JPH0660869B2 - Particle analyzer - Google Patents

Particle analyzer

Info

Publication number
JPH0660869B2
JPH0660869B2 JP60007040A JP704085A JPH0660869B2 JP H0660869 B2 JPH0660869 B2 JP H0660869B2 JP 60007040 A JP60007040 A JP 60007040A JP 704085 A JP704085 A JP 704085A JP H0660869 B2 JPH0660869 B2 JP H0660869B2
Authority
JP
Japan
Prior art keywords
light
flow cell
unit
objective lens
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60007040A
Other languages
Japanese (ja)
Other versions
JPS61165639A (en
Inventor
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60007040A priority Critical patent/JPH0660869B2/en
Priority to US06/818,263 priority patent/US4690561A/en
Publication of JPS61165639A publication Critical patent/JPS61165639A/en
Publication of JPH0660869B2 publication Critical patent/JPH0660869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等において、測光用対物
レンズの合焦状態の判定を可能とした粒子解析装置に関
するものである。
TECHNICAL FIELD The present invention relates to a particle analyzer capable of determining a focused state of a photometric objective lens in a flow cytometer or the like.

[従来の技術] フローサイトメータ等に用いられる従来の粒子解析装置
では、フローセルの中央部の例えば70μm×20μm
の微小な矩形断面を有する流通部内を、シース液に包ま
れて通過する血球細胞などの検体に照射光を照射し、そ
の結果生ずる前方及び側方散乱光により、検体の形状・
大きさ・屈折率等の粒子的性質を得ることが可能であ
る。また、蛍光剤により染色され得る検体に対しては、
照射光とほぼ直角方向の側方散乱光から検体の蛍光を検
出することにより、検体を解析するための重要な情報を
求めることができる。
[Prior Art] In a conventional particle analyzer used for a flow cytometer or the like, for example, 70 μm × 20 μm at the center of the flow cell is used.
The irradiation light is radiated to the specimen such as blood cells that are wrapped in the sheath liquid and pass through the circulation part with a minute rectangular cross section, and the resulting forward and side scattered light causes
It is possible to obtain particle properties such as size and refractive index. Also, for specimens that can be stained with a fluorescent agent,
By detecting the fluorescence of the sample from the side scattered light in a direction substantially perpendicular to the irradiation light, it is possible to obtain important information for analyzing the sample.

フローサイトメータ等において正確な測定を行うために
は、検体粒子以外の物体からの疑似信号が混入しないよ
うに、測光用の対物レンズにより正確に検体粒子或いは
その極く近傍のみを集光させなければならない。そのた
めに、測光用対物レンズの焦点調整を行う必要がある
が、従来装置においては測定前に標準サンプルを流しな
がら操作者が目視により手動で焦点調整を行っているの
で、操作が繁雑である上に、操作者によって個人差が生
じ、十分に正確な焦点調整を行うことが困難であるのが
現状である。
In order to perform accurate measurement with a flow cytometer, etc., the sample particles must be accurately focused by the objective lens for photometry so that spurious signals from objects other than the sample particles do not mix. I have to. Therefore, it is necessary to adjust the focus of the photometric objective lens, but in the conventional device, the operator manually performs the focus adjustment while flowing the standard sample before the measurement, and the operation is complicated. In addition, it is difficult to perform sufficiently accurate focus adjustment depending on the operator.

また、測定中に焦点の移動が生じた場合に、その確認が
不可能なため、測定途中で疑似信号が混入したか否かを
判別できず、データの信頼性についての不安も有してい
る。
In addition, if the focal point moves during measurement, it cannot be confirmed, so it is not possible to determine whether a pseudo signal has been mixed during the measurement, and there is concern about the reliability of the data. .

更に、ノズルやフローセル等を交換するごとに焦点調整
を必要とし、測定に手間が掛かる欠点がある。また、蛍
光測定を行う場合に微弱な蛍光信号を強化する必要があ
るが、そのために蛍光を検出する光電検出器をフォトマ
ルにすること・蛍光剤の発光効率を向上させること・照
射光源のパワーを増大させること・測光用対物レンズの
集光効率を向上させること等が考えられている。蛍光剤
の発光効率は現在のところ盛んに研究されており、照射
光源のパワーの増大は製造コストを無視すれば相当に増
大させることができるが、反面で極端にパワーを増大さ
せ過ぎると検体粒子を傷付けることにもなり、良い方法
とは云い難い。
Further, there is a drawback that the focus adjustment is required every time the nozzle, the flow cell or the like is exchanged, which makes the measurement troublesome. In addition, when performing fluorescence measurement, it is necessary to strengthen the weak fluorescence signal, but for that reason the photoelectric detector that detects fluorescence should be photomal.-Improve the luminous efficiency of the fluorescent agent-Power of the irradiation light source It has been considered to increase the light-collecting efficiency of the objective lens for photometry. Luminous efficiency of fluorescent agents has been actively researched at present, and the increase in the power of the irradiation light source can be considerably increased if the manufacturing cost is ignored. It will hurt the person and it is hard to say that it is a good method.

測光用対物レンズの集光効率の向上は、対物レンズの開
口数を上げれば達成されるが、その代償として焦点深度
が浅くなるという逆効果を伴うことになる。焦点深度が
浅くなれば、流通部と対物レンズとの間の距離が僅かに
移動しただけでも、検体粒子からの信号だけてなく、他
の物体からの信号が混入してしまい、正確な測定を行う
ことができない。このように、従来装置では焦点調整が
繁雑である上に、十分な蛍光信号強度が得られず、解析
精度が向上しないという欠点を有している。
The improvement of the light-collecting efficiency of the photometric objective lens can be achieved by increasing the numerical aperture of the objective lens, but at the cost of this, there is an adverse effect that the depth of focus becomes shallow. If the depth of focus becomes shallower, even if the distance between the flow section and the objective lens moves slightly, not only the signal from the sample particle but also the signal from other objects will be mixed, and accurate measurement will be possible. I can't do it. As described above, the conventional apparatus has the drawbacks that the focus adjustment is complicated, sufficient fluorescence signal intensity cannot be obtained, and the analysis accuracy cannot be improved.

[発明の目的] 本発明の目的は、測光用対物レンズの合焦状態を検出す
る合焦光学系を設け、焦点調整を容易にしかも正確に行
い得ると共に、十分な蛍光信号強度を得ることによって
測定精度を向上させ得る粒子解析装置を提供することに
ある。
[Object of the Invention] An object of the present invention is to provide a focusing optical system for detecting a focused state of a photometric objective lens so that focus adjustment can be performed easily and accurately and sufficient fluorescence signal intensity is obtained. It is to provide a particle analysis device capable of improving measurement accuracy.

[発明の概要] 上述の目的を達成するための本発明の要旨は、フローセ
ル内の流通部を流れる検体粒子に光ビームを照射する照
射光学手段と、光ビームの検体粒子への照射によって発
生する光を測光する測光光学手段とを備え、前記フロー
セルの所定壁面に光束を投射する投射手段と、該壁面か
らの反射光を検出する検出手段と、該検出手段の検出出
力を基に前記フローセルと前記測光光学手段との焦点調
整を行う調整手段とを有することを特徴とする粒子解析
装置である。
[Summary of the Invention] The gist of the present invention for achieving the above object is generated by irradiation optical means for irradiating a sample particle flowing through a flow section in a flow cell with a light beam, and irradiation of the sample particle with the light beam. A flow meter based on a detection output of the detecting means; a projection means for projecting a light flux onto a predetermined wall surface of the flow cell; a detecting means for detecting a reflected light from the wall surface; A particle analysis device, comprising: an adjusting unit that adjusts a focus with the photometric optical unit.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。Embodiments of the Invention The present invention will be described in detail based on the illustrated embodiments.

第1図は粒子解析装置の構成図であり、フローセル1の
中央部の紙面に垂直な流通部2内を検体粒子Sが通過
し、この流れと直交する方向にレーザー光源3が配置さ
れている。このレーザー光源3から出射されたレーザー
光Lの光源O上に、検体粒子Sに対してレーザー光源3
側に2組のシリンドリカルレンズを直交させて成る結像
レンズ4が配置されている。また、検体粒子Sに対して
レーザー光源3と反対側の光軸O上に、遮光板5、集光
レンズ6、光電検出器7が順次に配列されている。
FIG. 1 is a block diagram of a particle analyzer, in which a sample particle S passes through a flow passage 2 perpendicular to the paper surface of the center of a flow cell 1, and a laser light source 3 is arranged in a direction orthogonal to this flow. . On the light source O of the laser light L emitted from this laser light source 3, the laser light source 3
On the side, an imaging lens 4 formed by orthogonally arranging two sets of cylindrical lenses is arranged. Further, a light blocking plate 5, a condenser lens 6, and a photoelectric detector 7 are sequentially arranged on the optical axis O on the side opposite to the laser light source 3 with respect to the sample particle S.

また、レーザー光Lの光軸O及び検体粒子Sの流れの中
心方向のそれぞれとほぼ直交する方向に、測光用対物レ
ンズ8を含むオートフォーカスユニット(以下AFユニ
ットと云う)9、集光レンズ10、絞り板11、集光レ
ンズ12、ダイクロイックミラー等から成る波長選別手
段13、14、15が順次に配列され、光路に対して斜
設されたこれらの波長選別手段13、14、15により
反射された方向の光路上に、バリヤフィルタ16・光電
検出器17、バリヤフィルタ18・光電検出器19、バ
リヤフィルタ20・光電検出器21がそれぞれ配置され
ている。そして、これらの光電検出器17、19、21
には、例えば微弱光を増強して検出することが可能なフ
ォトマルが使用されている。
Further, an autofocus unit (hereinafter referred to as an AF unit) 9 including a photometric objective lens 8 and a condenser lens 10 in a direction substantially orthogonal to the optical axis O of the laser light L and the center direction of the flow of the sample particles S, respectively. , The diaphragm plate 11, the condenser lens 12, the dichroic mirrors, and the like, and the wavelength selection means 13, 14, 15 are sequentially arranged, and are reflected by the wavelength selection means 13, 14, 15 obliquely arranged with respect to the optical path. The barrier filter 16 / photoelectric detector 17, the barrier filter 18 / photoelectric detector 19, the barrier filter 20 / photoelectric detector 21 are arranged on the optical path in the different directions. And these photoelectric detectors 17, 19, 21
For example, a photomul that can detect weak light by enhancing it is used.

従って、レーザー光源3から出射されたレーザー光L
は、2組のシリンドリカルレンズを直交させた結像レン
ズ4により任意の長径・短径の結像ビームに形成され、
流通部2内を流れる検体粒子Sに照射される。検体粒子
Sに照射され散乱された散乱光のうち、前方散乱光は遮
光板5によって検体粒子Sが無い位置を通過した照射光
が取り除かれ、集光レンズ6を介して光電検出器7に集
光され、検体粒子Sの性状が測定される。
Therefore, the laser light L emitted from the laser light source 3
Is formed into an image-forming beam having an arbitrary long diameter / short diameter by the image-forming lens 4 in which two sets of cylindrical lenses are orthogonalized,
The sample particles S flowing in the circulation unit 2 are irradiated. Of the scattered light that is irradiated and scattered on the sample particles S, the light that has passed through the position where the sample particles S are absent is removed from the forward scattered light by the light shielding plate 5, and is collected by the photoelectric detector 7 via the condenser lens 6. The light is emitted and the property of the sample particle S is measured.

また、各種蛍光剤により染色された検体粒子Sについて
は、側方散乱光としてAFユニット9内の測光用対物レ
ンズ8を介して、集光レンズ10により絞り板11に集
光される。側方散乱光及び蛍光は、検体粒子Sに共役な
位置に設置されたこの絞り板11を通過させることによ
り、雑音の少ない測光信号を得ることができる。絞り板
11を通過後の光束を集光レンズ12により平行光束と
し、適当な分光特性を持たせた波長選別手段13によっ
て側方散乱光と蛍光とに分光し、側方散乱光はバリヤフ
ィルタ16及び光電検出器17で検出され、検体粒子S
内部の顆粒性が観測できる。一方、蛍光は波長選別手段
13を通過し、波長選別手段14によって例えば緑色蛍
光と赤色蛍光とに分光され、緑色蛍光はバリヤフィルタ
18を介して光電検出器19で検出され、赤色蛍光は波
長選別手段15とバリヤフィルタ20を介して光電検出
器21で検出され、検体粒子の生化学的性質が観測され
る。
The sample particles S dyed with various fluorescent agents are condensed as side scattered light on the diaphragm plate 11 by the condenser lens 10 via the photometric objective lens 8 in the AF unit 9. The side scattered light and the fluorescence can be passed through the diaphragm plate 11 installed at a position conjugate with the sample particle S to obtain a photometric signal with less noise. The light flux after passing through the diaphragm plate 11 is made into a parallel light flux by the condenser lens 12, and is split into side scattered light and fluorescence by the wavelength selection means 13 having appropriate spectral characteristics, and the side scattered light is barrier filter 16. And the sample particles S detected by the photoelectric detector 17.
Granularity inside can be observed. On the other hand, the fluorescence passes through the wavelength selection means 13, is separated into, for example, green fluorescence and red fluorescence by the wavelength selection means 14, the green fluorescence is detected by the photoelectric detector 19 through the barrier filter 18, and the red fluorescence is wavelength selected. The biochemical properties of the analyte particles are observed as detected by the photoelectric detector 21 via the means 15 and the barrier filter 20.

なお、蛍光を選別する波長選別手段14、15として
は、緑赤二色のダイクロイックミラーが使用されている
が、例えば波長を連続的に分光できる分光プリズム或い
は回折格子等の波長選別手段を用いてもよい。また、光
源3と結像レンズ4との間に、ビームエキスパンダ又は
ビームコンプレッサ等のビーム径可変手段を挿入するこ
ともできる。
As the wavelength selection means 14 and 15 for selecting fluorescence, dichroic mirrors of two colors of green and red are used. For example, a wavelength selection means such as a spectral prism or a diffraction grating capable of continuously separating wavelengths is used. Good. Further, a beam diameter varying means such as a beam expander or a beam compressor may be inserted between the light source 3 and the imaging lens 4.

ここで、微弱光の集光効率を上げ、なおかつ正確に合焦
状態を得ることのできるAFユニット9について、第2
図〜第4図により説明する。第2図はAFユニット9を
側方から見た構成図、第3図はフローセル1の水平断面
図である。AFユニット9内の中央には測光用対物レン
ズ8が設置され、下部には光源22がフローセル1に光
を照射するように設置され、光源22の光軸上に開口2
3、凸レンズ24が順次に配置されている。また、フロ
ーセル1の流通部2の前面2aと後面2bとから成る境
界面とによって反射された光の光路上に、凸レンズ2
5、分割素子26が順次に配置されている。
Here, regarding the AF unit 9 capable of increasing the collection efficiency of weak light and accurately obtaining the focused state,
This will be described with reference to FIGS. 2 is a side view of the AF unit 9, and FIG. 3 is a horizontal sectional view of the flow cell 1. An objective lens 8 for photometry is installed in the center of the AF unit 9, and a light source 22 is installed below so as to irradiate the flow cell 1 with light.
3 and the convex lens 24 are sequentially arranged. In addition, the convex lens 2 is provided on the optical path of the light reflected by the boundary surface formed by the front surface 2a and the rear surface 2b of the flow section 2 of the flow cell 1.
5, the dividing element 26 is sequentially arranged.

この場合に、対物レンズ8は流通部2の中心に焦点が合
う状態で、流通部2からの集光光束が対物レンズ8によ
り平行光束になるように配置されており、この状態のと
きAFユニット9内の合焦用光学系は、流通部2の前面
2a及び後面2bを検出するように配置されている。即
ち、光源22により凸レンズ24を介して、開口23を
通過した光束を前面2a及び後面2bに投影し、前面2
a及び後面2bでそれぞれ反射された開口23の2つの
開口像が、凸レンズ25を介して分割素子26上それぞ
れに結像される。
In this case, the objective lens 8 is arranged so that the focused light flux from the circulation unit 2 becomes a parallel light flux by the objective lens 8 while the center of the circulation unit 2 is in focus. In this state, the AF unit The focusing optical system in 9 is arranged so as to detect the front surface 2a and the rear surface 2b of the flow section 2. That is, the light flux passing through the opening 23 is projected onto the front surface 2a and the rear surface 2b by the light source 22 through the convex lens 24, and the front surface 2
Two aperture images of the aperture 23 reflected by the a and the rear surface 2b are imaged on the splitting element 26 via the convex lens 25, respectively.

なお、分割素子26としては2分割素子が使用されてお
り、第2図の状態においては対物レンズ8は合焦してい
るため、このとき開口23の2つの開口像が第4図(a)
に示すように分割素子26の2分割面に同一の大きさM
で結像され、2分割面からの出力が相等しくなるように
分割素子26が配置されている。また、第4図(b)、(c)
に示すように分割素子26において、開口像Mが方側に
ずれて2分割面の出力に差が生じた場合には、対物レン
ズ8が合焦していないことが判る。
A two-division element is used as the division element 26, and since the objective lens 8 is in focus in the state of FIG. 2, two aperture images of the aperture 23 at this time are shown in FIG. 4 (a).
As shown in FIG.
The splitting element 26 is arranged so that the images are formed in the same manner and the outputs from the two split surfaces are equal to each other. In addition, Fig. 4 (b), (c)
As shown in FIG. 5, in the splitting element 26, when the aperture image M shifts to the side and a difference occurs in the output of the two splitting surfaces, it is understood that the objective lens 8 is out of focus.

このように分割素子26からの2分割面の出力が相等し
いときには、必ず対物レンズ8は流通部2の中心に合焦
し、常に対物レンズ8からは検体粒子像の平行光束が得
られることになる。また、集光レンズ10の集光位置に
絞り板11が配置されているので、AFユニット9の移
動によって合焦したときには、流通部2は絞り板11と
共役関係になり、検体粒子Sによる散乱光が正確に絞り
板11の位置に集光される。
Thus, when the outputs of the two split surfaces from the splitting element 26 are equal, the objective lens 8 is always focused on the center of the flow section 2, and the parallel light flux of the sample particle image is always obtained from the objective lens 8. Become. Further, since the diaphragm plate 11 is arranged at the condensing position of the condenser lens 10, when the AF unit 9 moves to focus, the flow section 2 has a conjugate relationship with the diaphragm plate 11 and scattering by the sample particles S. The light is accurately focused on the position of the diaphragm plate 11.

ここで、対物レンズ8と集光レンズ10とは、その間が
平行光束になるように組み合わされているため、フロー
セル1等の交換時等にフローセル1の中心軸の位置が光
軸上を若干移動しても、AFユニット9を移動させて、
分割素子26の2つの出力を相等しくさせるだけで焦点
を合わせることができる。また、流通部2における反射
を検出しているので、フローセル1の交換時にフローセ
ル1の大きさ、即ち表面から流通部2までの寸法が若干
異なっても焦点調整には影響を及ぼすことはない。
Here, since the objective lens 8 and the condenser lens 10 are combined so as to form a parallel light flux between them, the position of the central axis of the flow cell 1 slightly moves on the optical axis when the flow cell 1 or the like is replaced. Even so, by moving the AF unit 9,
Focusing can be achieved by simply equalizing the two outputs of the splitting element 26. Further, since the reflection in the flow section 2 is detected, even if the size of the flow cell 1, that is, the size from the surface to the flow section 2 is slightly different when the flow cell 1 is replaced, the focus adjustment is not affected.

このように、実施例では容易にしかも正確に焦点を合わ
せることができるため、正確のピントを保持させたまま
対物レンズ8の開口数を上げ、光学系の集光効率を向上
させて、信号強度を増大させることができることにな
る。なお、合焦用光源22の波長は、フローセル1内で
の散乱光等により測定に影響を及ぼさないように、レー
ザー光源3の波長や蛍光の波長と分離している方が好ま
しいので、赤外光源を使用することが好適である。
As described above, in the embodiment, focusing can be performed easily and accurately. Therefore, the numerical aperture of the objective lens 8 is increased while the accurate focus is maintained, the condensing efficiency of the optical system is improved, and the signal strength is increased. Can be increased. The wavelength of the focusing light source 22 is preferably separated from the wavelength of the laser light source 3 or the wavelength of fluorescence so as not to affect the measurement due to scattered light in the flow cell 1 or the like. It is preferred to use a light source.

また、分割素子26の出力信号によって駆動される機構
を設け、分割素子26の2つの面に開口23の開口像M
がそれぞれ結像されるまで、AFユニット9を駆動機構
により光軸上を探索移動させ、合焦した信号により駆動
機構を停止させるようにすれば、自動的に合焦状態が得
られ、更に操作性が良くなる。また、AFユニット9の
駆動機構が停止した状態の信号、或いは合焦時の分割素
子26の出力信号により、粒子解析装置の測定開始信号
を発するようにすれば、対物レンズ8が合焦していない
ときには、不正確な測定が行われないで済む。更に分割
素子26の所定位置に、開口23の開口像Mが結像した
ことを知らせる合焦信号を表示する手段を設けることも
でき、手動でAFユニット9を操作する場合には、その
合焦信号が出力された時点で測定を始めるようにすれば
よい。
Further, a mechanism driven by the output signal of the splitting element 26 is provided, and the aperture image M of the aperture 23 is formed on the two surfaces of the splitting element 26.
If the AF unit 9 is searched and moved on the optical axis by the driving mechanism until the respective images are formed, and the driving mechanism is stopped by the focused signal, the in-focus state is automatically obtained, and further operation is performed. It improves the sex. Further, if the measurement start signal of the particle analyzer is issued by the signal of the state where the drive mechanism of the AF unit 9 is stopped or the output signal of the splitting element 26 at the time of focusing, the objective lens 8 is in focus. If not, inaccurate measurements can be avoided. Further, it is possible to provide a means for displaying a focusing signal indicating that the aperture image M of the aperture 23 has been formed at a predetermined position of the splitting element 26. When the AF unit 9 is manually operated, the focusing is performed. It suffices to start the measurement when the signal is output.

なお、AFユニット9内の合焦検知用光学系の配置は実
施例だけに限らず、例えば光源22を測定用対物レンズ
8の上方に配置してもよい。また実施例においては、側
方散乱光の測光光学系内にAFユニット9を設置した場
合を説明したが、前方散乱光用の測光光学系において
も、遮光板5と集光レンズ6との間にAFユニットを配
置し、同様の効果を得ることができる。このようなAF
ユニットを側方・前方の両測光光学系に設置すれば、更
に良好な結果が得られることは勿論である。
The arrangement of the focus detection optical system in the AF unit 9 is not limited to that of the embodiment, and the light source 22 may be arranged above the measurement objective lens 8, for example. Further, in the embodiment, the case where the AF unit 9 is installed in the photometric optical system for side scattered light has been described, but also in the photometric optical system for forward scattered light, the space between the light blocking plate 5 and the condenser lens 6 is described. The AF unit can be arranged in the same position to obtain the same effect. AF like this
It goes without saying that even better results can be obtained by installing the units in both the side and front photometric optical systems.

[発明の効果] 以上説明したように本発明に係る粒子解析装置は、フロ
ーセルの所定壁面に光束を投射する投射手段と、この壁
面からの反射光を検出する検出手段と、この検出手段の
検出出力を基にフローセルと測光光学手段との焦点調整
を行う調整手段を設けることによって、フローセルと測
光光学手段との焦点調整を容易にかつ正確に行うことが
できるので、測定精度を向上させ高精度な粒子解析を可
能とする。
[Advantages of the Invention] As described above, the particle analysis apparatus according to the present invention includes a projection unit that projects a light beam onto a predetermined wall surface of a flow cell, a detection unit that detects reflected light from this wall surface, and a detection unit of this detection unit. By providing the adjusting means for adjusting the focus between the flow cell and the photometric optical means based on the output, the focus adjustment between the flow cell and the photometric optical means can be performed easily and accurately, which improves the measurement accuracy and improves the accuracy. Enables particle analysis.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に係る粒子解析装置の一実施例を示し、第
1図は光学系の構成図、第2図はAFユニットを側方か
ら見た光学系配置図、第3図はフローセルの断面図、第
4図は分割素子面上の光像分布の説明図である。 符号1はフローセル、2は流通部、2aは前面、2bは
後面、3はレーザー光源、4は結像レンズ、8は対物レ
ンズ、9はAFユニット、10、12は集光レンズ、1
1は絞り板、13、14、15は波長選別手段、16、
18、20はバリヤフィルタ、17、19、21は光電
検出器、22は光源、23は開口、24、25は凸レン
ズ、26は分割素子である。
The drawings show one embodiment of the particle analysis apparatus according to the present invention. Fig. 1 is a configuration diagram of an optical system, Fig. 2 is an optical system layout diagram when the AF unit is viewed from the side, and Fig. 3 is a cross section of a flow cell. FIG. 4 and FIG. 4 are explanatory views of the light image distribution on the surface of the dividing element. Reference numeral 1 is a flow cell, 2 is a flow section, 2a is a front surface, 2b is a rear surface, 3 is a laser light source, 4 is an imaging lens, 8 is an objective lens, 9 is an AF unit, 10 and 12 are condenser lenses, 1
1 is a diaphragm plate, 13, 14 and 15 are wavelength selection means, 16,
Reference numerals 18 and 20 are barrier filters, 17, 19 and 21 are photoelectric detectors, 22 is a light source, 23 is an aperture, 24 and 25 are convex lenses, and 26 is a dividing element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フローセル内の流通部を流れる検体粒子に
光ビームを照射する照射光学手段と、光ビームの検体粒
子への照射によって発生する光を測光する測光光学手段
とを備え、前記フローセルの所定壁面に光束を投射する
投射手段と、該壁面からの反射光を検出する検出手段
と、該検出手段の検出出力を基に前記フローセルと前記
測光光学手段との焦点調整を行う調整手段とを有するこ
とを特徴とする粒子解析装置。
1. A flow cell comprising: an irradiation optical means for irradiating a sample particle flowing through a flow section in the flow cell with a light beam; and a photometric optical means for measuring light generated by irradiation of the sample particle with the light beam. Projecting means for projecting a light beam on a predetermined wall surface, detecting means for detecting reflected light from the wall surface, and adjusting means for adjusting the focus of the flow cell and the photometric optical means based on the detection output of the detecting means. A particle analysis device having.
JP60007040A 1985-01-18 1985-01-18 Particle analyzer Expired - Fee Related JPH0660869B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60007040A JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer
US06/818,263 US4690561A (en) 1985-01-18 1986-01-13 Particle analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007040A JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer

Publications (2)

Publication Number Publication Date
JPS61165639A JPS61165639A (en) 1986-07-26
JPH0660869B2 true JPH0660869B2 (en) 1994-08-10

Family

ID=11654931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007040A Expired - Fee Related JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer

Country Status (1)

Country Link
JP (1) JPH0660869B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505776B2 (en) * 1986-12-02 1996-06-12 キヤノン株式会社 Optical device
JP2001299527A (en) * 2000-04-27 2001-10-30 Okamura Corp Post height adjustment device for furniture and access terminal using it

Also Published As

Publication number Publication date
JPS61165639A (en) 1986-07-26

Similar Documents

Publication Publication Date Title
US4690561A (en) Particle analyzing apparatus
EP0774112B1 (en) Pseudo telecentric optical design for flow cytometric blood cell analyzer
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
EP0160568B1 (en) Methods and apparatus for analysis of particles and cells
JPS61153546A (en) Particle analyzer
JPS61280548A (en) Apparatus for analyzing particle
JPS62168033A (en) Particle analyzing device
JPH061241B2 (en) Particle analyzer
JPH0224535A (en) Particle analyzing apparatus
US6020961A (en) Nephelometer
JPH0638064B2 (en) Particle analyzer
JPH0660869B2 (en) Particle analyzer
JP2009145044A (en) Fluorescence detector
JPH0486546A (en) Specimen inspection device
JPS63201554A (en) Particle analyzing device
JP4262380B2 (en) Light intensity measuring device
JPH0552896B2 (en)
JPH03154850A (en) Specimen inspecting device
JPH0552897B2 (en)
JPH01270644A (en) Particle analyser
JPS6291836A (en) Particle analyzing device
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JPS6244649A (en) Particle analyzing device
JPS61294334A (en) Particle analyzer
JPS62245942A (en) Particle analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees