JPH0660376B2 - Hot-dip galvanized steel sheet with excellent workability and method for producing the same - Google Patents

Hot-dip galvanized steel sheet with excellent workability and method for producing the same

Info

Publication number
JPH0660376B2
JPH0660376B2 JP17556490A JP17556490A JPH0660376B2 JP H0660376 B2 JPH0660376 B2 JP H0660376B2 JP 17556490 A JP17556490 A JP 17556490A JP 17556490 A JP17556490 A JP 17556490A JP H0660376 B2 JPH0660376 B2 JP H0660376B2
Authority
JP
Japan
Prior art keywords
steel sheet
layer
hot
plating
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17556490A
Other languages
Japanese (ja)
Other versions
JPH0463259A (en
Inventor
元生 壁屋
武敏 平
史朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17556490A priority Critical patent/JPH0660376B2/en
Publication of JPH0463259A publication Critical patent/JPH0463259A/en
Publication of JPH0660376B2 publication Critical patent/JPH0660376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は亜鉛めっき後加熱拡散処理によって該めっき層
をFe-Zn 系合金層にした溶融合金化亜鉛めっき鋼板およ
びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a hot-dip galvanized steel sheet in which the plated layer is formed into a Fe—Zn based alloy layer by a heat diffusion treatment after galvanizing, and a method for producing the same. .

特に、鋼板表面に特定のSi層を形成して加熱還元するこ
とにより、該めっき層の合金層形態を階層型から、乱層
型へと変化させる事が該めっき層を高靭性化をもたらし
加工性に優れた溶融合金化亜鉛めっき鋼板を市場提供す
るものである。
In particular, by forming a specific Si layer on the surface of the steel sheet and heating and reducing it, changing the alloy layer morphology of the plating layer from the hierarchical type to the disordered layer type makes the plating layer highly tough A hot-dip galvanized steel sheet with excellent properties is provided on the market.

[従来の技術] 溶融合金化亜鉛めっき鋼板(以下、単に合金化亜板とい
う。)は、その適宜な犠牲陽極作用と素地の凹凸からく
る優れた投猫効果から家電や自動車等の塗装下地用防錆
鋼板として現在多用されている表面処理鋼板の一つであ
る。
[Prior Art] Hot-dip galvanized steel sheets (hereinafter simply referred to as “alloyed sub-plates”) are suitable for painting bases of home appliances, automobiles, etc. due to their appropriate sacrificial anode action and the excellent catching effect resulting from the unevenness of the substrate. It is one of the surface-treated steel sheets that are currently widely used as rustproof steel sheets.

又、合金化亜板に対する表面特性としては、耐食性、加
工性、溶接性、塗装性などがあるが、このうち最も市場
要求の高い特性の一つに加工によるめっき層の剥離(フ
レーキング、パウダリング)がある。この改善にあたっ
て、鋼種、めっき前処理、溶融めっき条件、合金化加熱
条件等の適正化が、現在盛んに研究開発されようとして
いる。
The surface properties of alloyed subplates include corrosion resistance, workability, weldability, and paintability. Among these, one of the most market-demanding properties is peeling of the plating layer due to processing (flaking, powder). There is a ring). In order to improve this, the steel grade, pretreatment for plating, hot dip plating conditions, alloying heating conditions, etc. are now being actively researched and developed.

しかし、従来技術の中で、特に、普通鋼のアルミキルド
鋼(以下、単に Al-K と称す。)を基板とした合金化亜
板にあっては、そのFe-Zn 合金層構造が総じてFeの濃度
勾配をもって階層状に生成する合金層形態しか得られ
ず、その形態を改質して高加工性を達成する発想を具現
化した技術は未だ見い出されていないのが現状である。
However, in the prior art, especially in alloyed subplates using ordinary-grade aluminum-killed steel (hereinafter simply referred to as Al-K) as a substrate, the Fe-Zn alloy layer structure is generally At present, only the alloy layer morphology that is formed in a layered manner with a concentration gradient can be obtained, and the technology that embodies the concept of modifying the morphology to achieve high workability has not yet been found.

例えば、溶融亜鉛めっき浴中 Al を微量に抑えて亜鉛め
っきしたのち合金化処理した特開昭56-13470号、亜鉛め
っき前の鋼板にFeやNi等をプレめっきして亜鉛めっき
し、合金化処理した特開昭58-104163 号、特開昭60-110
859 号などが提示されてはいるものの、これらの技術か
ら得られる合金化亜板は全て過酷なプレス加工に対して
該めっき層はパウダリング状又はフレーキング状に剥離
し易い難点がある。
For example, Japanese Patent Laid-Open No. 56-13470, in which a small amount of Al in a hot dip galvanizing bath is galvanized and then alloyed, pre-galvanized steel sheet is pre-plated with Fe, Ni, etc., galvanized and alloyed. Treated JP-A-58-104163, JP-A-60-110
Although No. 859 and the like are proposed, all alloyed sub-plates obtained by these techniques have a drawback that the plating layer is easily peeled off in a powdering or flaking form even under severe press working.

この原因は、上述したように該めっき層の合金層構造に
あり地鉄界面でのFe-Zn 相互拡散によって生じる合金層
の相構造が、Fe拡散率の高い地鉄側からめっき表面に向
ってΓ、δ、ζとなりこれらが素地面に並行して整然
と階層状に生成する点にある。従って、加工によって一
定の加工応力を受けた際、その応力集中がFe含有率の最
も高く、硬くて脆いΓ相に起り、これが根こそぎめっき
層の剥離を招くことによるものと考えられる。
The cause is in the alloy layer structure of the plating layer as described above, and the phase structure of the alloy layer generated by Fe-Zn interdiffusion at the interface of the base metal is from the side of the base iron with a high Fe diffusion rate toward the plating surface. The points are Γ, δ 1 , and ζ, and these are generated in an orderly and hierarchical manner parallel to the ground plane. Therefore, it is considered that when a constant processing stress is applied by the processing, the stress concentration occurs in the hard and brittle Γ phase having the highest Fe content, which causes the peeling of the rooting plating layer.

[発明が解決しようとする課題] 以上述べた従来技術の中では、所詮形成される合金層形
態は素地鋼板に比較的並行にFe拡散率が異なる各相のFe
-Zn 拡散層は多層構造的に重なり合って形成される階層
構造でなり、このため加工応力の集中が起り、脆い合金
層にクラックが発生し、応力に耐え切れなくなった際に
鉄素地よりパウダー状に剥離し実用上問題がある。
[Problems to be Solved by the Invention] In the prior arts described above, after all, the alloy layer morphology formed is Fe in each phase in which Fe diffusivity is relatively parallel to the base steel sheet.
-The Zn diffusion layer has a multi-layered structure that is formed by stacking layers on top of each other, which causes concentration of processing stress, which causes cracks in the brittle alloy layer, resulting in a powdery form from the iron matrix when it cannot withstand the stress. There is a problem in practice due to peeling.

本発明では、このような従来技術が抱える合金層の加工
性向上に対し、階層構造でなる合金層の生成形態を応力
分散が可能なζ相が入り混った不連続性のζ相主体に
変化させることが必要と考え、種々の検討を行なった結
果、溶融Znめっきを施す前の鋼板表面に特定のSi層を設
けたのち、加熱還元板温を特定して加熱することによ
り、上述したδ相とζ相の入り乱れた合金層形態を得
ることができる知見を得、本発明を提案するに至ったも
のである。
In the present invention, in order to improve the workability of the alloy layer, which the conventional technique has, the discontinuous ζ 1 phase main component in which the ζ phases capable of stress dispersion are mixed in the generation form of the alloy layer having a hierarchical structure is mixed. Thought that it is necessary to change to, as a result of various studies, after providing a specific Si layer on the steel plate surface before applying the hot dip Zn plating, by specifying the heating reduction plate temperature and heating, The present invention has been proposed based on the knowledge that an alloy layer morphology in which the δ 1 phase and the ζ phase are disordered can be obtained.

[課題を解決するための手段] 本発明は上述した技術思想をもとに成り立ったものであ
るが、Siのこのような挙動は鋼中のSiにあっても同様の
作用効果のあることを本願発明の先願として、すでに提
案しているところである。
[Means for Solving the Problems] The present invention is based on the above-mentioned technical idea. However, it should be noted that such behavior of Si has similar operational effects even in Si in steel. It has already been proposed as a prior application of the present invention.

本発明の構成について以下に示す。The structure of the present invention is shown below.

(1) 鋼板界面にZn-Fe-Al-Si からなるAl濃化層を 0.1〜
1μm形成し、その上層にδ相主体型でζ相とδ
とが入り乱れたFe-Zn 系合金層を5〜50μm形成した
ことを特徴とする加工性に優れた溶融合金化亜鉛めっき
鋼板。
(1) An Al-enriched layer consisting of Zn-Fe-Al-Si at
1 μm thick, and a Fe-Zn alloy layer of 5 to 50 μm in which the δ 1 phase is mainly formed and the ζ phase and the δ 1 phase are disturbed is formed on the upper layer. steel sheet.

(2) ゼンジマー式溶融亜鉛メッキラインにおいて、予め
被めっき鋼板の表面にSi層を10〜10000Åプレメッキ
し、該鋼板を水素ガス還元雰囲気中で加熱還元するのに
最高板温を500 〜900 ℃とした後、溶融亜鉛めっき浴の
成分を重量%でAl:0.01〜0.15%,Sb:0.05〜 0.5%を
添加し、且つPb等の不可避的不純物の総量が0.02%未満
であるめっき浴を用いてめっきをすることを特徴とする
加工性に優れた溶融合金化亜鉛めっき鋼板製造方法。
(2) In the Zenzimer type hot dip galvanizing line, the surface of the steel sheet to be plated is pre-plated with a Si layer of 10 to 10000Å, and the maximum sheet temperature is set to 500 to 900 ° C in order to heat and reduce the steel sheet in a hydrogen gas reducing atmosphere. After that, Al: 0.01 to 0.15% and Sb: 0.05 to 0.5% by weight of the components of the hot dip galvanizing bath are added, and the total amount of inevitable impurities such as Pb is less than 0.02% is used. A method for producing a hot-dip galvanized steel sheet having excellent workability, which comprises plating.

(3) ゼンジマー式溶融亜鉛メッキラインにおいて、予め
被めっき鋼板の表面にSi層を10〜10000Åプレメッキ
し、該鋼板を水素ガス還元雰囲気中で加熱還元するのに
最高板温を500 〜900 ℃にした後、溶融亜鉛めっき浴の
成分を重量%で、Al:0.01〜0.15%,Sb:0.05〜0.5
%,更にMg:0.01 〜0.2 %,Ti:0.01〜0.05%,B:0.0
01 〜0.01%を添加し、且つPb等の不可避的不純物の総
量が0.02%未満であるめっき浴を用いてめっきをするこ
とを特徴とする加工性に優れた溶融合金化亜鉛めっき鋼
板製造方法。
(3) In the Zenzimer hot-dip galvanizing line, the surface of the steel sheet to be plated is pre-plated with a Si layer in the range of 10 to 10000Å, and the maximum sheet temperature is set to 500 to 900 ° C in order to heat reduce the sheet in a hydrogen gas reducing atmosphere. After that, the components of the hot-dip galvanizing bath, in weight%, Al: 0.01-0.15%, Sb: 0.05-0.5
%, Mg: 0.01 to 0.2%, Ti: 0.01 to 0.05%, B: 0.0
A method for producing a hot-dip galvanized steel sheet having excellent workability, which comprises adding 0.1 to 0.01% and performing plating using a plating bath in which the total amount of inevitable impurities such as Pb is less than 0.02%.

その骨子は合金層形態としてζ混在のδ主体型であっ
て、ζによってδが不連続状に鋼板界面に生成させる
ことが合金層の高靭性化をもたらし、これがめっき層の
高加工性につながる点にあり、そのためには、焼鈍前
の原板表面に、特定のSiプレめっき層を設け、かつそ
れを、還元雰囲気および板温を特定して加熱する点にあ
る。
The skeleton is mainly composed of δ 1 mixed with ζ as an alloy layer form, and the generation of δ 1 discontinuously at the steel plate interface by ζ causes the alloy layer to have high toughness, which results in high workability of the plated layer. In order to do so, a specific Si pre-plated layer is provided on the surface of the original plate before annealing, and it is heated by specifying the reducing atmosphere and the plate temperature.

[作 用] (I)Siプレめっきの厚みについて、 焼鈍前、予め鋼板表面に形成させるSiプレめっきは、そ
の後の焼鈍過程でのSi拡散によって鋼板表層部をFe-Si
系の拡散層に改質し、溶融亜鉛めっき時に地鉄界面に生
ずるFe-Si-Al-Zn 系Al濃化層の均一薄膜生成化と更には
合金化処理時の該Al濃化層の拡散抑制によって本発明に
いうζ相によるδ相に入り乱れた合金層形態に改質で
きるようにするための不可欠な制御因子である。なお、
Siのプレめっき手段としては、蒸着法、気相法或いは溶
射法等公知のいずれの手段であってもよい。
[Operation] (I) Regarding thickness of Si pre-plating: Before pre-annealing, the Si pre-plating formed on the surface of the steel sheet is made of Fe-Si by the diffusion of Si in the subsequent annealing process.
Of the Fe-Si-Al-Zn system Al concentrated layer generated at the base iron interface during hot dip galvanization by forming a uniform thin film and diffusion of the Al concentrated layer during alloying treatment It is an indispensable control factor for enabling the alloy layer morphology to be disturbed by entering the δ 1 phase due to the ζ phase in the present invention by suppressing. In addition,
The Si pre-plating means may be any known means such as a vapor deposition method, a vapor phase method or a thermal spraying method.

Siプレめっき厚みとして、10Å未満では、焼鈍後の鋼
板表層におけるFe-Si 拡散層の形成が十分形成できない
ために合金化前の溶融亜鉛めっき層において地鉄界面に
形成されるFe-Si-Al-Zn 系のAl濃化層が部厚くかつ不連
続状にしか形成されず、これがその後の合金化処理にお
いて生ずる合金層の合金化形態は、従来よくみるFe濃度
勾配をもってΓ、δおよびζの各相が素地に並行して
整然と階層状生成した合金層構造を呈するようになり、
本発明の主旨から外れるため、余り好ましくない。
If the thickness of the Si pre-plating is less than 10 Å, the Fe-Si diffusion layer cannot be sufficiently formed on the surface layer of the steel sheet after annealing, so that the Fe-Si-Al formed on the base iron interface in the hot dip galvanized layer before alloying. -Zn-based Al enriched layer is formed thickly and only discontinuously. The alloying morphology of the alloy layer that occurs in the subsequent alloying treatment is Γ, δ 1 and ζ with the Fe concentration gradient that is often seen in the past. Each of the phases of the alloy has an alloy layer structure that is formed hierarchically in parallel with the base material.
It is not preferable because it deviates from the gist of the present invention.

一方、Siプレめっき厚みが10000 Åを越えては、焼鈍過
程での鋼板表層のFe-Si 拡散反応が、時間的に高速ライ
ン下では十分でなく、合金化処理での溶融Znめっき層の
十分な合金化が得られず、加えて、焼鈍雰囲気中の微量
酸素によって未反応の金属SiがSiOxなる酸化物を形成
し、不めっきを生じ易くなるなど、商品価値を大きく損
なうため、余り好ましくない。
On the other hand, when the Si pre-plating thickness exceeds 10,000 Å, the Fe-Si diffusion reaction of the steel sheet surface layer during the annealing process is not sufficient under the high-speed line in terms of time, and the molten Zn plating layer during alloying treatment is In addition, the unreacted metal Si forms an oxide of SiOx due to a small amount of oxygen in the annealing atmosphere, which easily causes non-plating, which greatly impairs the commercial value, which is not preferable. .

従って、好ましいSiのプレめっき厚みとしては30〜10
00Åがよい。
Therefore, the preferable Si pre-plating thickness is 30 to 10
00Å is good.

(II)Siプレめっき後の鋼板還元条件について Siプレめっき後の鋼板還元板温は、後述する還元雰囲気
と合せて本発明を構成する不可欠制御因子の一つであ
る。
(II) Steel plate reducing conditions after Si pre-plating The steel plate reducing plate temperature after Si pre-plating is one of the indispensable control factors that constitute the present invention together with the reducing atmosphere described later.

該板温は、鋼板界面におけるSiプレめっき層のFe-Si 熱
拡散の短時間化とその均一拡散化を促進するための十分
制御する必要がある。
The plate temperature needs to be sufficiently controlled in order to accelerate the thermal diffusion of Fe-Si in the Si pre-plated layer at the steel plate interface in a short time and to promote its uniform diffusion.

該板温が500 ℃未満では、鋼板界面でのFe-Si 拡散反応
が十分でなく、これが合金化処理前後の界面Al濃化層の
均一薄膜生成並びにその過剰拡散防止効果を低下させ、
ひいては、本発明がいう加工性に強い合金層形態として
のζ相によるδ相の不連続化が十分達成できないた
め、好ましくない。
If the plate temperature is less than 500 ° C., the Fe-Si diffusion reaction at the steel plate interface is not sufficient, which reduces the uniform thin film formation of the interface Al concentrated layer before and after the alloying treatment and its excessive diffusion prevention effect,
Consequently, the discontinuity of the δ 1 phase due to the ζ phase, which is an alloy layer form having strong workability according to the present invention, cannot be sufficiently achieved, which is not preferable.

また、該板温が 900℃を越えては鋼板界面におけるFe-S
i 拡散層が過剰に生成し、これが、合金化処理時の亜鉛
めっき層へのFeの拡散を過剰に抑制して逆に短時間での
合金化処理が不十分となり、生産性の低下を招いたり、
また、商品としての鋼板の材質強度の低下もあって出来
るだけ避けた方がよい。
In addition, when the plate temperature exceeds 900 ° C, Fe-S at the steel plate interface
i Diffusion layer is excessively generated, which excessively suppresses the diffusion of Fe into the galvanizing layer during the alloying process, and on the contrary, the alloying process in a short time becomes insufficient, resulting in a decrease in productivity. Or
In addition, it is better to avoid it as much as possible because of the deterioration of the material strength of the steel sheet as a product.

以上より好ましい還元板温としては、最高板温で 600〜
850 ℃がよい。
The more preferable reduction plate temperature is 600 ~ at the maximum plate temperature.
850 ℃ is good.

なお、以上のような最高還元板温で加熱する際、加熱雰
囲気として不めっき防止、プレめっきしたSi層の酸化物
形成を出来るだけ抑制しつつ鋼板表面が十分還元される
状態を保つ必要があり、特に D.P管理を以下のように行
なった方がよい。
In addition, when heating at the maximum reducing plate temperature as described above, it is necessary to maintain a state in which the steel sheet surface is sufficiently reduced while preventing non-plating as a heating atmosphere and suppressing the oxide formation of the pre-plated Si layer as much as possible. Especially, DP management should be carried out as follows.

該雰囲気中のD.P が -20℃超の酸化領域ではプレめっき
したSi層又は熱拡散により形成されるFe-Si 拡散層の表
面酸化を助長し、溶融亜鉛めっき時不めっきを生じた
り、或いは界面Al濃化層の均一薄膜生成化を阻害し、少
なくとも本発明が目的とした合金化処理後の合金層構造
の形成は難しい。
In the oxidation region where DP is higher than -20 ° C in the atmosphere, the surface oxidation of the pre-plated Si layer or the Fe-Si diffusion layer formed by thermal diffusion is promoted, resulting in non-plating during hot dip galvanization or at the interface. Formation of a uniform thin film of the Al-enriched layer is hindered, and it is difficult to form at least the alloy layer structure after the alloying treatment aimed by the present invention.

この点ではD.P は出来る丈低くして還元領域を保つこと
が必要となるが、鋼板表面に生じるFe又はFe-Si 系酸化
物の還元能力と生産性を考慮するとD.P の下限は -50℃
以下で飽和する。
From this point, it is necessary to make DP as low as possible to keep the reduction region, but considering the reducing ability and productivity of Fe or Fe-Si oxides generated on the steel plate surface, the lower limit of DP is -50 ° C.
Saturates below.

従って、鋼板の焼鈍還元雰囲気中のD.P としては -30〜
-40 ℃が好ましい。
Therefore, as DP in the annealing reduction atmosphere of steel sheet,
-40 ° C is preferred.

なお、本発明においてSiプレめっきした鋼板の上記還元
焼鈍を施す場合にかぎり無酸化加熱を行なっても何等本
発明を阻害するものでないことを併記する。
In addition, in the present invention, it is also noted that even if non-oxidative heating is performed only when the above-mentioned reduction annealing of the Si pre-plated steel sheet is performed, the present invention is not hindered.

(III)溶融亜鉛めっき浴の成分について 1) Al 濃度 Alは鋼板の浴中反応において鋼板界面での過剰なFe-Zn
相互拡散反応をFe-Al-Zn3元合金層のバイアー効果によ
って抑制させ、その後の合金化処理過程でΓ相の生成を
抑え、ζ主体の合金相形態に制御するために不可欠な
成分である。Alが0.01wt%未満では上記した3元合金層
バイアー効果はなく、加工に脆い過合金が生成し易くな
り好ましくない。
(III) Constituents of hot dip galvanizing bath 1) Al concentration Al is an excessive amount of Fe-Zn at the steel sheet interface during the reaction of the steel sheet in the bath.
It is an essential component for suppressing the interdiffusion reaction by the via effect of the Fe-Al-Zn ternary alloy layer, suppressing the generation of Γ phase in the subsequent alloying process, and controlling the alloy phase morphology mainly composed of ζ 1. . If Al is less than 0.01 wt%, the above-mentioned ternary alloy layer via effect does not occur, and a brittle overalloy is likely to be formed during processing, which is not preferable.

一方、Alが0.15wt% を越えては逆に3元合金層のバイア
ー効果が過剰に発揮され、その後の合金化処理過程で未
合金化し易くなり、商品価値を損なう。
On the other hand, when Al exceeds 0.15 wt%, the via effect of the ternary alloy layer is excessively exhibited, which makes it easy to unalloy in the subsequent alloying process, which impairs the commercial value.

従って浴中 Al としては0.01〜0.15wt% がよく、好まし
くは0.08〜0.03wt% がよい。
Therefore, the Al content in the bath is preferably 0.01 to 0.15 wt%, more preferably 0.08 to 0.03 wt%.

2) Sb 濃度 Sbは浴中 Al と共晶し、Al-Sb 化合物となって亜鉛めっ
き層の地鉄界面や表層に偏析し鋼中Si同様に合金化過程
でのFe拡散をランダム化させ、少なくとも階層状の合金
層の生成を抑制するためにある。Sb 0.05wt%未満ではそ
の作用が十分発揮されず、又Sb 0.5wt% を越えては、め
っき浴の粘性が増大し、ζによるδ合金層の不連続化
に対し安定した制御が難しくなる。
2) Sb concentration Sb is eutectic with Al in the bath and becomes an Al-Sb compound to segregate at the base iron interface and surface layer of the galvanized layer and randomize Fe diffusion in the alloying process like Si in steel, This is at least to suppress the formation of hierarchical alloy layers. If it is less than 0.05% by weight of Sb, its action is not sufficiently exhibited, and if it exceeds 0.5% by weight of Sb, the viscosity of the plating bath increases, and stable control becomes difficult against discontinuity of the δ 1 alloy layer due to ζ. .

従ってSb濃度は0.05〜0.5wt%がよりが好ましくは 0.1〜
0.3wt%がよい。
Therefore, the Sb concentration is preferably 0.05 to 0.5 wt%, more preferably 0.1 to
0.3wt% is good.

3) Mg 濃度 Mgは合金化亜鉛めっき鋼板としての耐食性を向上させる
ためにある。Mg 0.01wt%未満ではその効果が十分に発揮
されず、又、Mg 0.2wt% を越えては溶融亜鉛めっき浴面
にMg酸化物が頻発し、カス引きドロスとして鋼板に再付
着し、外観上問題が生じ、実用性を損なう。
3) Mg concentration Mg is to improve the corrosion resistance as an alloyed galvanized steel sheet. If the Mg content is less than 0.01 wt%, the effect will not be fully exhibited.If the Mg content exceeds 0.2 wt%, Mg oxide will frequently occur on the surface of the hot dip galvanizing bath and will reattach to the steel sheet as scrap dross. It causes problems and impairs practicality.

従って、Mg濃度は0.01〜0.2wt%がよいが、好ましくは0.
05〜0.1wt%がよい。
Therefore, the Mg concentration is preferably 0.01 to 0.2 wt%, but preferably 0.
05-0.1wt% is good.

4) Ti 濃度 Tiは、合金化亜鉛めっき鋼板の耐食性向上のためにあ
る。Ti 0.01wt%未満では高耐食性化は十分でなく、又、
Tiが0.05wt% を越えては界面合金層の生成助長と引いて
は、これが合金化処理後の合金層の階層化を助長するた
め、余り好ましくない。
4) Ti concentration Ti is for improving the corrosion resistance of the galvannealed steel sheet. If Ti is less than 0.01 wt%, high corrosion resistance is not sufficient, and
When Ti exceeds 0.05 wt%, it is not preferable because it promotes formation of the interfacial alloy layer, which promotes stratification of the alloy layer after the alloying treatment.

従って、Ti濃度は0.01〜0.05wt% がよいが、好ましくは
0.01〜0.03wt% がよい。
Therefore, the Ti concentration should be 0.01-0.05 wt%, but preferably
0.01-0.03wt% is good.

5) B 濃度 B は合金化亜鉛めっき鋼板のめっき層の経時による疲労
脆化を防止するためにある。
5) B Concentration B is to prevent fatigue embrittlement of the galvannealed steel sheet over time.

B が0.001wt%未満ではその効果を十分発揮させるに到ら
ず、又、B 0.01wt% を越えては物理的に該めっき浴中に
十分固溶させることが難しくドロスとなって鋼板に再付
着するため実用的でない。従って、B 濃度としては0.00
1 〜0.01wt% がよいが、好ましくは0.003 〜0.008 wt%
がよい。
If B is less than 0.001 wt%, the effect cannot be fully exerted, and if B exceeds 0.01 wt%, it is difficult to physically form a solid solution in the plating bath, and dross is regenerated on the steel sheet. Not practical because it adheres. Therefore, the B concentration is 0.00
1 to 0.01 wt% is preferable, but 0.003 to 0.008 wt% is preferable
Is good.

6) 不可避的不純物の総量 本発明にいう不可避的不純物とはPbをはじめCd,Sn とい
っためっき層の基本成分であるZnと局部電池を形成し、
耐食性の低下を招くため、可能な限り、系外に排除され
るべき元素をいう。
6) Total amount of unavoidable impurities The unavoidable impurities referred to in the present invention form a local battery with Zn, which is the basic component of the plating layer such as Cb and Sn including Pb,
It is an element that should be excluded from the system as much as possible because it causes deterioration of corrosion resistance.

従って該不純物の総量は、0.02wt% 未満で好ましくは0.
01wt% 以下が好ましい。
Therefore, the total amount of the impurities is less than 0.02 wt% and preferably 0.1.
01 wt% or less is preferable.

(IV)溶融合金化亜鉛めっき鋼板のめっき厚について 該めっき厚みは基本的に溶融合金化亜鉛めっき鋼板とし
ての耐食性を支配する因子である。
(IV) Plating Thickness of Hot-Dip Galvanized Steel Sheet The thickness of the hot-dip galvanized steel sheet is basically a factor controlling the corrosion resistance of the hot-dip galvanized steel sheet.

該めっき厚が5μm未満では合金化亜板の最大の特性で
ある塗装後の耐食性が極端に低下し、又、50μmを越
えては加工性には何ら支障はないものの厚膜すぎて合金
化処理に時間が要り、生産性を損なうため、余り好まし
くない。
If the plating thickness is less than 5 μm, the corrosion resistance after coating, which is the maximum characteristic of the alloyed subplate, is extremely deteriorated. If it exceeds 50 μm, the workability is not hindered, but too thick a film is alloyed. It takes a lot of time and impairs productivity, which is not preferable.

従って、適正めっき厚みとしては、5〜50μmがよい
が、好ましくは7〜30μmが実用的である。
Therefore, the appropriate plating thickness is preferably 5 to 50 μm, and more preferably 7 to 30 μm.

以下実施例をもとに本発明の効果を更に詳述する。The effects of the present invention will be described in more detail below with reference to examples.

[実施例] アルミキルド鋼の低炭素鋼板にあって板厚0.6mm で板巾
914mm の冷間圧延鋼板又は板厚3.5mm で板巾1200mmの脱
水スケールされた熱間圧延鋼板を先ず、アルカリ脱脂−
水洗−乾燥したのち、蒸着法によって表1に特定するSi
プレめっきを施する。そして直ちにゼンジマー式溶融め
っきラインにおいて15%H2+N2混合ガス雰囲気中で加
熱還元する際、最高板温が表1に特定する最高板温にな
るように加熱通板され、溶融めっき侵入板温として、 4
70℃にまで冷却されたのち、浴温460 ℃の表1に特定す
る溶融亜鉛めっき浴に2秒間浸漬される。その後大気中
でガスワイピングされて所定めっき付着量に制御された
のち、合金化炉で出側最高板温が550 ℃になるよう加熱
拡散処理され、気水冷却されたのち水冷クエンチし乾燥
される。
[Example] A low carbon steel sheet of aluminum killed steel with a thickness of 0.6 mm and a width
914 mm cold rolled steel sheet or 3.5 mm thick and dehydrated scale hot rolled steel sheet with a width of 1200 mm is first degreased with an alkali.
After being washed with water and dried, Si specified in Table 1 by the vapor deposition method
Apply pre-plating. Immediately after heating and reducing in a 15% H 2 + N 2 mixed gas atmosphere in a Zenzimer hot-dip galvanizing line, the hot-dip galvanized plate was heated so that the maximum plate temperature became the maximum plate temperature specified in Table 1. As 4
After cooling to 70 ° C., it is immersed for 2 seconds in a hot dip galvanizing bath specified in Table 1 with a bath temperature of 460 ° C. After that, gas wiping is performed in the atmosphere to control the amount of deposits on the plate, and then it is heated and diffused in the alloying furnace so that the maximum plate temperature on the outlet side becomes 550 ° C. It is cooled with steam and then water-quenched and dried. .

このようにしてなる本発明の溶融合金化亜鉛めっき鋼板
は、表1に示すように他の性能を阻害することなくすぐ
れた加工性を発揮し、従来に例を見ない画期的な製品お
よびその製造方法であることが分る。
The hot-dip galvannealed steel sheet of the present invention thus obtained exhibits excellent workability without impairing other performances as shown in Table 1, and is an epoch-making product unprecedented in the past and It turns out that it is the manufacturing method.

Siプレめっきの効果 表1の本発明実施例を No.1〜 No.18に、比較例 No.
19〜 No.20とともに示す。このうち、 No.3の本発
明例について断面の合金層生成状態をSEM 観察し、又、
その際のEPMA元素分布について概念図を第1図に示す。
又、比較例として No.19を同様に解析した結果の概念
図を第2図に示す。
Effect of Si pre-plating No. 1 to No. 18 of the present invention in Table 1 and No.
Shown together with No. 19 to No. 20. Of these, the No. 3 example of the present invention was observed by SEM for the state of alloy layer formation in the cross section, and
A conceptual diagram of EPMA element distribution at that time is shown in FIG.
Further, as a comparative example, FIG. 2 shows a conceptual diagram of the result of similarly analyzing No. 19.

これらの結果から明白なように、プレめっきしたSiの厚
みに応じてFe-Zn 合金層形態は階層状からランダム状に
変化し、且つ相形態も加工に脆いΓ相が抑制され、ζ相
とδ相とが入り乱れた形態に変化していることが分
る。この合金層形態を呈する理由は第1図および第2図
の元素分布から考えると地鉄界面のSiプレめっき層が、
焼鈍過程で素地からのFe拡散によってFe-Si 化した点と
更には、これが溶融亜鉛めっき浴中反応で浴中AlとSiの
優先反応を招き、結果的に地鉄界面にZn-Fe-Si-Al から
なるAl濃化層の均一かつ薄膜状に生成が促進された点に
あると考えられる。従って、合金化処理過程ではこのタ
イトなAl濃化層を打ち破ってFeの該めっき層への拡散が
起るがそのFe拡散箇所は、通常知られている地鉄の結晶
粒界からのFeの優先拡散とほぼ同様であるが、該Al濃化
層のバリアー作用によって、そのFeの拡散速度はやや遅
滞化し易くなり、これがζ相によるδ合金層の不連続
形成を助長させたものと考えられる。
As is apparent from these results, the Fe-Zn alloy layer morphology changes from hierarchical to random depending on the thickness of pre-plated Si, and the phase morphology suppresses the Γ phase, which is brittle during processing, and It can be seen that the δ 1 phase and the morphology change into a disordered form. The reason for exhibiting this alloy layer morphology is that the Si pre-plated layer at the base iron interface is
In the annealing process, Fe was converted to Fe-Si by diffusion of Fe from the base material, and further, this caused a preferential reaction of Al and Si in the bath in the reaction in the hot dip galvanizing bath, resulting in the Zn-Fe-Si at the base iron interface. It is considered that the formation of the Al concentrated layer composed of -Al in a uniform and thin film was promoted. Therefore, in the alloying process, this tight Al-enriched layer is smashed to cause diffusion of Fe into the plating layer, but the Fe diffusion site is Although it is almost the same as the preferential diffusion, it is thought that the diffusion rate of Fe is slightly delayed due to the barrier action of the Al concentrated layer, which promotes the discontinuous formation of the δ 1 alloy layer due to the ζ phase. To be

めっき前の最高加熱板温の効果 本発明の実施例を No.21〜 No.34に比較例 No.35
〜 No.36と共に示す。これより明らかなように、該板
温が460 ℃と低いと、合金化後の合金層は階層形態をと
り易くなることが分る。
Effect of maximum heating plate temperature before plating Example No. 21 to No. 34 of the present invention and Comparative example No. 35
~ Shown together with No. 36 As is clear from this, when the plate temperature is as low as 460 ° C., it is easy for the alloy layer after alloying to take a hierarchical form.

この理由は、合金化前の溶融亜鉛めっき過程での地鉄界
面に生じるZn-Fe-Al-Si なるAl濃化層の形成状態にあ
り、該板温460 ℃の低温焼鈍では、該Al濃化層が該板温
500〜900 ℃の高温焼鈍に比して、むしろ厚膜化するも
のの不均一でポーラス状に生成する点にあると考えられ
る。該Al濃化層のポーラス化は、次の合金化過程におい
て、地鉄からのFeの過剰拡散を招き、これが本発明にい
うSiプレめっき形成による合金層形態の改質効果を半減
させるに至った原因と考えられる。
The reason for this is the formation of an Al-enriched layer of Zn-Fe-Al-Si that occurs at the base iron interface in the hot-dip galvanizing process before alloying. The layer is the plate temperature
It is considered that, compared with the high temperature annealing at 500 to 900 ° C, the film is thicker, but it is non-uniform and porous. Porousization of the Al-enriched layer causes excessive diffusion of Fe from the base iron in the subsequent alloying process, which leads to halving the effect of modifying the alloy layer morphology by the Si pre-plating formation according to the present invention. It is thought to be the cause.

一方、該板温が900 ℃を越えてはFeリッチのFe-Si 拡散
層が過剰に増大し、これが溶融亜鉛めっき時の界面Al濃
化層の過剰生成とその不連続化を招き引いては、合金化
処理におけるFeの過剰拡散が合金層形態の階層化を助長
するため、余り好ましくない。
On the other hand, when the plate temperature exceeds 900 ° C, the Fe-rich Fe-Si diffusion layer excessively increases, which causes excessive formation of the interfacial Al concentrated layer and its discontinuity during hot dip galvanization. The excessive diffusion of Fe in the alloying treatment promotes the layering of the alloy layer morphology, which is not preferable.

以上より、好ましい最高加熱板温としては600 〜850 ℃
がよい。
From the above, the preferred maximum heating plate temperature is 600 to 850 ℃
Is good.

このように、溶融亜鉛めっき前の最高加熱板温は、合金
化亜板の性能を安定して確保する上で重要であり、本発
明の板温範囲はこれに答えんとするものであることが分
る。
As described above, the maximum hot plate temperature before hot dip galvanizing is important for stably ensuring the performance of the alloyed sub-plate, and the plate temperature range of the present invention is to answer this. I understand.

溶融亜鉛めっき浴の各成分の効果 1) Al 及びSbは本発明においては基本めっき浴成分の
1つである。
Effect of Each Component of Hot Dip Galvanizing Bath 1) Al and Sb are one of the basic plating bath components in the present invention.

Alの効果について、本発明実施例を No.37〜No. 41
に比較例 No.42〜 No.43に示し、又Sbに関する本発
明実施例を No.44〜 No.50に、比較例 No.51〜 N
o.52と共に示す。
Regarding the effect of Al, the invention examples No. 37 to No. 41
Comparative Examples No. 42 to No. 43, and Examples of the present invention relating to Sb are No. 44 to No. 50, and Comparative Examples No. 51 to N.
Shown with o.52.

いずれの成分系も本発明の濃度範囲を外れては、加工性
や仕上り外観を損なうことになる。
If any of the component systems deviates from the concentration range of the present invention, workability and finished appearance will be impaired.

2) その他の添加成分であるMg,Ti およびB の効用につ
いてはMgの本発明実施例を No.53〜 No.56に比較例
No.57〜 No.58に示し、Tiの本発明実施例は No.5
9〜 No.61に比較例 No.62〜 No.63に示す。又、
Bについては本発明実施例を No.64〜 No.68および
No.71〜 No.72に示し、また比較例 No.69〜 No.
70に示す。
2) Regarding the effects of other additive components, Mg, Ti and B, comparative examples are given in No. 53 to No. 56 of the present invention of Mg.
No. 57 to No. 58, the present invention example of Ti is No. 5
No. 9 to No. 61 show comparative examples No. 62 to No. 63. or,
As for B, the invention examples No. 64 to No. 68 and
No. 71 to No. 72, and Comparative Examples No. 69 to No.
70.

これから明らかなように、これらの各成分は主として合
金化亜板としての総体的な耐食性向上および腐食と共に
生じる耐疲労破壊性の向上にその主旨があり、本発明の
範囲を外れてはその期待は薄い。
As is apparent from these, each of these components is mainly intended to improve the overall corrosion resistance as an alloyed subplate and the fatigue fracture resistance that occurs with corrosion, and the expectation is outside the scope of the present invention. thin.

3) 又、Pbをはじめとする不可避的不純物の適正範囲に
ついては、本発明実施例を No.3および No.73に比較
例 No.74と共に示す。これにより明らかなように、該
不純物は主として耐食性の低下を招くため本発明にあっ
ては、可能な限りめっき浴系から排除するよう配慮する
必要がある。
3) Further, the proper range of inevitable impurities such as Pb is shown in Examples 3 and 73 of the present invention together with Comparative Example No. 74. As is clear from this, since the impurities mainly cause a decrease in corrosion resistance, in the present invention, it is necessary to consider removing them from the plating bath system as much as possible.

4) 合金化亜板の適正付着量範囲 本発明にいう付着量範囲は基本的には、使用環境とコス
トに応じて決められるべきものであるが、総体的な性能
レベルからもその付着量は、制限が伴なう。
4) Proper deposition amount range of alloyed sub-plate The deposition amount range referred to in the present invention should be basically determined according to the usage environment and cost, but the deposition amount is also from the overall performance level. , With restrictions.

その付着量範囲について、本発明実施例を No.75〜 N
o.79に、比較例 No.80〜 No.81と共に示す。
Regarding the range of the adhesion amount, the present invention example No. 75 to N
The results are shown in Table 79 together with Comparative Examples No. 80 to No. 81.

これにより明らかなように本発明の適正付着量を外れて
は耐食性や加工性等を損なうことになり実用的でない。
As is clear from this, if the proper amount of adhesion of the present invention is deviated, corrosion resistance and workability are impaired, which is not practical.

[発明の効果] 以上、実施例をもとに本発明の内容を詳述してきたよう
に、本発明は鋼板成分中、特にSiに着目しこれによる合
金層形態の改質が合金化亜板の加工性を大きく改善せし
めた先願知見をもとに、事前に特定厚みのSi層を形成さ
せその後、特定板温で加熱することにより先願と同様の
合金層改質を可能にするもので、これによって、鋼板の
鋼種に左右されないで合金化亜板の加工性を飛躍的に向
上せしめることのできる汎用技術として従来に例を見な
い画期的な技術であり、顕著な効果を示す。
[Effects of the Invention] As described above in detail with reference to the examples, the present invention focuses on Si among the steel sheet components, and the modification of the alloy layer morphology by this is an alloyed sub-plate. Based on the knowledge of the previous application that greatly improved the workability of the above, by forming a Si layer with a specific thickness in advance and then heating at a specific plate temperature, it is possible to reform the alloy layer similar to the previous application. As a result, this is an epoch-making technology that is unprecedented as a general-purpose technology that can dramatically improve the workability of alloyed sub-plates regardless of the steel type of the steel sheet, and shows remarkable effects. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の合金層形態の代表例として、表
1の No.3に記載する溶融合金化亜鉛めっき鋼板のめっ
き断面における顕微鏡観察並びにEPMA元素分布状態から
その状況を概念図として例示したもの、第2図は従来技
術の比較代表例として表1の No.19に記載する溶融合
金化亜鉛めっき鋼板のめっきにおける合金層形態の概念
図を例示したものである。
FIG. 1 is a typical example of the alloy layer morphology of the embodiment of the present invention, which is a conceptual view showing the situation from the microscopic observation and EPMA element distribution state of the galvannealed steel sheet described in No. 3 of Table 1 FIG. 2 illustrates the conceptual diagram of the alloy layer form in the plating of the hot-dip galvanized steel sheet described in No. 19 of Table 1 as a comparative representative example of the prior art.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋼板界面にZn-Fe-Al-Si からなるAl濃化層
を0.1 〜1μm形成し、その上層にδ相主体型でζ相
とδ相とが入り乱れたFe-Zn 系合金層を5〜50μm
形成したことを特徴とする加工性に優れた溶融合金化亜
鉛めっき鋼板。
1. An Fe-Zn layer having a Zn-Fe-Al-Si Al enriched layer of 0.1 to 1 μm formed on the steel sheet interface, and a δ 1 phase-dominant type ζ phase and a δ 1 phase intermixed in the upper layer. System alloy layer 5 to 50 μm
A hot-dip galvanized steel sheet with excellent workability characterized by being formed.
【請求項2】ゼンジマー式溶融亜鉛メッキラインにおい
て、予め被めっき鋼板の表面にSi層を10〜10000Åプ
レメッキし、該鋼板を水素ガス還元雰囲気中で加熱還元
するのに最高板温を500 〜900 ℃とした後、溶融亜鉛め
っき浴の成分を重量%でAl:0.01〜0.15%,Sb:0.05〜
0.5 %を添加し、且つPb等の不可避的不純物の総量が0.
02%未満であるめっき浴を用いてめっきをすることを特
徴とする加工性に優れた溶融合金化亜鉛めっき鋼板製造
方法。
2. In a Sendzimer type hot dip galvanizing line, a Si layer is pre-plated on the surface of a steel sheet to be plated in an amount of 10 to 10000Å in advance, and the maximum sheet temperature is 500 to 900 for heat reduction in the hydrogen gas reducing atmosphere. After the temperature was adjusted to ℃, the components of the hot dip galvanizing bath were Al: 0.01-0.15% and Sb: 0.05-
0.5% is added, and the total amount of inevitable impurities such as Pb is 0.
A method for producing a hot-dip galvanized steel sheet with excellent workability, which comprises plating using a plating bath having a content of less than 02%.
【請求項3】ゼンジマー式溶融亜鉛メッキラインにおい
て、予め被めっき鋼板の表面にSi層を10〜10000Åプ
レメッキし、該鋼板を水素ガス還元雰囲気中で加熱還元
するのに最高板温を500 〜900 ℃にした後、溶融亜鉛め
っき浴の成分を重量%でAl:0.01〜0.15%,Sb:0.05〜
0.5 %,更にMg:0.01〜0.2 %,Ti:0.01〜0.05%,B:
0.001 〜0.01%を添加し、且つPb等の不可避的不純物の
総量が0.02%未満であるめっき浴を用いてめっきをする
ことを特徴とする加工性に優れた溶融合金化亜鉛めっき
鋼板製造方法。
3. In a Sendzimer type hot dip galvanizing line, a Si layer is pre-plated on the surface of a steel sheet to be plated in an amount of 10 to 10,000 Å in advance, and the maximum sheet temperature is 500 to 900 for heat reduction of the steel sheet in a hydrogen gas reducing atmosphere. After the temperature was adjusted to ℃, the components of the hot dip galvanizing bath were Al: 0.01-0.15% and Sb: 0.05-
0.5%, Mg: 0.01 to 0.2%, Ti: 0.01 to 0.05%, B:
A method for producing a hot-dip galvanized steel sheet with excellent workability, which comprises adding 0.001 to 0.01% and plating using a plating bath in which the total amount of inevitable impurities such as Pb is less than 0.02%.
JP17556490A 1990-07-03 1990-07-03 Hot-dip galvanized steel sheet with excellent workability and method for producing the same Expired - Lifetime JPH0660376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17556490A JPH0660376B2 (en) 1990-07-03 1990-07-03 Hot-dip galvanized steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17556490A JPH0660376B2 (en) 1990-07-03 1990-07-03 Hot-dip galvanized steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0463259A JPH0463259A (en) 1992-02-28
JPH0660376B2 true JPH0660376B2 (en) 1994-08-10

Family

ID=15998289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17556490A Expired - Lifetime JPH0660376B2 (en) 1990-07-03 1990-07-03 Hot-dip galvanized steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0660376B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081392A3 (en) * 2009-12-29 2011-12-01 주식회사 포스코 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
KR101115754B1 (en) * 2010-12-28 2012-03-06 주식회사 포스코 Zn-plated steel sheet for hot press forming having excellent strength and surface property, and hot pressed parts using the same
KR101115848B1 (en) * 2010-12-28 2012-03-09 주식회사 포스코 Zn-plated steel sheet for hot press forming having excellent surface property and hot pressed parts using the same
KR101115816B1 (en) * 2010-12-29 2012-03-09 주식회사 포스코 Zn-plated high-mn steel sheet for hot press forming having excellent surface property and hot pressed parts using the same
KR101115801B1 (en) * 2010-12-28 2012-03-09 주식회사 포스코 Zn-plated steel sheet for hot pressed parts and method for manufacturing hot pressed parts having excellent corrosion resistance and electro-painting properties
KR101304621B1 (en) * 2011-06-28 2013-09-05 주식회사 포스코 Method for manufacturing hot press forming parts having different strengths by area

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777571B2 (en) * 1991-11-29 1998-07-16 大同鋼板株式会社 Aluminum-zinc-silicon alloy plating coating and method for producing the same
KR20040038503A (en) * 2002-11-01 2004-05-08 주식회사 포스코 Chemical composition of Zn melts for galvannealed steel sheets having excellent surface quality and method for manufacture galvannealed steel sheets to use it
KR100905653B1 (en) * 2002-12-27 2009-06-30 주식회사 포스코 Preparing method of non-pickling galvanized hot-rolled steel sheet with excellent coating adhesion
CN105002451B (en) * 2007-12-11 2018-08-17 蓝野钢铁有限公司 Method for metal plating and the coating thus produced
JP5505132B2 (en) * 2010-06-30 2014-05-28 新日鐵住金株式会社 Al-Zn alloy plated steel with excellent weldability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081392A3 (en) * 2009-12-29 2011-12-01 주식회사 포스코 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
CN102791901A (en) * 2009-12-29 2012-11-21 Posco公司 Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
US9068255B2 (en) 2009-12-29 2015-06-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
KR101115754B1 (en) * 2010-12-28 2012-03-06 주식회사 포스코 Zn-plated steel sheet for hot press forming having excellent strength and surface property, and hot pressed parts using the same
KR101115848B1 (en) * 2010-12-28 2012-03-09 주식회사 포스코 Zn-plated steel sheet for hot press forming having excellent surface property and hot pressed parts using the same
KR101115801B1 (en) * 2010-12-28 2012-03-09 주식회사 포스코 Zn-plated steel sheet for hot pressed parts and method for manufacturing hot pressed parts having excellent corrosion resistance and electro-painting properties
KR101115816B1 (en) * 2010-12-29 2012-03-09 주식회사 포스코 Zn-plated high-mn steel sheet for hot press forming having excellent surface property and hot pressed parts using the same
KR101304621B1 (en) * 2011-06-28 2013-09-05 주식회사 포스코 Method for manufacturing hot press forming parts having different strengths by area

Also Published As

Publication number Publication date
JPH0463259A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JP7358542B2 (en) Method for manufacturing alloyed hot-dip galvanized steel sheet resistant to liquid metal embrittlement
JP5404126B2 (en) Zn-Al plated steel sheet with excellent corrosion resistance and method for producing the same
JPH0660376B2 (en) Hot-dip galvanized steel sheet with excellent workability and method for producing the same
JPS5891162A (en) Manufacture of galvanized steel plate
JPH0581662B2 (en)
KR101115741B1 (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
JPH0645853B2 (en) Method for producing galvannealed steel sheet
KR20140008723A (en) High strength galvanealed steel sheet with good coatability and coating adhesion and method for manufacturing the same
JPH0713286B2 (en) Hot-dip galvanized steel sheet with excellent workability
JPH09310163A (en) High strength galvanized steel sheet excellent in press workability and plating adhesion
JP3386657B2 (en) High strength cold rolled steel sheet
JP2705386B2 (en) Hot-dip galvanizing method for Si-containing steel sheet
JPH06256921A (en) Galvanized steel sheet excellent in arc weldability
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JPH0713284B2 (en) Method for producing hot-dip galvanized steel sheet with excellent workability
KR102352192B1 (en) Galva-annealed steel sheet and the method for manufacturing the same
JPH046258A (en) Galvannealed steel sheet excellent in workability and its production
JP2000169948A (en) Hot dip galvannealed steel sheet and its production
JP3071351B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH09143659A (en) Galvannealed steel sheet excellent in initial white rust resistance
WO1993016210A1 (en) Al-Si-Cr-PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PRODUCTION THEREOF
JPH042759A (en) Production of galvannealed steel sheet and hot-dip galvanizing bath
JP2020105554A (en) Alloyed hot-dip galvanized film
JP2023182581A (en) Hot-dipped steel sheet excellent in corrosion resistance and processability, and method for manufacturing the same
JP2825690B2 (en) Manufacturing method of galvannealed steel sheet with excellent workability