JPH0659770U - Multi-source refrigerator - Google Patents

Multi-source refrigerator

Info

Publication number
JPH0659770U
JPH0659770U JP432093U JP432093U JPH0659770U JP H0659770 U JPH0659770 U JP H0659770U JP 432093 U JP432093 U JP 432093U JP 432093 U JP432093 U JP 432093U JP H0659770 U JPH0659770 U JP H0659770U
Authority
JP
Japan
Prior art keywords
cooler
hot gas
compressor
source
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP432093U
Other languages
Japanese (ja)
Other versions
JP2513165Y2 (en
Inventor
公英 最勝寺
英人 三浦
大三郎 冨士鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP1993004320U priority Critical patent/JP2513165Y2/en
Publication of JPH0659770U publication Critical patent/JPH0659770U/en
Application granted granted Critical
Publication of JP2513165Y2 publication Critical patent/JP2513165Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

(57)【要約】 【目的】効率よく短時間でデフロストを行なえるように
する。 【構成】高元圧縮機1の吐出側を中途部に電磁弁13を
設けたホットガス供給管14によって低元側の冷却器8
のドレンパン昇温コイル15a、この冷却器8の加熱コ
イル16に接続し、加熱コイル16の出口をデフロスト
熱交換器18を介して高元圧縮機1の吸入側に接続し、
低元圧縮機5の吐出側を中途部に電磁弁19を設けたホ
ットガス供給管20によって冷却器8の冷却コイル8a
入口に接続し、低元および高元側の圧縮機1、5から吐
出されるホットガスにより冷却器8の除霜を行なえるよ
うにした。
(57) [Summary] [Purpose] To be able to perform defrosting efficiently and in a short time. [Structure] A cooler 8 on the low side is provided by a hot gas supply pipe 14 provided with a solenoid valve 13 on the discharge side of the high side compressor 1.
The drain pan temperature raising coil 15a of No. 1 is connected to the heating coil 16 of the cooler 8, and the outlet of the heating coil 16 is connected to the suction side of the high-end compressor 1 via the defrost heat exchanger 18.
The cooling coil 8a of the cooler 8 is provided by the hot gas supply pipe 20 provided with the solenoid valve 19 on the discharge side of the low-pressure compressor 5.
It was connected to the inlet so that the cooler 8 can be defrosted by the hot gas discharged from the compressors 1 and 5 on the low side and the high side.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、複数台の冷凍機を多段に接続した多元冷凍装置に関し、特に効率的 なデフロストを行なえるように改善したものに関する。 The present invention relates to a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages, and more particularly, to a multi-stage refrigeration system improved so as to perform efficient defrosting.

【0002】[0002]

【従来の技術】[Prior art]

最近、マグロなどの鮮魚の冷凍保存温度は、−60〜−70℃という低い温度 になってきており、鮮魚の保管庫をこのように低い温度に冷却する場合多元冷凍 装置が用いられる。 この多元冷凍装置では、高元側冷凍機の凝縮器を冷却水によって冷却するとと もに、この高元側の冷却コイルを低元側冷凍機の圧縮機から吐出される冷媒ガス を凝縮する凝縮器に接続し、複数台の冷凍機を熱交換器によって連結することに より、低元側の冷却器によって冷凍庫などの熱負荷を低い温度に冷却できるよう になっている。 Recently, the freezing storage temperature of fresh fish such as tuna has been as low as -60 to -70 ° C, and a multi-source freezing device is used to cool the storage of fresh fish to such a low temperature. In this multi-source refrigeration system, the condenser of the high-side refrigerator is cooled by cooling water, and at the same time, the high-side cooling coil is condensed to condense the refrigerant gas discharged from the compressor of the low-side refrigerator. By connecting multiple refrigerators to a refrigerator and connecting them with a heat exchanger, it is possible to cool the heat load of the freezer etc. to a low temperature by the cooler on the low side.

【0003】 ところで、このような多元冷凍装置では冷却器の除霜を電気ヒータや散水デフ ロストで行なうのが主流であり、ホットガスデフロストを用いて行なう場合でも 、冷却に寄与している低元側の冷媒の熱源によってのみ行なわれていた。By the way, in such a multi-source refrigeration system, defrosting of the cooler is mainly performed by an electric heater or a water spray defrost, and even when hot gas defrost is used, the low temperature that contributes to the cooling is reduced. Side heat source of the refrigerant only.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、このように低元側の冷媒(フロン13、フロン23またはその他の 冷媒)の熱源によってのみデフロストを行なうと、低元側の冷媒の性質上、冷媒 の顕熱部分のみしか利用できないため、特に大型の冷却器を使用する装置では、 デフロスト不良やデフロスト時間が多くかかるなどの問題が生じる。 By the way, if defrosting is performed only by the heat source of the low-side refrigerant (CFC 13, CFC 23, or other refrigerant), only the sensible heat of the refrigerant can be used due to the nature of the low-side refrigerant. Particularly in a device using a large-sized cooler, problems such as defrosting failure and long defrosting time occur.

【0005】 これは、つぎのような理由によるものである。図3に、低元側冷凍機と高元側 冷凍機を用いた二元冷凍方式におけるモリエル線図を示すように、デフロストの 熱源として利用できる低元側の冷媒状態の部分(一点鎖線で示す)は、線図上A 〜B部分であり、冷媒の全凝縮熱量のうち顕熱部のみであることが分かる。なぜ なら、たとえばフロン23(R−23)を低元側冷媒とした場合の凝縮温度は− 26℃であり、霜の融解温度の0℃より低いため、図中のA点以下は利用できな い。This is because of the following reasons. As shown in FIG. 3, a Mollier diagram in a dual refrigeration system using a low-source side refrigerator and a high-source side refrigerator, the portion of the refrigerant state on the low source side that can be used as a heat source for defrost (shown by a chain line) ) Are portions A to B on the diagram, and it can be seen that only the sensible heat portion of the total heat of condensation of the refrigerant is present. The reason is that, for example, when Freon 23 (R-23) is used as the low temperature side refrigerant, the condensing temperature is −26 ° C., which is lower than the melting temperature of frost, which is 0 ° C., so the points below A in the figure cannot be used. Yes.

【0006】 また、A点(+10℃)までの冷媒の顕熱を利用しようと設計しても、霜の付 き具合などの負荷変動の要因でA点がF点側にずれる場合があり、温度がマイナ ス側となることで、デフロスト不良を招きやすくなる。Further, even if a design is made to utilize the sensible heat of the refrigerant up to the point A (+ 10 ° C.), the point A may shift to the point F side due to load fluctuations such as frosting. When the temperature is on the negative side, defrost defects are likely to occur.

【0007】 また、低元側冷媒凝縮熱量の全量I1(61Kcal/kg)に対して18%の凝縮 熱量I2(11Kcal/kg)しか利用できないため、デフロスト時間が長くかかる ようになる。Further, since only 18% of the condensation heat amount I2 (11 Kcal / kg) is available for the total amount I1 (61 Kcal / kg) of the low side refrigerant condensation heat amount, the defrost time becomes long.

【0008】 本考案は、このような従来の技術が有する課題を解決するために提案されたも のであり、効率よく短時間でデフロストを行なえるようにした多元冷凍装置を提 供することを目的とする。The present invention has been proposed in order to solve the problems of the prior art, and an object thereof is to provide a multi-source refrigeration system capable of performing defrosting efficiently and in a short time. To do.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

この目的を達成するために本考案は、複数台の冷凍機を凝縮器をなすカスケー ドコンデンサで多段に連結した多元冷凍装置において、高元側の圧縮機の吐出側 を中途部に電磁弁を設けたホットガス供給管によって最低元側の冷却器に接続し 、高元側の圧縮機から吐出されるホットガスによりこの冷却器の除霜を行なえる ように構成してある。 In order to achieve this object, the present invention is a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by cascading condensers that form condensers, and a solenoid valve is provided in the middle of the discharge side of the high-side compressor. The hot gas supply pipe provided is connected to the cooler on the lowest source side, and the hot gas discharged from the compressor on the higher source side is used to defrost this cooler.

【0010】 また、本考案では高元側の圧縮機の吐出側を中途部に電磁弁を設けたホットガ ス供給管によって最低元側の冷却器のドレンパン昇温コイル、この冷却器の加熱 コイルに接続し、この加熱コイルの出口をデフロスト熱交換器を介して高元側の 圧縮機の吸入側に接続し、最低元側の圧縮機の吐出側を中途部に電磁弁を設けた ホットガス供給管によって冷却器の冷却コイル入口に接続し、最低元および高元 側の圧縮機から吐出されるホットガスにより冷却器の除霜を行なえるように構成 してある。Further, according to the present invention, the hot gas supply pipe provided with a solenoid valve in the middle of the discharge side of the compressor on the high side is used as a drain pan heating coil of the cooler on the lowest side and a heating coil of this cooler. Connect the outlet of this heating coil through the defrost heat exchanger to the suction side of the compressor on the high side, and the discharge side of the compressor on the lowest side to provide hot gas supply with a solenoid valve in the middle. It is connected to the cooling coil inlet of the cooler by a pipe, and is configured so that defrosting of the cooler can be performed by hot gas discharged from the compressors on the lower and higher sources.

【0011】[0011]

【作用】[Action]

高元側冷媒の熱源をデフロストに利用する場合、図3のモリエル線図に示され るようにa点からd点までの凝縮熱量のすべてを利用することができる。たとえ ば冷媒にフロン502(R−502)を用いる場合、33Kcal/kgの冷媒凝縮熱 量I3を利用できるようになる。 When the heat source of the high-side refrigerant is used for defrosting, as shown in the Mollier diagram of FIG. 3, all the heat of condensation from point a to point d can be used. For example, when Freon 502 (R-502) is used as the refrigerant, the refrigerant condensation heat amount I3 of 33 Kcal / kg can be used.

【0012】 低元側と高元側の冷媒循環量の比率は、その運転状態やカスケードコンデンサ の大きさなどで変化するが、図3の状態では冷媒循環量の比率は概ねつぎのよう になる。 高元側:低元側=265:100 これから低元側の冷媒熱量のみを利用する場合と比較すると、デフロストに高 元側冷媒の熱量を利用した場合約7.9倍、低元側冷媒の熱量も併用すると約8 .9倍の熱量が得られるようになる。Although the ratio of the refrigerant circulation amount on the low-source side to the high-source side varies depending on the operating state and the size of the cascade condenser, in the state of FIG. 3, the ratio of the refrigerant circulation amount is approximately as follows. . High source side: Low source side = 265: 100 Compared with the case where only the low heat source side refrigerant heat quantity is used, when the high heat source side heat quantity is used for defrost, it is about 7.9 times, Approximately 8. 9 times the amount of heat can be obtained.

【0013】[0013]

【実施例】【Example】

以下、本考案による多元冷凍装置の具体的な実施例を図面に基づき詳細に説明 する。 図1の系統図に、二元冷凍方式として構成された多元冷凍装置の一実施例を示 す。この図で、高元側の高元圧縮機1から延びる吐出管は、水冷凝縮器2に接続 され、この凝縮器2の出口が膨脹弁3を介してカスケードコンデンサ4の蒸発コ イル4aに接続される。この蒸発コイル4aの出口は、吸入管によって高元圧縮 機1に接続される。 Hereinafter, specific embodiments of the multi-source refrigeration system according to the present invention will be described in detail with reference to the drawings. An example of a multi-source refrigeration system configured as a dual refrigeration system is shown in the system diagram of FIG. In this figure, the discharge pipe extending from the high-pressure side compressor 1 is connected to a water-cooled condenser 2, and the outlet of this condenser 2 is connected to an evaporation coil 4 a of a cascade condenser 4 via an expansion valve 3. To be done. The outlet of the evaporation coil 4a is connected to the high-pressure compressor 1 by a suction pipe.

【0014】 また、低元側の低元圧縮機5の吐出管は、油分離器6を介してカスケードコン デンサ4に接続され、このコンデンサ4の出口が膨脹弁7を介して冷却器8の冷 却コイル8aに接続される。この冷却コイル8aの出口は、液分離器9、吸入圧 力調整弁10を介して吸入管により低元圧縮機5に接続される。なお、11、1 2は圧力保護容器である。Further, the discharge pipe of the low side compressor 5 on the low side is connected to a cascade condenser 4 via an oil separator 6, and the outlet of this condenser 4 is connected to a cooler 8 via an expansion valve 7. It is connected to the cooling coil 8a. The outlet of the cooling coil 8a is connected to the low-grade compressor 5 by a suction pipe via a liquid separator 9 and a suction pressure adjusting valve 10. In addition, 11 and 12 are pressure protection containers.

【0015】 つぎに、デフロスト用の接続系統を説明する。高元圧縮機1の吐出口は、中途 部に高元側ホットガス供給電磁弁13を設けた高元側ホットガス供給管14によ って、冷却器8のドレンパン15内に設置されたドレンパン昇温コイル15aに 接続され、このコイル15aの出口が冷却コイル8aを包むように冷却器8内に 設置された加熱コイル16に接続される。この加熱コイル16の出口は、冷媒流 量調整弁17を介してデフロスト空気熱交換器18に接続される。この熱交換器 18の出口は、高元圧縮機1の吸入管に接続される。熱交換器18を空気式では ない他の方式により構成してもよい。Next, a connection system for defrost will be described. The discharge port of the high-source compressor 1 is a drain pan installed in the drain pan 15 of the cooler 8 by a high-source hot gas supply pipe 14 provided with a high-source hot gas supply solenoid valve 13 in the middle thereof. It is connected to the heating coil 15a, and the outlet of this coil 15a is connected to the heating coil 16 installed in the cooler 8 so as to surround the cooling coil 8a. The outlet of the heating coil 16 is connected to a defrost air heat exchanger 18 via a refrigerant flow control valve 17. The outlet of the heat exchanger 18 is connected to the suction pipe of the high-pressure compressor 1. The heat exchanger 18 may be configured by another system other than the pneumatic system.

【0016】 また、低元圧縮機5の吐出側の油分離器6の出口は、中途部に低元側ホットガ ス供給電磁弁19を設けた低元側ホットガス供給管20によって冷却コイル8a の入口に接続される。Further, the outlet of the oil separator 6 on the discharge side of the low-source compressor 5 has a low-source hot gas supply pipe 20 provided with a low-source hot gas supply solenoid valve 19 in the middle of the cooling coil 8a. Connected to the entrance.

【0017】 このように構成される多元冷凍装置U1では、冷凍運転時に高元圧縮機1から のガス冷媒が凝縮器2で冷却水によって凝縮され、この凝縮器2を出た液冷媒が 膨脹弁3を介してカスケードコンデンサ4のコイル4aに送られることで、この コイル4a内で蒸発する。この蒸発作用により低元圧縮機5からのガス冷媒が凝 縮され、液化した冷媒が膨脹弁7を介して冷却コイル8aに送られることで、冷 却器8により冷凍倉庫Nなどの熱負荷の冷却が行なわれる。In the multi-source refrigerating apparatus U1 configured as described above, the gas refrigerant from the high-pressure compressor 1 is condensed by the cooling water in the condenser 2 during the refrigerating operation, and the liquid refrigerant discharged from the condenser 2 is expanded by the expansion valve. It is sent to the coil 4a of the cascade condenser 4 via 3 to be evaporated in the coil 4a. By this evaporation action, the gas refrigerant from the low-pressure compressor 5 is condensed, and the liquefied refrigerant is sent to the cooling coil 8a through the expansion valve 7, so that the refrigerator 8 can reduce the heat load of the freezer warehouse N or the like. Cooling is performed.

【0018】 一方、デフロスト時は冷媒の流れを矢印で示すように高元圧縮機1を出たホッ トガス冷媒が、電磁弁13とホットガス供給管14を通ってドレンパン昇温コイ ル15aに入りドレンパン15を暖めたあと、加熱コイル16に送られる。これ により、通常これらの部分が10℃から15℃まで昇温されて霜取りが行なわれ る。このデフロスト時に凝縮した冷媒液は、加熱コイル16を出たあとに冷媒流 量調整弁17によって減圧され、デフロスト空気熱交換器18に供給される。こ の熱交換器18で蒸発しガス化した冷媒は、吸入管によって高元圧縮機1に戻さ れる。On the other hand, at the time of defrost, the hot gas refrigerant exiting the high-pressure compressor 1 enters the drain pan heating coil 15a through the solenoid valve 13 and the hot gas supply pipe 14 as shown by the arrow of the refrigerant flow. After warming the drain pan 15, it is sent to the heating coil 16. As a result, these parts are usually heated from 10 ° C to 15 ° C and defrosted. The refrigerant liquid condensed at the time of defrosting is decompressed by the refrigerant flow rate adjusting valve 17 after leaving the heating coil 16, and is supplied to the defrosting air heat exchanger 18. The refrigerant evaporated and gasified in the heat exchanger 18 is returned to the high-pressure compressor 1 by the suction pipe.

【0019】 また、低元圧縮機5を出たホットガス冷媒は、電磁弁19とホットガス供給管 20を通って冷却コイル8aに送られる。これにより、この冷却コイル8a部分 が約10℃程度まで暖められて霜取りが行なわれる。冷却コイル8aを出た冷媒 は液分離器9を介して低元圧縮機5に戻される。The hot gas refrigerant leaving the low-pressure compressor 5 is sent to the cooling coil 8 a through the solenoid valve 19 and the hot gas supply pipe 20. As a result, the cooling coil 8a portion is warmed up to about 10 ° C. and defrosting is performed. The refrigerant discharged from the cooling coil 8a is returned to the low-grade compressor 5 via the liquid separator 9.

【0020】 ここで、1回のデフロストサイクルに15分程度の時間が割り振られていた場 合、前半の約10分間では高元圧縮機1からのホットガス冷媒を冷却器8に送っ て除霜を行ない、後半の約5分間では低元圧縮機5および高元圧縮機1からのホ ットガス冷媒をともに冷却器8に送って除霜を行なうことにより、冷却器8のデ フロストを短時間で効率よく行なうことができる。Here, when about 15 minutes are allotted to one defrost cycle, the hot gas refrigerant from the high-pressure compressor 1 is sent to the cooler 8 to defrost for about 10 minutes in the first half. In the latter half of about 5 minutes, the hot gas refrigerant from the low-pressure compressor 5 and the high-pressure compressor 1 are both sent to the cooler 8 to perform defrosting, thereby defrosting the cooler 8 in a short time. It can be done efficiently.

【0021】 つぎに、図2に示す他の実施例を説明する。この実施例では、高元圧縮機1か らのホットガスだけで冷却器8の除霜を行なう構成となっており、低元圧縮機5 と冷却コイル8aとを接続するホットガス供給管20が省かれている。Next, another embodiment shown in FIG. 2 will be described. In this embodiment, the cooler 8 is defrosted only by the hot gas from the high-source compressor 1, and the hot gas supply pipe 20 connecting the low-source compressor 5 and the cooling coil 8a is provided. It is omitted.

【0022】 なお、本考案は二元冷凍装置に限定されず、低元冷凍機、中元冷凍機および高 元冷凍機から構成される三元冷凍装置にも適用できる。It should be noted that the present invention is not limited to the dual refrigeration system, and can be applied to a three-way refrigeration system including a low-grade refrigerator, a medium-grade refrigerator, and a high-grade refrigerator.

【0023】[0023]

【考案の効果】[Effect of device]

以上説明したように本考案によれば、デフロストに凝縮温度が高温(たとえば +40℃)である高元側冷媒の熱源を利用できるため、デフロスト不良が起こら ず、良好に冷却器の霜取りを行なえる。 また、高元側冷媒の熱量を利用し、さらに低元側冷媒の凝縮熱量のうち顕熱部 分を併用すると、従来に比べて大きな熱量を確保することができ、大幅にデフロ スト時間を短縮することができる。 As described above, according to the present invention, since the heat source of the high-side refrigerant having a high condensation temperature (for example, + 40 ° C) can be used for the defrost, the defrost failure does not occur and the defroster of the cooler can be favorably performed. . In addition, by utilizing the heat quantity of the high-side refrigerant and also using the sensible heat part of the condensation heat quantity of the low-side refrigerant, a larger heat quantity can be secured compared to the conventional method, and the defrost time can be greatly reduced. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による多元冷凍装置の一実施例を示す系
統図。
FIG. 1 is a system diagram showing an embodiment of a multi-source refrigeration system according to the present invention.

【図2】他の実施例の多元冷凍装置を示す系統図。FIG. 2 is a system diagram showing a multi-source refrigeration system of another embodiment.

【図3】二元冷凍方式における冷媒状態を示すモリエル
線図。
FIG. 3 is a Mollier diagram showing a refrigerant state in the dual refrigeration system.

【符号の説明】[Explanation of symbols]

1 高元圧縮機 2 水冷凝縮器 3、7 膨脹弁 4 カスケードコンデンサ 4a 蒸発コイル 5 低元圧縮機 6 油分離器 8 冷却器 8a 冷却コイル 9 液分離器 10 吸入圧調整弁 11、12 圧力保護容器 13 高元側ホットガス供給用電磁弁 14 高元側ホットガス供給管 15 ドレンパン 15a ドレンパン昇温コイル 16 加熱コイル 17 冷媒流量調整弁 18 デフロスト空気熱交換器 19 低元側ホットガス供給用電磁弁 20 低元側ホットガス供給管 1 High-source compressor 2 Water-cooled condenser 3, 7 Expansion valve 4 Cascade condenser 4a Evaporation coil 5 Low-source compressor 6 Oil separator 8 Cooler 8a Cooling coil 9 Liquid separator 10 Suction pressure control valve 11, 12 Pressure protection container 13 High-source hot gas supply solenoid valve 14 High-source hot gas supply pipe 15 Drain pan 15a Drain pan temperature-rising coil 16 Heating coil 17 Refrigerant flow rate control valve 18 Defrost air heat exchanger 19 Low-source hot gas supply solenoid valve 20 Low source hot gas supply pipe

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】複数台の冷凍機を凝縮器をなすカスケード
コンデンサで多段に連結した多元冷凍装置において、高
元側の圧縮機の吐出側を中途部に電磁弁を設けたホット
ガス供給管によって最低元側の冷却器に接続し、高元側
の圧縮機から吐出されるホットガスによりこの冷却器の
除霜を行なえるようにしたことを特徴とする多元冷凍装
置。
1. In a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser, a hot gas supply pipe having a solenoid valve is provided midway on the discharge side of a compressor on the high side. A multi-source refrigeration system characterized in that it is connected to a cooler on the lowest source side, and hot gas discharged from a compressor on the higher source side can perform defrosting on this cooler.
【請求項2】複数台の冷凍機を凝縮器をなすカスケード
コンデンサで多段に連結した多元冷凍装置において、高
元側の圧縮機の吐出側を中途部に電磁弁を設けたホット
ガス供給管によって最低元側の冷却器のドレンパン昇温
コイル、この冷却器の加熱コイルに接続し、この加熱コ
イルの出口をデフロスト熱交換器を介して高元側の圧縮
機の吸入側に接続し、最低元の圧縮機の吐出側を中途部
に電磁弁を設けたホットガス供給管によって冷却器の冷
却コイル入口に接続し、最低元および高元側の圧縮機か
ら吐出されるホットガスにより冷却器の除霜を行なえる
ようにしたことを特徴とする多元冷凍装置。
2. In a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser, a hot gas supply pipe provided with a solenoid valve in the middle of the discharge side of the high-side compressor. Connect the drain pan temperature raising coil of the cooler on the lowest side to the heating coil of this cooler, and connect the outlet of this heating coil to the suction side of the compressor on the higher side via the defrost heat exchanger, The discharge side of the compressor is connected to the cooling coil inlet of the cooler by a hot gas supply pipe equipped with a solenoid valve in the middle, and the cooler is removed by the hot gas discharged from the compressors on the lowest side and the high side. A multi-source refrigeration system characterized by allowing frosting.
JP1993004320U 1993-01-20 1993-01-20 Multi-source refrigerator Expired - Lifetime JP2513165Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993004320U JP2513165Y2 (en) 1993-01-20 1993-01-20 Multi-source refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993004320U JP2513165Y2 (en) 1993-01-20 1993-01-20 Multi-source refrigerator

Publications (2)

Publication Number Publication Date
JPH0659770U true JPH0659770U (en) 1994-08-19
JP2513165Y2 JP2513165Y2 (en) 1996-10-02

Family

ID=11581181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993004320U Expired - Lifetime JP2513165Y2 (en) 1993-01-20 1993-01-20 Multi-source refrigerator

Country Status (1)

Country Link
JP (1) JP2513165Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296067A (en) * 1988-05-24 1989-11-29 Nissin Kogyo Kk Defrosting in two-element refrigerator and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296067A (en) * 1988-05-24 1989-11-29 Nissin Kogyo Kk Defrosting in two-element refrigerator and its device

Also Published As

Publication number Publication date
JP2513165Y2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US10077924B2 (en) Binary refrigeration apparatus
US10962266B2 (en) Cooling system
JP2000105030A (en) Two-stage cascade refrigerating device
CN105556221B (en) Refrigerating plant
JP3847499B2 (en) Two-stage compression refrigeration system
CN112460903A (en) Refrigeration defrosting system and refrigeration equipment
US10895411B2 (en) Cooling system
US20210164711A1 (en) Cooling system for low temperature storage
JP3781340B2 (en) Thermal storage refrigeration air conditioner
KR101533644B1 (en) Hotgas defrosting refrigerating cycle device
JP2513165Y2 (en) Multi-source refrigerator
JP2604326Y2 (en) Refrigerator cooler
JP3175709B2 (en) Binary refrigeration equipment
JPH11294881A (en) Dual refrigerating unit
JPH07234041A (en) Cascade refrigerating equipment
JP2000258020A (en) Freezer/refrigerator
CN112856889B (en) Refrigerator and control method thereof
JPH0821664A (en) Refrigerating cycle device
JPH0737867B2 (en) Defroster for dual cryogenic refrigerator
KR101660948B1 (en) Hotgas defrosting refrigerating cycle device
KR0126728Y1 (en) A refrigerator
JPS5922440Y2 (en) air conditioner
KR20230081788A (en) Refrigerating defrost cycle device
JPH11173689A (en) Heat storage type cooling device
JPS6038852Y2 (en) air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250