JPH0660914A - Battery cooling device - Google Patents

Battery cooling device

Info

Publication number
JPH0660914A
JPH0660914A JP23301292A JP23301292A JPH0660914A JP H0660914 A JPH0660914 A JP H0660914A JP 23301292 A JP23301292 A JP 23301292A JP 23301292 A JP23301292 A JP 23301292A JP H0660914 A JPH0660914 A JP H0660914A
Authority
JP
Japan
Prior art keywords
tubular member
magnetic fluid
magnetic
heat
terminal connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23301292A
Other languages
Japanese (ja)
Inventor
Naohiko Yamashita
直彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23301292A priority Critical patent/JPH0660914A/en
Publication of JPH0660914A publication Critical patent/JPH0660914A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To efficiently dissipate the heat generated in a battery at the time of a charge/discharge. CONSTITUTION:A tubular member 12 constituted of a heat transfer tubular member 5 and a heat insulating tubular member 4 is outwardly coupled with the conductor section 7 of a terminal connector 3, and a magnetic fluid having high temperature dependency for magnetization is sealed in the space 10 formed between the tubular member 12 and the conductor section 7. The cooled magnetic fluid 8 near the heat transfer tubular member 5 is affected by the magnetic gradient of the magnetic field generated by the current (i) flowing in the terminal connector 3 to cause convection pushing and retreating the heated magnetic fluid near the conductor section 7, and heat is satisfactorily dissipated regardless of the direction of the terminal connector 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバッテリ冷却装置に関
し、詳しくは充放電時に発生する熱を効率的に放散させ
る為のバッテリ冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery cooling device, and more particularly to a battery cooling device for efficiently dissipating heat generated during charging and discharging.

【0002】[0002]

【従来の技術】従来のバッテリ冷却装置としては、例え
ば実開昭57−145275号公報記載の「電動車両の
バッテリ冷却装置」や、特開昭58−61579号公報
記載の「蓄電池を冷却する方法及び装置」がある。
2. Description of the Related Art As a conventional battery cooling device, for example, a "battery cooling device for an electric vehicle" described in Japanese Utility Model Publication No. 57-145275 and a "method for cooling a storage battery" described in Japanese Patent Application Laid-Open No. 58-61579. And equipment ”.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、実開昭
57−145275号公報記載の装置にあっては、ファ
ンによる送風でバッテリが冷却されるようになっていた
ため、冷却風が一様にバッテリ表面にあたるのが難しい
という問題があった。また特開昭58−61579号公
報記載の方法及び装置にあっては、バッテリの電解液中
に熱伝達パイプの蒸発器が浸積され、該パイプを介して
熱が放散されるようになっていたため、蒸発により電解
液の液量が減少した場合にはその効果が減じ、密閉型バ
ッテリのように電解液が活物質中に吸着された状態にあ
るものについてはほとんど冷却効果が得られないという
問題があった。この発明は、このような従来の問題点に
鑑み、ファン送風を要せず、また電解液の性状あるいは
その量の変動に関わらず常に安定して高い冷却効果が得
られるバッテリ冷却装置を提供することを目的とする。
However, in the device described in Japanese Utility Model Laid-Open No. 145275/1982, the battery is designed to be cooled by the air blown by the fan, so that the cooling air is evenly distributed on the battery surface. There was a problem that it was difficult to hit. Further, in the method and apparatus described in JP-A-58-61579, the evaporator of the heat transfer pipe is immersed in the electrolytic solution of the battery, and the heat is dissipated through the pipe. Therefore, when the amount of the electrolyte solution decreases due to evaporation, the effect decreases, and almost no cooling effect can be obtained for the battery in which the electrolyte solution is adsorbed in the active material such as the sealed battery. There was a problem. In view of such conventional problems, the present invention provides a battery cooling device which does not require fan blowing and can always obtain a stable and high cooling effect regardless of the property of the electrolytic solution or the fluctuation of the amount thereof. The purpose is to

【0004】[0004]

【課題を解決するための手段】このため本発明は、バッ
テリの充放電において発生する熱が、バッテリの端子
(極柱)を介し端子接続器の導体部に伝導されているこ
とに着目し、端子接続器の導体部に、熱伝導率の高い部
分と断熱性のある部分とを有する管状部材が外嵌され、
該管状部材と前記導体部との間に形成された空間に、磁
化の温度依存性が高い磁性流体が封入されているものと
した。
For this reason, the present invention focuses on the fact that the heat generated during charge / discharge of the battery is conducted to the conductor portion of the terminal connector via the terminal (pole pole) of the battery, The conductor part of the terminal connector is fitted with a tubular member having a high thermal conductivity part and a heat insulating part.
The space formed between the tubular member and the conductor portion is filled with a magnetic fluid having high temperature dependence of magnetization.

【0005】[0005]

【作用】端子接続器を流れる電流によって発生する磁界
の磁気勾配の影響を受けて、熱伝導率の高い部分の近傍
にある冷却された磁性流体が、導体部の近傍にある加熱
された磁性流体を押し退ける形で対流を起こし、これに
より冷却作用が促進される。
The cooled magnetic fluid in the vicinity of the portion having high thermal conductivity is affected by the magnetic gradient of the magnetic field generated by the current flowing through the terminal connector and the heated magnetic fluid in the vicinity of the conductor portion. Convection is generated in a manner that pushes away the air, which promotes the cooling action.

【0006】[0006]

【実施例】図1はこの発明の実施例を示す。バッテリの
各セル1、1’には端子21、22が設けられており、
これら端子21、22は端子接続器3で互いに連結され
ている。この際、端子接続器3の端部11はボルトナッ
ト6により端子21、22に固定される。端子接続器3
は、その端部間を結ぶ導体部7と、導体部7を中心にこ
れに外嵌され、断面形状が中空円筒状にされた円筒状の
管状部材12からなり、管状部材12もその両端13が
それぞれ端部11に結合されている。
FIG. 1 shows an embodiment of the present invention. Each cell 1, 1'of the battery is provided with terminals 21, 22
These terminals 21 and 22 are connected to each other by a terminal connector 3. At this time, the end portion 11 of the terminal connector 3 is fixed to the terminals 21 and 22 by the bolt nut 6. Terminal connector 3
Comprises a conductor portion 7 connecting the ends thereof, and a cylindrical tubular member 12 fitted around the conductor portion 7 as a center and having a hollow cylindrical cross section. The tubular member 12 also has both ends 13 thereof. Are respectively connected to the ends 11.

【0007】管状部材12は、熱伝導率の高い素材から
なる伝熱管状部材5を中間部材とし、その両側に連なる
断熱性かつ絶縁性を有する素材からなる断熱管状部材4
とで構成されている。伝熱管状部材5の外壁には放熱フ
ィン9が多数突設されている。管状部材12と端部11
とで形成される空間10には、磁化の温度依存性が高い
磁性流体8が充填されている。なお磁性流体とは、界面
活性剤などを用いて強磁性の微粒子を溶媒中に均一に分
散させたコロイド溶液で、磁石に吸引される磁気的性質
と液体としての流動性を併せ持つ流体である。
The tubular member 12 has a heat transfer tubular member 5 made of a material having a high thermal conductivity as an intermediate member, and a heat insulating tubular member 4 made of a material having a heat insulating property and being continuous on both sides thereof.
It consists of and. A large number of heat radiation fins 9 are provided on the outer wall of the heat transfer tubular member 5 so as to project therefrom. Tubular member 12 and end 11
The space 10 formed by and is filled with the magnetic fluid 8 having high temperature dependence of magnetization. The magnetic fluid is a colloidal solution in which ferromagnetic fine particles are uniformly dispersed in a solvent using a surfactant or the like, and is a fluid having both magnetic properties attracted by a magnet and fluidity as a liquid.

【0008】次にこの構成における作動を図2により説
明する。バッテリ充放電の際、電流iは一方の端子21
から導体部7を通って他方の端子22に流れる。この電
流iにより導体部7の周囲にはアンペールの周回法則に
従い式(イ)で示される磁界が発生する。 H=i/2πr …… (イ) 但し i:電流 r:導体部(7)の中心からの距離 である。
Next, the operation of this structure will be described with reference to FIG. When charging / discharging the battery, the current i is applied to one terminal 21
Through the conductor portion 7 to the other terminal 22. Due to this current i, a magnetic field represented by the equation (a) is generated around the conductor portion 7 according to Ampere's orbiting law. H = i / 2πr (i) where i: current r: distance from the center of the conductor (7).

【0009】よって伝熱管状部材5から導体部7に向っ
てその大きさが増大する磁気勾配が発生する。端子2
1,22および導体部7は良好な熱伝導体であるから、
充放電に伴ないバッテリ内部に発生する熱は、この端子
21,22から導体部7に伝導され、導体部7の温度が
上昇する。なお断熱管状部材4は断熱性、絶縁性のある
素材で形成されているから、端子21,22の熱は伝熱
管状部材5に直接には伝導されない。したがって、該伝
熱管状部材5は相対的に低い温度に保たれる。
Therefore, a magnetic gradient whose magnitude increases from the heat transfer tubular member 5 toward the conductor portion 7 is generated. Terminal 2
1, 22 and the conductor part 7 are good heat conductors,
The heat generated inside the battery due to charge / discharge is conducted from the terminals 21 and 22 to the conductor portion 7, and the temperature of the conductor portion 7 rises. Since the heat insulating tubular member 4 is made of a heat insulating and insulating material, the heat of the terminals 21 and 22 is not directly conducted to the heat transfer tubular member 5. Therefore, the heat transfer tubular member 5 is kept at a relatively low temperature.

【0010】磁性流体が磁界から受ける磁気体積力は式
(ロ)で示される。 f=μ0 MdH/dz …… (ロ) 但し、μ0 :真空中の透磁率 M:磁化 dH/dz:磁気勾配 である。式(ロ)より、磁性流体が磁界から受ける磁気
力fは磁化と磁気勾配の大きさに比例することが判る。
一方、磁性流体は図3に示されるように、温度が上昇す
ると磁化が減少するという磁化温度依存性を持ってい
る。
The magnetic volume force that the magnetic fluid receives from the magnetic field is represented by the equation (B). f = μ0 MdH / dz (B) where μ0: permeability in vacuum M: magnetization dH / dz: magnetic gradient. From the equation (b), it is understood that the magnetic force f that the magnetic fluid receives from the magnetic field is proportional to the magnitude of the magnetization and the magnetic gradient.
On the other hand, as shown in FIG. 3, the magnetic fluid has a magnetization temperature dependency that the magnetization decreases as the temperature rises.

【0011】したがって、導体部7を流れる電流iによ
って、図2のように伝熱管状部材5から導体部7に向か
って大きくなる磁界勾配(dH/dz)が生じている
と、冷却され磁化が大きくなっている伝熱管状部材5の
近傍の磁性流体8は、熱を受け高温になった導体部7の
近傍の磁性流体8を押し退けながら、磁界が強い導体部
7側に向かって引き付けられる。これにより重力の作用
が無くても、図2に示すように磁性流体8の対流Bが生
ずる。なお図2において、Tcoldは低温、Mhighは大き
な磁化、Thigh、およびMlow はその反対の状態である
ことを示す。
Therefore, when the magnetic field gradient (dH / dz) that increases from the heat transfer tubular member 5 toward the conductor portion 7 is generated by the current i flowing through the conductor portion 7 as shown in FIG. The magnetic fluid 8 near the enlarged heat transfer tubular member 5 is attracted toward the conductor portion 7 side having a strong magnetic field, while pushing away the magnetic fluid 8 near the conductor portion 7 which has been heated and has become high temperature. As a result, the convection B of the magnetic fluid 8 occurs as shown in FIG. 2 even without the action of gravity. In FIG. 2, Tcold indicates a low temperature, Mhigh indicates a large magnetization, and Thigh and Mlow indicate the opposite states.

【0012】通常の流体の密度差に基づく自然対流の強
さと、磁気勾配による磁性流体8の対流の強さの比を式
(ハ)に示す。 磁気対流/自然対流=μ0 (dM/dT)H (dH/d
z)/β0 ρg (ハ) 但し、β0 :体積膨張率 ρ:密度 g:重力の加速度 である。代表値としてμ0 (dM/dT)H =10-4
b・A/m4 ・K、dH/dz=105 A/m2 、β0
=5×10-4/K、ρ=103 Kg/m3 とすると、式
(ハ)の値は2となり、磁性流体8の磁気勾配による対
流Bは、通常の流体の自然対流より2倍の強さを持つと
いうことが判る。
The ratio of the strength of natural convection based on the normal fluid density difference to the strength of convection of the magnetic fluid 8 due to the magnetic gradient is shown in equation (c). Magnetic convection / natural convection = μ 0 (dM / dT) H (dH / d
z) / β0 ρg (c) where β0: volume expansion coefficient ρ: density g: acceleration of gravity. As a typical value μ 0 (dM / dT) H = 10 −4 w
b · A / m 4 · K, dH / dz = 10 5 A / m 2 , β 0
= 5 × 10 −4 / K, ρ = 10 3 Kg / m 3 , the value of the formula (C) is 2, and the convection B due to the magnetic gradient of the magnetic fluid 8 is twice as large as the natural convection of a normal fluid. It turns out that it has the strength of.

【0013】なお磁性流体8の温度依存性(μ0 (dM
/dT)H )が、上記値(10-4wb・A/m4 ・K)
より大きければ、更に対流の力は強くなる。このように
磁気勾配に基づく強い力で、伝熱管状部材5近傍の低温
の磁性流体8が導体部7側に強制的に対流させられ、こ
れにより、導体部7→伝熱管状部材5→放熱フィン9へ
の熱の伝達が促進され、端子接続器3の向き如何、すな
わち磁性流体8に作用する重力の向きがどのようであろ
うとも、高い冷却効果が得られる。なお本実施例では、
断熱管状部材4と伝熱管状部材5で形成される管状部材
12は円筒形状としたが、導体部7との間に空間10が
形成され得る形状であれば、角筒その他如何なる形状で
あっても構わない。
The temperature dependence of the magnetic fluid 8 (μ 0 (dM
/ DT) H ) is the above value (10 -4 wb · A / m 4 · K)
The larger it is, the stronger the convection force becomes. In this way, the strong force based on the magnetic gradient causes the low-temperature magnetic fluid 8 in the vicinity of the heat transfer tubular member 5 to be forced to convection to the conductor portion 7 side, whereby the conductor portion 7 → heat transfer tubular member 5 → heat radiation The heat transfer to the fins 9 is promoted, and a high cooling effect is obtained regardless of the direction of the terminal connector 3, that is, the direction of gravity acting on the magnetic fluid 8. In this example,
The tubular member 12 formed of the heat insulating tubular member 4 and the heat transfer tubular member 5 has a cylindrical shape, but may have a rectangular tube or any other shape as long as the space 10 can be formed between the tubular member 12 and the conductor portion 7. I don't mind.

【0014】[0014]

【発明の効果】以上のとおり、この発明は、熱伝導率の
高い部分と断熱性のある部分を有する管状部材を端子接
続器の導体部に外嵌し、該管状部材と前記導体部との間
に形成された空間に磁化の温度依存性の高い磁性流体を
封入するようにしたから、導体部に流れる電流による磁
界の磁気勾配の作用で、熱伝導率の高い部分の近傍の低
温の磁性流体が、導体部近傍の高温になった磁性流体を
押し退けながら該導体部に接近していく対流が発生す
る。この対流は、端子接続器の向き、すなわち磁性流体
に作用する重力に関係なく発生するものであり、これに
より、導体部→磁性流体→管状部材の熱伝導率の高い部
分へと熱伝達が迅速に行なわれ、バッテリ内部の発熱が
外部へ速やかに放出されるという効果が得られる。
As described above, according to the present invention, a tubular member having a high thermal conductivity portion and a heat insulating portion is externally fitted to the conductor portion of the terminal connector, and the tubular member and the conductor portion are connected to each other. Since the magnetic fluid with high temperature dependence of magnetization is enclosed in the space formed between them, the magnetic gradient of the magnetic field caused by the current flowing in the conductor part causes the magnetic field of low temperature near the part with high thermal conductivity to act. A convection is generated in which the fluid approaches the conductor portion while pushing away the high temperature magnetic fluid near the conductor portion. This convection is generated regardless of the orientation of the terminal connector, that is, the gravity acting on the magnetic fluid, and as a result, heat is rapidly transferred from the conductor part → the magnetic fluid → to the high thermal conductivity part of the tubular member. The effect is that the heat generated inside the battery is quickly released to the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 実施例における作動を示す説明図である。FIG. 2 is an explanatory diagram showing an operation in the embodiment.

【図3】 磁性流体の磁化の温度依存性の一例を示す線
図である。
FIG. 3 is a diagram showing an example of temperature dependence of magnetization of a magnetic fluid.

【符号の説明】[Explanation of symbols]

3 端子接続器 4 断熱管状部材 5 伝熱管状部材 7 導体部 8 磁化の温度依存性の高い磁性流体 9 放熱フィン 10 空間 11 端部 12 管状部材 21、22 端子 3 terminal connector 4 heat insulation tubular member 5 heat transfer tubular member 7 conductor part 8 magnetic fluid with high temperature dependence of magnetization 9 radiating fin 10 space 11 end 12 tubular member 21, 22 terminals

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 端子接続器の導体部に、熱伝導率の高い
部分と断熱性のある部分とを有する管状部材が外嵌さ
れ、該管状部材と前記導体部との間に形成された空間
に、磁化の温度依存性が高い磁性流体が封入されている
ことを特徴とするバッテリ冷却装置。
1. A space formed between a tubular member and the conductor portion, wherein a tubular member having a portion having a high thermal conductivity and a portion having a heat insulating property is externally fitted to the conductor portion of the terminal connector. A battery cooling device characterized in that a magnetic fluid having a high temperature dependence of magnetization is sealed in.
JP23301292A 1992-08-08 1992-08-08 Battery cooling device Withdrawn JPH0660914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23301292A JPH0660914A (en) 1992-08-08 1992-08-08 Battery cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23301292A JPH0660914A (en) 1992-08-08 1992-08-08 Battery cooling device

Publications (1)

Publication Number Publication Date
JPH0660914A true JPH0660914A (en) 1994-03-04

Family

ID=16948436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23301292A Withdrawn JPH0660914A (en) 1992-08-08 1992-08-08 Battery cooling device

Country Status (1)

Country Link
JP (1) JPH0660914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097824A (en) * 2008-10-16 2010-04-30 Denso Corp Battery cooler
WO2012150016A1 (en) * 2011-05-05 2012-11-08 Li-Tec Battery Gmbh Cooling device and method for cooling an electrochemical energy accumulator
CN112594969A (en) * 2020-12-15 2021-04-02 上海电力大学 Nano-fluid micro-channel photovoltaic-solar heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097824A (en) * 2008-10-16 2010-04-30 Denso Corp Battery cooler
WO2012150016A1 (en) * 2011-05-05 2012-11-08 Li-Tec Battery Gmbh Cooling device and method for cooling an electrochemical energy accumulator
CN112594969A (en) * 2020-12-15 2021-04-02 上海电力大学 Nano-fluid micro-channel photovoltaic-solar heat pump system

Similar Documents

Publication Publication Date Title
JP4833643B2 (en) High power circuit breaker with high voltage system and cooling means
US10674641B2 (en) Immersion cooling systems and methods
US6010800A (en) Method and apparatus for transferring heat generated by a battery
US7316265B2 (en) Method for passive phase change thermal management
US3541487A (en) Electrical winding having heat exchangers between layers of the winding for cooling the windings
EP0605664B1 (en) Thermoelectric refrigeration system with flexible heat-conducting element
US6664665B2 (en) Coreless type linear motor
US20200373217A1 (en) Combined Inductor And Heat Transfer Device
JPH0660914A (en) Battery cooling device
JPH01302876A (en) Superconducting switch package
JP2000030975A (en) Cooling part
CN218632017U (en) Heat dissipation device, circuit board and battery module
JP2019009090A (en) Conductor with heat absorber and battery pack
EP0459520A2 (en) Electromagnetic-wave-operated heating apparatus
US3458763A (en) Protective circuit for superconducting magnet
Oktay et al. Preparation and performance of dendritic heat sinks
CN216084521U (en) Novel high-performance inductor
JPS6328080A (en) Cryogenic apparatus
US3537049A (en) Electrical induction apparatus
JPH0442931Y2 (en)
JPS5922699Y2 (en) current limiting device
JP2821549B2 (en) Superconducting magnet system
US20220228819A1 (en) Heat exchanger member, heat exchanger, and cooling system
US20220203857A1 (en) Accelerated electric vehicle charging with subcooled coolant boiling
JP3586139B2 (en) Cryogenic equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102