JPH0660331B2 - Blast furnace wall structure - Google Patents

Blast furnace wall structure

Info

Publication number
JPH0660331B2
JPH0660331B2 JP61185680A JP18568086A JPH0660331B2 JP H0660331 B2 JPH0660331 B2 JP H0660331B2 JP 61185680 A JP61185680 A JP 61185680A JP 18568086 A JP18568086 A JP 18568086A JP H0660331 B2 JPH0660331 B2 JP H0660331B2
Authority
JP
Japan
Prior art keywords
expansion
furnace wall
mortar
furnace
wall structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61185680A
Other languages
Japanese (ja)
Other versions
JPS6342311A (en
Inventor
和男 浜井
和輝 青山
善作 阿由葉
勝輝 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61185680A priority Critical patent/JPH0660331B2/en
Publication of JPS6342311A publication Critical patent/JPS6342311A/en
Publication of JPH0660331B2 publication Critical patent/JPH0660331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉の優れた機能を有する炉壁構造に関するも
のである。
TECHNICAL FIELD The present invention relates to a furnace wall structure having an excellent function of a blast furnace.

(従来の技術) 一般に高炉の炉壁は、装入物との接触による摩耗、操業
温度変動による熱衝撃、膨張収縮による目地切れ等の物
理的要因あるいはCOガス、アルカリ蒸気、亜鉛蒸気の侵
入によるカーボンデポジション、アルカリバースティン
グ、亜鉛沈漬等の化学的要因によっても損傷する。
(Prior art) Generally, the blast furnace wall is exposed to physical factors such as wear due to contact with the charge, thermal shock due to operating temperature fluctuations, joint breakage due to expansion and contraction, or the intrusion of CO gas, alkali vapor, and zinc vapor. It can also be damaged by chemical factors such as carbon deposition, alkaline bursting, and zinc immersion.

従来、これらの損傷を抑制するために種々の対策が講じ
られており、例えば化学的損傷、熱衝撃による損傷に対
しては主に炉壁を形成するれんがの材質を選定すること
によって対処しており、近年では高純度アルミナ質れん
が、C-SiCれんが、β-SiCれんが、Si3N4の結合のSiCれ
んがあるいは耐スポール性骨材添加の高アルミナれんが
等が用いられている。
Conventionally, various measures have been taken to suppress these damages.For example, chemical damage and damage due to thermal shock are mainly dealt with by selecting the material of the brick forming the furnace wall. Recently, high-purity alumina bricks, C-SiC bricks, β-SiC bricks, SiC bricks having Si 3 N 4 bonds, or high-alumina bricks with spall-resistant aggregates have been used.

一方炉壁構造の膨張対策に関しては、上下方向の膨張に
対しては上下方向で隣接するれんが間に可縮性の充填材
を介挿したり、上方に空隙を形成することによって、
又、炉径方向の膨張に対しては炉径方向に隣接するれん
が間に介在させたモルタル目地、鉄皮−れんが間に介在
させたスタンプ材、鉄皮等によってそれぞれ膨張を吸収
するようにしているのが一般的である。
On the other hand, with respect to the expansion of the furnace wall structure, for expansion in the vertical direction, a compressible filler is inserted between the bricks adjacent in the vertical direction, or a void is formed above.
Further, with respect to expansion in the furnace radial direction, the expansion is absorbed by mortar joints interposed between the bricks adjacent in the furnace radial direction, the stamp material with the iron skin-brick interposed, and the iron skin. It is common to have

(発明が解決しようとする問題点) 上記従来の一般的な炉壁構造においては、特に炉周方向
の膨張を充分に吸収する構造を有していないため、炉周
方向のれんが相互間で生じた膨張応力は炉径方向にも作
用し、その結果炉径方向に対する膨張収縮応力が過大と
なり、加えて操業温度変動に伴なう膨張収縮の繰返しに
より、れんがはもとよりスタンプ材、モルタル目地に破
壊が生じ易く、れんがが脱落し炉壁ライニング機能を失
い易いという欠点がある。
(Problems to be Solved by the Invention) In the above conventional general furnace wall structure, in particular, since there is no structure that sufficiently absorbs expansion in the furnace circumferential direction, bricks in the furnace circumferential direction are generated between each other. Expansion stress also acts in the radial direction of the furnace, resulting in excessive expansion and contraction stress in the radial direction of the furnace, and in addition to repeated expansion and contraction due to operating temperature fluctuations, not only bricks but also stamp materials and mortar joints are destroyed. However, there is a drawback that the bricks are likely to fall off and the furnace wall lining function is easily lost.

斯る欠点の解消を意図したものとして例えば実公昭51-4
967号公報の考案がある。
As an attempt to eliminate such drawbacks, for example, Jitsuko Sho 51-4
There is a device of 967 publication.

この考案は、炉壁を形成する耐火れんが群の適当な箇所
の耐火れんが相互間に合成樹脂で固めた炭素繊維成形体
を介装することによりれんがの膨張を吸収し併せて炉内
ガスの漏洩を防止するようにしたものであり、前記従来
の一般的な炉壁構造に比して可成り改善されたものとい
える。
This invention absorbs the expansion of bricks by interposing carbon fiber moldings solidified with synthetic resin between the refractory bricks at appropriate places of the refractory bricks forming the furnace wall, and at the same time leaks gas in the furnace. It can be said that it is considerably improved as compared with the conventional general furnace wall structure.

しかし、この考案における炭素繊維成形体は、充分な耐
熱接着強度を有しないため長期の使用に耐えないという
欠点を有している。
However, the carbon fiber molded body in this invention has a drawback that it cannot withstand long-term use because it does not have sufficient heat resistant adhesive strength.

本発明は斯る従来の欠点を解消するためになされたもの
である。
The present invention has been made to solve the above-mentioned conventional drawbacks.

(問題を解決するための手段) 本発明は、炉壁を炉径方向複数列の耐火れんが層で形成
した高炉の炉壁構造であって、炉壁を形成する耐火れん
が群を複数のブロックに区分し、炉周方向の隣接するブ
ロック相互間に可縮性モルタルを介装させた高炉炉壁構
造において、可縮性モルタルとして、加圧応力2〜30
Kg/cm2で10〜70%の可縮率を有し、可縮後の耐火れ
んがとの接着曲げ強度を5Kg/cm2以上に維持するもの、
例えば耐熱性、耐アルカリ性にすぐれ可縮性の良好なAl
2O3-C,SiO2-C,MgO-C等のカーボン結合の耐火性酸化物系
可縮性モルタル、あるいはSiC-C等のカーボン結合の耐
火性非酸化物系可縮性モルタルを用い、厚さ1.0〜10m
mで介装させ、かつ炉径方向の隣接するブロック間の摺
動面にオイルペーパーを介装させたところに特徴を有す
るものであり、特に周方向における膨張を効果的に吸収
して炉壁全体として膨張応力を緩和し、耐火れんが、ス
タンプ材はもとより特に、目地が、耐火れんが膨張時の
圧縮に耐えかつ耐火れんが収縮時においても接着性を充
分に維持し、長期に亘って目地機能を維持し、炉壁ライ
ニング構造を安定的に維持できるようにしたものであ
る。
(Means for Solving the Problem) The present invention is a furnace wall structure of a blast furnace in which a furnace wall is formed of a plurality of rows of refractory bricks in the furnace radial direction, and a group of refractory bricks forming the furnace wall is divided into a plurality of blocks. In a blast furnace wall structure in which a compressible mortar is divided between adjacent blocks in the circumferential direction of the furnace, the compressive stress is 2 to 30 as the compressible mortar.
Those in kg / cm 2 has a compressible rate of 10% to 70%, to maintain the adhesion flexural strength of the refractory bricks after compressible to 5Kg / cm 2 or more,
For example, Al with excellent heat resistance and alkali resistance and good shrinkability
2 O 3 -C, S i O 2 -C, MgO-C, etc. carbon-bonded refractory oxide-based shrinkable mortar, or SiC-C, etc. carbon-bonded refractory non-oxide-based shrinkable mortar With a thickness of 1.0-10 m
It is characterized in that it is interposed by m and oil paper is interposed on the sliding surface between adjacent blocks in the furnace radial direction, and in particular it effectively absorbs the expansion in the circumferential direction and the furnace wall Relieves the expansion stress as a whole, refractory bricks, stamp materials, especially joints, refractory bricks can withstand compression when expanded and the refractory bricks can maintain sufficient adhesiveness even when contracted, and the joint function over a long period of time. This is to maintain the furnace wall lining structure in a stable manner.

以下に本発明を第1図に示す実施例に基づいて詳細に説
明する。
The present invention will be described in detail below based on the embodiment shown in FIG.

第1図は冷却盤使用の大型高炉のシャフト部に本発明の
炉壁構造を採用した例を示すものであり、シャフト部鉄
皮1の炉内側にはスタンプ材2を介して炉径方向に耐火
れんが3,4,5からなる3列の耐火れんが層(イ)(ロ)
(ハ)を配設し、この3列の耐火れんが層(イ),(ロ),(ハ)か
らなるライニング層Aを周方向に複数のブロックB1
B2,……,Bに分割する。そしてこのブロックB1,B2
間に膨張吸収モルタル6を介装する。
FIG. 1 shows an example in which the furnace wall structure of the present invention is adopted in the shaft portion of a large blast furnace using a cooling plate, and the inside of the shaft iron shell 1 is stamped 2 in the furnace radial direction. 3 rows of refractory bricks consisting of refractory bricks 3, 4 and 5 (a) (b)
(C) is arranged, and the lining layer A consisting of these three rows of refractory brick layers (a), (b), and (c) is circumferentially divided into a plurality of blocks B 1 ,
It is divided into B 2 , ..., B n . And this block B 1 , B 2
The expansion absorption mortar 6 is interposed between them.

この膨張吸収モルタル6は第1表に示すようにアルミナ
粉末80%天然鱗状黒鉛粒20%の割合で配合したもの
をベースとし、これに多孔質繊維、タール・ピッチ粉
末、を混合し更に硬化材としてレジン粒を又溶剤として
水、アルコールを添加して混練してなるものである。
As shown in Table 1, the expansion-absorbing mortar 6 is based on a mixture of 80% alumina powder and 20% natural scaly graphite particles, mixed with porous fibers and tar / pitch powder, and further hardened. The resin particles are used as a solvent, and water and alcohol are added and kneaded.

そしてこれをコテ塗りにより形成したものである。And this is formed by ironing.

周知のように耐火れんがの膨張量は温度によって異な
り、高炉シャフト部の炉壁においては温度の高い炉内側
で大きく、温度の低い鉄皮側で小さくなる分布を持って
いる。
As is well known, the expansion amount of refractory bricks varies depending on the temperature, and in the furnace wall of the blast furnace shaft portion, there is a distribution that it is larger inside the furnace where the temperature is higher and smaller on the iron shell side where the temperature is lower.

したがって膨張代は膨張量の分布に応じて設定される例
もあるが一般には耐火れんが内平均温度での膨張量をベ
ースとして設定する例が多い。
Therefore, the expansion allowance may be set according to the distribution of the expansion amount, but in general, there are many cases where the expansion amount is set based on the expansion amount at the inner temperature of the refractory brick.

本実施例においても耐火れんがの平均膨張量をベースと
して膨張代としての膨張吸収モルタルの厚みを設定し
た。
Also in this example, the thickness of the expansion absorption mortar as the expansion allowance was set based on the average expansion amount of the refractory brick.

この膨張代としての膨張吸収モルタルの設定厚みは第2
図に示すように耐火れんが層の平均膨張量をL0とし、こ
の膨張量L0を吸収するため例えば110kg/cm2の圧縮応
力で50%の可縮率を有する膨張吸収モルタルを使用す
る時2L0にすれば良いことになる。
The set thickness of the expansion absorption mortar as the expansion allowance is the second
As shown in the figure, when the average expansion amount of the refractory brick layer is set to L 0, and in order to absorb this expansion amount L 0 , for example, when an expansion absorption mortar having a compressibility of 50% with a compressive stress of 110 kg / cm 2 is used It will be good to set it to 2L 0 .

本実施例における高炉のシャフト部の炉壁を形成する3
列からなる耐火れんが層の周方向の平均膨張量L0は約2
50mmであり、この内の50mmは各耐火れんが間に介在
させた通常モルタル、スタンプ材の可縮、鉄皮の膨張等
によって吸収されるので、残り200mmを膨張吸収モル
タルで吸収するようにした。
Forming the furnace wall of the shaft part of the blast furnace in this embodiment 3
The average expansion amount L 0 of the refractory brick layer consisting of rows in the circumferential direction is about 2
It is 50 mm, and 50 mm of this is absorbed by the normal mortar interposed between the refractory bricks, the shrinkage of the stamp material, the expansion of the iron shell, etc., so the remaining 200 mm is absorbed by the expansion absorption mortar.

ここで用いる膨張吸収モルタルは第3図に示すように1
0kg/cm2の圧縮応力で50%の可縮率を有するものであ
るので初期(築造時)の設定総厚みは400mmとした。
The expansion absorption mortar used here is 1 as shown in FIG.
Since it has a compressibility of 50% with a compressive stress of 0 kg / cm 2, the initial set total thickness (at the time of building) was 400 mm.

本実施例では耐火れんが層を形成する耐火れんが群を周
方向に略均等割で100ブロックに分割し、築造時ブロ
ック間に4mm厚の膨張吸収モルタル6を形成介在させ、
膨張吸収後2mmになるようにした。
In this embodiment, a group of refractory bricks forming a refractory brick layer is divided into 100 blocks in the circumferential direction in a substantially even manner, and an expansion absorption mortar 6 having a thickness of 4 mm is interposed between the blocks during construction.
It was set to 2 mm after expansion and absorption.

このブロック間の対向面は各耐火れんがの側面を単位と
する凹凸面からなっているため、この膨張吸収モルタル
は対向する耐火れんが間に夫々独立して不連続に介装さ
れている。
Since the facing surfaces between the blocks are uneven surfaces with the side surface of each refractory brick as a unit, the expansion absorbing mortar is independently and discontinuously interposed between the facing refractory bricks.

この凹凸によって形成された対向するブロック間の摺動
面には耐火れんがの膨張収縮による摺動を容易にするた
め、スライド目地として通常のモルタルを塗布したオイ
ルペーパー9が介装されている。
In order to facilitate sliding due to expansion and contraction of the refractory brick, an oil paper 9 to which ordinary mortar is applied is interposed as sliding joints on the sliding surfaces between the opposing blocks formed by the unevenness.

なお7,8は通常モルタルである。Incidentally, 7 and 8 are usually mortars.

このように本発明の高炉炉壁構造においては耐火れんが
層は炉周方向に膨張吸収モルタルを介して複数ブロック
に分割されており、各ブロック単位で膨張を吸収するよ
うにした。
As described above, in the blast furnace wall structure of the present invention, the refractory brick layer is divided into a plurality of blocks in the furnace circumferential direction through the expansion absorption mortar, and the expansion is absorbed in each block unit.

このようにして構成した炉壁構造を採用した高炉は、火
入れ5年後の現在も安定構造を維持し、裏風発生による
鉄皮赤熱事故も発生することなく順調に稼動している。
The blast furnace adopting the thus constructed furnace wall structure maintains a stable structure even after 5 years from the start of firing and is operating smoothly without the occurrence of a reddish skin accident due to back wind.

なお本実施例では耐火れんが群を炉周方向にのみ分割し
たが炉高方向にも併せて分割しても良い。
In this embodiment, the refractory brick group is divided only in the furnace circumferential direction, but it may be divided in the furnace height direction as well.

又、本発明で用いるカーボン結合の酸化物、非酸化物と
しては例えば本実施例のAl2O3-Cの他にSiO2-C,MgO-C、
等の酸化物、あるいはSiC-C,Si3N4-C等の非酸化物であ
り、これらのカーボン結合の酸化物、非酸化物は天然に
も産するものもあるが、Al2O3-Cの場合はアルミナ粉と
カーボン粉を混合しこれを高温で焼成して得るのが一般
的である。
The carbon-bonded oxides and non-oxides used in the present invention include, for example, Al 2 O 3 -C in the present embodiment, as well as SiO 2 -C, MgO-C,
Oxides etc., or a SiC-C, Si 3 N 4 -C non-oxide such as an oxide of these carbon bond, although non-oxide are also those produced in naturally, Al 2 O 3 In the case of -C, it is generally obtained by mixing alumina powder and carbon powder and firing this at a high temperature.

(発明の効果) 本発明の高炉炉壁構造では炉周方向の耐火れんが膨張は
各ブロック単位で全て膨張吸収モルタルで吸収され、そ
の過程で生成するカーボンボンドによってブロック相互
が強固に接着されるので背面側、即ち、炉径方向におい
ては特に膨張吸収代を設ける必要はなく、健全なバック
ライニングを施すことができる。
(Effect of the Invention) In the blast furnace wall structure of the present invention, the expansion of the refractory bricks in the furnace circumferential direction is completely absorbed by the expansion absorption mortar in each block unit, and the carbon bonds generated in the process firmly bond the blocks to each other. On the back side, that is, in the furnace radial direction, it is not necessary to provide an expansion and absorption allowance, and a sound back lining can be provided.

又膨張吸収後の膨張吸収モルタル目地部にはカーボンボ
ンドが生成しているため、通常モルタルと同等の耐熱接
着強度を有するから炉壁としての機能は従来構造に比
し、低下するものではない。
Further, since the carbon bond is formed in the expansion-absorbing mortar joint after the expansion absorption, it has the same heat-resistant adhesive strength as ordinary mortar, so that the function as the furnace wall does not deteriorate as compared with the conventional structure.

一方、耐火れんがはブロック単位で通常モルタルで一体
化されており膨張収縮の挙動はブロック単位になり、各
ブロック間に介装された膨張吸収モルタルによって、全
て吸収するようにしているため各耐火れんが間の通常モ
ルタルによる目地の欠損は殆んど発生しない等々すぐれ
た効果を有している。
On the other hand, refractory bricks are usually united with mortar in block units, and the behavior of expansion and contraction is in block units.Because the expansion absorption mortar interposed between each block absorbs all, each refractory brick It has an excellent effect such that joint defects due to ordinary mortar during the period hardly occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の高炉炉壁構造の一実施例を示す一部切
欠立体説明図、第2図は耐火れんがの膨張量と膨張吸収
モルタルの可縮量との関係を示すグラフ、第3図は、本
発明の実施例における膨張吸収モルタルの可縮性を示す
グラフである。 1:鉄皮、2:スタンプ材、 3,4,5:耐火れんが、6:膨張吸収モルタル、 7,8:通常モルタル、9:オイルペーパー。
FIG. 1 is a partially cutaway three-dimensional explanatory view showing one embodiment of the blast furnace wall structure of the present invention, FIG. 2 is a graph showing the relationship between the expansion amount of refractory bricks and the contraction amount of expansion absorption mortar, and FIG. The figure is a graph showing the contractibility of the expansion-absorption mortar in the example of the present invention. 1: Iron skin, 2: Stamp material, 3, 4, 5: Refractory brick, 6: Expansion absorption mortar, 7, 8: Normal mortar, 9: Oil paper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 葛西 勝輝 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式會社八幡製鐵所内 (56)参考文献 実開 昭54−143306(JP,U) 実開 昭47−37702(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsushi Kasai 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Fukuoka Pref. , U) Actual development Sho 47-37702 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炉壁を炉径方向複数列の耐火れんが層で形
成した高炉の炉壁構造であって、炉壁を形成する耐火れ
んが群を複数のブロックに区分し、炉周方向の隣接する
ブロック間に可縮性モルタルを介装させた高炉炉壁構造
において、可縮性モルタルとして、カーボン結合の耐火
性酸化物系可縮性モルタル、またはカーボン結合の耐火
性非酸化物系可縮性モルタルを用い、かつ炉径方向の隣
接するブロック間の摺動面にオイルペーパーを介装させ
たことを特徴とする高炉炉壁構造。
1. A furnace wall structure of a blast furnace in which a furnace wall is formed of a plurality of rows of refractory bricks in a radial direction of the furnace, wherein a group of refractory bricks forming the furnace wall is divided into a plurality of blocks and adjacent in the furnace circumferential direction. In a blast furnace wall structure in which a compressible mortar is interposed between the blocks, as the compressible mortar, carbon-bonded refractory oxide-based compressible mortar or carbon-bonded refractory non-oxide-based compressible A blast furnace wall structure characterized by using a heat-resistant mortar and interposing oil paper on the sliding surface between adjacent blocks in the furnace radial direction.
JP61185680A 1986-08-07 1986-08-07 Blast furnace wall structure Expired - Lifetime JPH0660331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185680A JPH0660331B2 (en) 1986-08-07 1986-08-07 Blast furnace wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185680A JPH0660331B2 (en) 1986-08-07 1986-08-07 Blast furnace wall structure

Publications (2)

Publication Number Publication Date
JPS6342311A JPS6342311A (en) 1988-02-23
JPH0660331B2 true JPH0660331B2 (en) 1994-08-10

Family

ID=16174989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185680A Expired - Lifetime JPH0660331B2 (en) 1986-08-07 1986-08-07 Blast furnace wall structure

Country Status (1)

Country Link
JP (1) JPH0660331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714662B2 (en) * 2005-10-27 2011-06-29 新日本製鐵株式会社 How to use irregular refractories

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514967Y2 (en) * 1971-05-17 1976-02-12
JPS54143306U (en) * 1978-03-28 1979-10-04

Also Published As

Publication number Publication date
JPS6342311A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
JP2015222169A (en) Composite refractory for blast furnace lining
US1439410A (en) Refractory material and furnace wall built thereof
US3616108A (en) Refractory construction units with high-temperature bonding joint fillers and method of making said units
JPH0660331B2 (en) Blast furnace wall structure
US3606722A (en) Refractory wall
JPH09295875A (en) Shrinkable ramming material for blast furnace and lining structure using the same
GB1126076A (en) Blast furnaces provided with refractory linings
JP2698010B2 (en) Refractory sleeve for converter tap hole
JPH0881256A (en) Brick containing compressed and pulverized expanded graphite
GB2104837A (en) Prefabricated insulating fibre composite block for furnace lining
US4446082A (en) Method of veneering brick linings of furnaces and other high temperature enclosures
JPH0580433B2 (en)
JPH1179871A (en) Lining structure of incinerator
JP3000128B2 (en) Furnace wall lining structure
JPS636515B2 (en)
JPH10206031A (en) Heat insulating lining structure for ladle laying part
JPH0158157B2 (en)
JPS61238909A (en) Lance for treating molten metal
JP3285492B2 (en) Repair method of hot transfer of coke oven side wall
JPH07324876A (en) Inside lining brick and inside lining construction of rotary kiln lined with bricks
JPH0217869Y2 (en)
JPS6229461Y2 (en)
JPS5919905B2 (en) Fireproof insulation board
JPS6021379Y2 (en) Converter bottom lining structure
SU1583391A1 (en) Refractory composition