被照射領域、8…ドレ
イン電極、9…ゲート電極、10…ソース電極。
1 ... Compound semiconductor substrate, 2, 6 ... Compound semiconductor crystal, 3
... Silane, methane, etc., 4 ... Electron beam, 5 ... Impurity added region (silicon or carbon), 7 ... Electron beam irradiated region, 8 ... Drain electrode, 9 ... Gate electrode, 10 ... Source electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/18 // H01L 21/203 M 8422−4M (71)出願人 592171809 吉田 孝志 東京都杉並区荻窪3−31−14 旭化成荻窪 寮 (72)発明者 榊 裕之 神奈川県横浜市緑区大場町174−260 (72)発明者 角屋 豊 東京都杉並区久我山4−50−27 コンフォ ート久我山202号 (72)発明者 野毛 宏 東京都杉並区久我山4−34−17 安藤方2 階 (72)発明者 三矢 伸司 静岡県富士市川成島1000 旭化成五寮 (72)発明者 吉田 孝志 東京都杉並区荻窪3−31−14 旭化成荻窪 寮─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location H01S 3/18 // H01L 21/203 M 8422-4M (71) Applicant 592171809 Takashi Yoshida Suginami, Tokyo 3-31-14 Ogikubo Ward Asahi Kasei Ogikubo Dormitory (72) Inventor Hiroyuki Sakaki 174-260 Oba-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture (72) Yutaka Kakuya 4-50-27 Kugayama, Suginami-ku, Tokyo Conform Kugayama 202 (72) Inventor Hiroshi Noge 4-34-17 Kugayama, Suginami-ku, Tokyo 2nd floor, Ando (72) Inventor Shinji Mitsuya 1000 Kawanarijima, Fuji-shi, Shizuoka Asahi Kasei Godori (72) Inventor Takashi Yoshida Ogikubo, Suginami-ku, Tokyo 3-31-14 Asahi Kasei Ogikubo Dormitory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超高真空装置内において、化合物半導体
基板上に同種または異種の化合物半導体結晶を堆積する
第1の工程と、珪素化合物または炭素化合物を含む気体
雰囲気中で、化合物半導体結晶に電子線を照射すること
により電子線被照射領域に薄膜状の不純物添加層を形成
する第2の工程と、電子線を照射した化合物半導体結晶
上にさらに同種または異種の化合物半導体結晶を堆積す
る第3の工程により、電子線被照射領域にきわめて薄い
不純物添加領域を形成した化合物半導体を作製すること
を特徴とする化合物半導体装置の製造方法。
1. A first step of depositing the same kind or different kinds of compound semiconductor crystals on a compound semiconductor substrate in an ultra-high vacuum apparatus, and electrons in the compound semiconductor crystals in a gas atmosphere containing a silicon compound or a carbon compound. A second step of forming a thin film impurity-doped layer in the electron beam irradiation region by irradiating the electron beam, and a third step of further depositing the same or different compound semiconductor crystal on the electron beam irradiated compound semiconductor crystal A method of manufacturing a compound semiconductor device, characterized in that a compound semiconductor in which an extremely thin impurity-added region is formed in the electron beam irradiation region is manufactured by the step of.
【請求項2】 請求項1記載の化合物半導体装置の製造
方法において、電子線を照射する第2の工程が、N型不
純物を添加する場合には珪素化合物を含む気体雰囲気中
でなされ、P型不純物を添加する場合には炭素化合物を
含む気体雰囲気中でなされることを特徴とする化合物半
導体装置の製造方法。
2. The method of manufacturing a compound semiconductor device according to claim 1, wherein the second step of irradiating with an electron beam is performed in a gas atmosphere containing a silicon compound when N-type impurities are added, and the second step is performed. A method of manufacturing a compound semiconductor device, characterized in that the impurity is added in a gas atmosphere containing a carbon compound.
JP21153292A 1992-08-07 1992-08-07 Manufacture of compound semiconductor device Withdrawn JPH0661261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21153292A JPH0661261A (en) 1992-08-07 1992-08-07 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21153292A JPH0661261A (en) 1992-08-07 1992-08-07 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH0661261A true JPH0661261A (en) 1994-03-04

Family

ID=16607438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21153292A Withdrawn JPH0661261A (en) 1992-08-07 1992-08-07 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0661261A (en)

Similar Documents

Publication Publication Date Title
JP3251889B2 (en) Method of manufacturing tungsten gate with intermediate gap work function
JP3330218B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3182893B2 (en) Method for manufacturing thin film transistor
JPH04335538A (en) Semiconductor device and manufacture thereof
JPH01187814A (en) Manufacture of thin film semiconductor device
EP0533497A2 (en) Dry etching method
US9196497B2 (en) Photolytic processing of materials with hydrogen
JPH0661261A (en) Manufacture of compound semiconductor device
US5399230A (en) Method and apparatus for etching compound semiconductor
JPH0464455B2 (en)
JP3146702B2 (en) Method for manufacturing thin film transistor
JP3211227B2 (en) Method for stabilizing surface of GaAs layer, method for manufacturing GaAs semiconductor device, and method for forming semiconductor layer
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JP2803555B2 (en) Fabrication method of ultra-fine tunnel barrier
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JP3236228B2 (en) Semiconductor device and manufacturing method thereof
JP3035941B2 (en) Method for manufacturing group III-V compound semiconductor device
JPH09219393A (en) Method for finely processing
JP2976569B2 (en) Method for manufacturing semiconductor device
JP2826972B2 (en) Method for forming ultrafine pattern of compound semiconductor
JP3059121B2 (en) Method for forming semiconductor microstructure
JP3084089B2 (en) Semiconductor device substrate and method of manufacturing the same
JP2933328B2 (en) Quantum wire device fabrication method and quantum wire device
Nara et al. Invited Paper Photochemical Cleaning And Epitaxy Of Si
JPH04181731A (en) Method of processing surface of compound semiconductor crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102