JPH01296067A - Defrosting in two-element refrigerator and its device - Google Patents

Defrosting in two-element refrigerator and its device

Info

Publication number
JPH01296067A
JPH01296067A JP12635588A JP12635588A JPH01296067A JP H01296067 A JPH01296067 A JP H01296067A JP 12635588 A JP12635588 A JP 12635588A JP 12635588 A JP12635588 A JP 12635588A JP H01296067 A JPH01296067 A JP H01296067A
Authority
JP
Japan
Prior art keywords
binary
refrigerant
primary
condenser
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12635588A
Other languages
Japanese (ja)
Inventor
Kounosuke Umada
馬田 昿之亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP12635588A priority Critical patent/JPH01296067A/en
Publication of JPH01296067A publication Critical patent/JPH01296067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To make it easy to carry out maintenance and to conserve energy by making a high pressure gaseous coolant compressed by a secondary side compressor pass through a heat transfer pipe through which a primary side coolant of an evaporator on the primary side passes and through another separately provided flow channel from a branched pipe of the discharge pipe of the compressor. CONSTITUTION:In a primary side evaporator 1 a heat transfer pipe 2 for a primary side coolant and a heat transfer pipe 22 for a secondary side coolant which has a separate flow channel are separately provided. The discharge pipe 13b of a compressor 13 on the secondary side is provided additionally with a discharge three-way valve 20 and an one-way opening 20a is branched therefrom, and the one-way opening 20a is led to a secondary side heat transfer pipe 22 of a primary side evaporator 1 via a branch pipe 21. The secondary side high-pressure liquid coolant condensed in the secondary side coolant transfer pipe 22 goes via a pipe 26 and its pressure is reduced by an expansion valve 25 for defrosting and is led to a heat exchanger 23 for defrosting or a heat exchanger both for the secondary side condenser and acting as defrosting in combination, and there exchanges heat with air, water or others to be evaporated and the evaporated coolant is returned via the one-way opening of a suction three-way valve 27 provided on the suction pipe 13a of the secondary side compressor 13 again to the secondary side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は食品を冷凍するための冷蔵及び凍結装置或いは
化学工業等において超低温を得るために使用される二元
冷凍機の蒸発器の伝熱管部、低温空気側に発生する霜を
除霜する二元冷凍機におけるデフロスト方法並びにその
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger tube of an evaporator of a binary refrigerator used to obtain ultra-low temperature in refrigeration and freezing equipment for freezing food or in the chemical industry, etc. The present invention relates to a defrosting method and apparatus for a binary refrigerator for defrosting frost generated on the low-temperature air side.

〔従来の技術〕[Conventional technology]

近年、二元冷凍機によって空気を冷却して、超低温を得
ているが、長時間に亘り冷却運動を行うと、蒸発器の伝
熱管部の低温空気側に着霜が生じ、効率が低下する。そ
のため従来の二元冷凍機の蒸発器のデフロスト方法及び
装置には、伝熱管部に電気ヒータを付設したり、低温で
凍結しないブライン(ある種の薬品を混入した水溶液)
を伝熱管部に散布等して除霜熱源とするものがある。
In recent years, binary refrigerators have been used to cool air to obtain ultra-low temperatures, but if the cooling operation is performed for a long time, frost will form on the low-temperature air side of the heat transfer tube section of the evaporator, reducing efficiency. . Therefore, conventional methods and devices for defrosting the evaporator of binary refrigerators include installing electric heaters in the heat transfer tubes, and using brine (an aqueous solution mixed with certain chemicals) that does not freeze at low temperatures.
Some use it as a defrosting heat source by spraying it on heat transfer tubes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の二元冷凍機の蒸発器のデフロスト方法及び装置に
おいて、電熱ヒータを用いたものでは、除霜を行う際に
は一元側及び二元側圧縮機を停止した状態で、除霜用電
熱ヒータの容量としてこれらの圧縮機を運転するモータ
の電力容量とほぼ等しい容量を必要とし、二元冷凍機の
規模によっては、この容量では不足するものもあり、よ
り大容量の電気ヒータが必要で、蒸発器を設備した冷蔵
庫の庫内温度が−60〜−80°C付近となるため、電
熱ヒータの表面発熱温度を高くし、蒸発器の空気出入口
に機密ダンパー等を設けて庫内温度の影響を受けないよ
うにする必要があり、大容量の電熱ヒータの設備費及び
その運転経費が高価となる上に、低温下での煩雑な可動
部を有する気密ダンパーの設備費が高価に付く等の欠点
がある。
In the conventional method and device for defrosting the evaporator of a dual-component refrigerator, when an electric heater is used, when performing defrosting, the single-compressor and dual-compressor are stopped, and the electric heater for defrosting is stopped. A capacity approximately equal to the electric power capacity of the motor that drives these compressors is required.Depending on the scale of the binary refrigerator, this capacity may not be sufficient, and a larger capacity electric heater is required. Since the internal temperature of a refrigerator equipped with an evaporator is around -60 to -80°C, the surface heat generation temperature of the electric heater is increased and a confidential damper is installed at the air inlet and outlet of the evaporator to prevent the influence of the internal temperature. In addition to the high equipment costs for large-capacity electric heaters and their operating costs, the equipment costs for airtight dampers with complicated moving parts at low temperatures are also high. There are drawbacks.

またブライン散布方式のものでは、ブラインの熱容量が
大きいので、前記庫内温度の影響を受けずに除霜を行う
ことができるが、庫内までの比較的長く且つ太いブライ
ン供給管及び放出管を必要とする上に、ブライン循環ポ
ンプ等を設備する必要があり、設備費が高価に付くと共
に、除霜を繰り返し行うと、その度に霜を融解した水分
によってブラインが希釈され、蒸発器の伝熱管部におい
て氷結する可能性があるため、濃縮器(コンセントレイ
ター)を設備して常に濃度管理をしなければならないた
め煩わしく、そのブライン濃縮のために電気ヒータを必
要とし、これらの設備と運転のための電力が不可欠とな
り、設備費が高価に付くと共に省エネルギー化の要請に
そぐわないという欠点がある。
In addition, with the brine distribution method, since the brine has a large heat capacity, defrosting can be performed without being affected by the temperature inside the refrigerator, but it requires a relatively long and thick brine supply pipe and discharge pipe to reach the inside of the refrigerator. In addition, it is necessary to install a brine circulation pump, etc., which increases the equipment cost, and when defrosting is repeated, the brine is diluted by the moisture that melts the frost each time, and the transmission of the evaporator is reduced. Since there is a possibility of freezing in the heat pipes, concentrators must be installed to constantly control the concentration, which is cumbersome. Electric heaters are required to condense the brine, and these equipment and operations are complicated. The disadvantages are that electric power is required for this purpose, the equipment cost is high, and it does not meet the demand for energy conservation.

本発明は電熱ヒータや低温ブライン等の設備が不要で、
これらの管理の煩わしさを回避することができ、保守が
容易で、省エネルギー化が可能となる二元冷凍機におけ
るデフロスト方法並びにその装置を提供することを目的
とするものである。
The present invention does not require equipment such as electric heaters or low-temperature brine;
It is an object of the present invention to provide a defrosting method and device for a binary refrigerator that can avoid these troublesome managements, are easy to maintain, and can save energy.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は断熱壁で周囲を覆
った冷蔵庫内に一元側冷媒を蒸発させて該冷蔵庫内の空
気から熱を奪う一元側蒸発器を設け、該蒸発器よりの一
元側冷媒ガスを一元側圧縮機で圧縮して、入口側に順次
二元側凝縮器及び二元側膨張弁を、出口側に二元側圧縮
機の吸入側を、また該圧縮機の吐出側を該二元側凝縮器
にそれぞれ連結した一元側凝縮器に導入し、一元側凝縮
器で二元側冷媒を蒸発させて一元側冷媒を凝縮し、一元
側膨張弁を介して該一元側冷媒液を一元側蒸発器に供給
する二元冷凍機において、二元側圧縮機から二元側凝縮
器への間の吐出管を分岐し、該圧縮機よりの二元側高圧
ガス冷媒を一元側蒸発器内の一元側冷媒が通過する伝熱
管と別設した流路に通過させ、該伝熱管外表面に形成さ
れ付着した霜に熱(凝縮熱)を与えて融解し、二元側高
圧ガス冷媒を、二元側高圧液冷媒とし、デフロスト用膨
張弁を介してデフロスト用熱交換器に導き、二元側低圧
冷媒ガスとして二元側圧縮機の吸入管に設けた分岐管よ
り二元側圧縮機に吸入するようにしたものである。
In order to achieve the above object, the present invention provides a single-side evaporator that evaporates a single-side refrigerant and removes heat from the air inside the refrigerator in a refrigerator surrounded by a heat insulating wall, and provides a single-side evaporator for removing heat from the air inside the refrigerator. The side refrigerant gas is compressed by a single-side compressor, and a binary-side condenser and a binary-side expansion valve are sequentially installed on the inlet side, the suction side of the binary-side compressor is placed on the outlet side, and the discharge side of the compressor is installed. is introduced into the single-side condenser connected to the dual-side condenser, and the single-side refrigerant is evaporated in the single-side condenser to condense the single-side refrigerant. In a binary refrigerator that supplies liquid to the primary side evaporator, the discharge pipe from the binary side compressor to the binary side condenser is branched, and the high pressure gas refrigerant from the binary side from the compressor is transferred to the primary side. The refrigerant on the primary side in the evaporator is passed through a flow path that is separate from the heat exchanger tube through which it passes, and heat (heat of condensation) is applied to the frost that has formed and adhered to the outer surface of the heat exchanger tube to melt it, and the high-pressure gas on the secondary side is passed through. The refrigerant is made into a high-pressure liquid refrigerant on the binary side and is led to the defrost heat exchanger via the defrost expansion valve, and is then introduced as a low-pressure refrigerant gas on the binary side from a branch pipe installed in the suction pipe of the binary side compressor. It is designed to be sucked into a compressor.

〔作用〕 二元側圧縮機で圧縮した二元側高圧ガス冷媒を該圧縮機
吐出管の分岐管より一元側蒸発器の一元側冷媒が通過す
る伝熱管と別設の流路を通過させるから、一元側冷媒伝
熱管外表面に付着した霜に二元側圧縮機の軸動力に相当
する熱量のほぼ3〜4倍の凝縮熱量を与えることになり
、該霜は短時間で融解して除霜を行うことが可能となる
[Operation] The high-pressure gas refrigerant on the binary side compressed by the binary side compressor is passed from the branch pipe of the compressor discharge pipe through a flow path separate from the heat transfer tube through which the primary side refrigerant of the primary side evaporator passes. , the frost adhering to the outer surface of the primary side refrigerant heat transfer tube is given approximately 3 to 4 times the amount of heat of condensation as the heat equivalent to the shaft power of the secondary side compressor, and the frost is melted and removed in a short time. It becomes possible to carry out frost.

また一元側蒸発器の該流路内で凝縮した二元側高圧液冷
媒はデフロスト用膨張弁で減圧されて二元側低圧液冷媒
となり、デフロスト用熱交換器において空気又は水を熱
源として該低圧液冷媒を蒸発させ、二元側低圧ガス冷媒
として再び二元側圧縮機の吸入管に戻して再循環を可能
とし、二元側圧縮機から一元側蒸発器の除霜運転熱源を
確保することができる。
In addition, the high-pressure liquid refrigerant on the binary side condensed in the flow path of the primary side evaporator is depressurized by the defrost expansion valve to become the low-pressure liquid refrigerant on the binary side. Evaporate the liquid refrigerant and return it to the suction pipe of the dual-side compressor as a low-pressure gas refrigerant to enable recirculation, thereby securing a heat source for defrosting operation of the primary-side evaporator from the dual-side compressor. I can do it.

〔実施例〕〔Example〕

今、ここに本発明の実施例を示した添付図面について詳
説する。
Reference will now be made in detail to the accompanying drawings, which illustrate embodiments of the invention.

1は一元側蒸発器で、その内部に一元側冷媒を通過させ
る一元側冷媒伝熱管2を設け、周囲を断熱壁4で囲繞し
た超低温冷蔵庫3内に配置したもので、該冷蔵庫3内の
空気を一元側蒸発器1内に循環させるファン5を付設し
たものである。6は一元側圧縮機で、吸入管6aを該蒸
発器1の一元側冷媒伝熱管2の一端に連結したもので、
該管2内に一元側冷媒を流通させ、冷蔵庫3内の空気か
ら気化熱を奪って蒸発した1元側低圧ガス冷媒を吸入し
て圧縮するものである。
Reference numeral 1 designates a single-side evaporator, which is provided with a single-side refrigerant heat transfer tube 2 for passing the single-side refrigerant therein, and is placed inside an ultra-low temperature refrigerator 3 surrounded by a heat insulating wall 4. A fan 5 is attached to circulate the water into the primary side evaporator 1. Reference numeral 6 denotes a single-side compressor, in which a suction pipe 6a is connected to one end of the single-side refrigerant heat transfer tube 2 of the evaporator 1;
A one-source refrigerant is passed through the pipe 2, and the one-source low-pressure gas refrigerant that has been evaporated by removing the heat of vaporization from the air inside the refrigerator 3 is sucked and compressed.

7は一元側凝縮器(カスケードコンデンサ)で、前記一
元側圧縮機6で圧縮した1元側高圧ガス冷媒を通過させ
る一元側冷媒伝熱管8を内部に配置し、該伝熱管8の一
端と該一元側圧縮機6の吐出管6bとを連結し、該凝縮
器7内の伝熱管8の周囲に後述のように二元側冷媒を流
入して蒸発させ、伝熱管8内を通過する1元側高圧ガス
冷媒より凝縮熱を奪い凝縮(液化)させ、一元側高圧液
冷媒とするものである。9は一元側受液器で、該伝熱管
8の他端に連結したもので、一元側凝縮器7の伝熱管8
内で液化した一元側高圧液冷媒を受け、貯液するもので
ある。
Reference numeral 7 designates a one-side condenser (cascade condenser), in which a one-side refrigerant heat exchanger tube 8 through which the one-side high-pressure gas refrigerant compressed by the one-side compressor 6 passes is disposed, and one end of the heat exchanger tube 8 and The discharge pipe 6b of the primary side compressor 6 is connected to the primary side compressor 6, and the binary side refrigerant is introduced around the heat exchanger tube 8 in the condenser 7 to be evaporated, and the primary side refrigerant is passed through the heat exchanger tube 8. It absorbs condensation heat from the side high-pressure gas refrigerant and condenses (liquefies) it to form a single-side high-pressure liquid refrigerant. Reference numeral 9 denotes a primary side liquid receiver, which is connected to the other end of the heat exchanger tube 8, and is connected to the other end of the primary side condenser 7.
It receives and stores the high-pressure liquid refrigerant on the single side that has been liquefied inside.

10は一元側膨張弁で、該受液器9の出口と一元側冷媒
伝熱管2の他端とを連結する管11に付設したもので、
受液器9からの一元側高圧液冷媒を膨張させて一元側蒸
発器1の伝熱管2に流入させるものである。12は一元
側冷媒管路で、一元側のそれぞれ蒸発器lの伝熱管2、
圧縮機6、凝縮器7の伝熱管8、受液器9及び膨張弁1
0を介して該伝熱管2に戻る一連のもので、該管路12
内に一元側冷媒を循環させるものである。13は二元側
圧縮機で、吸入管13aを前記一元側凝縮器7の上方出
口管7bと連結し、後述の下方入口管7aからの二元側
低圧液冷媒と該凝縮器7の伝熱管8内を通過する1元側
高圧ガス冷媒とを熱交換器し、蒸発した二元側低圧ガス
冷媒を吸入して圧縮するものである。
Reference numeral 10 denotes a single side expansion valve, which is attached to a pipe 11 connecting the outlet of the liquid receiver 9 and the other end of the single side refrigerant heat transfer tube 2;
The primary side high-pressure liquid refrigerant from the liquid receiver 9 is expanded and made to flow into the heat exchanger tube 2 of the primary side evaporator 1. Reference numeral 12 denotes a refrigerant pipe on the primary side, which includes heat transfer tubes 2 of the evaporator l on the primary side,
Compressor 6, heat transfer tube 8 of condenser 7, liquid receiver 9, and expansion valve 1
0 to the heat transfer tube 2, and the conduit 12
This is to circulate a single-side refrigerant inside the tank. Reference numeral 13 denotes a binary side compressor, in which a suction pipe 13a is connected to an upper outlet pipe 7b of the single side condenser 7, and a low pressure liquid refrigerant on the binary side from a lower inlet pipe 7a, which will be described later, and a heat exchanger tube of the condenser 7 are connected. The refrigerant is heat exchanged with the high-pressure gas refrigerant on the primary side passing through the refrigerant 8, and the evaporated low-pressure gas refrigerant on the binary side is sucked and compressed.

14は二元側凝縮器で、二元側圧縮機13の吐出管13
bとその入口管14aを連結したもので、第1図に示す
ように空気又は水等が通過する伝熱管15を内部に付設
し、該圧縮機13の吐出管13bからの二元側高圧ガス
冷媒を入口管14aより流入させ、伝熱管15内を通過
する空気又は水等と熱交換し、該空気又は水等により凝
縮熱を奪い、二元側高圧液冷媒とするものである。
14 is a binary side condenser, and the discharge pipe 13 of the binary side compressor 13
b and its inlet pipe 14a are connected, and as shown in FIG. The refrigerant is introduced through the inlet pipe 14a, exchanges heat with air, water, etc. passing through the heat transfer tube 15, and absorbs condensation heat with the air, water, etc., to form a binary high-pressure liquid refrigerant.

16は二元側膨張弁で、該凝縮器14の出口管14bと
前記一元側凝縮器7の下方入口管7aとの間に介在した
もので、凝縮器14の出口管14bよりの二元側高圧液
冷媒を膨張させ二元側低圧液冷媒として一元側凝縮器7
に流入させるものである。17は一元側凝縮器7の上方
部に付設したフロート弁等の液面制御装置で、該凝縮器
7内の二元側低圧液冷媒が一定液位に到達すると、二元
側膨張弁16を閉塞するよう装備したものである。18
は二元側冷媒管路で、一元側凝縮器7の入口管7aから
出口管7bに至る内部、二元側のそれぞれ圧縮機13、
凝縮器14及び膨張弁16を介して該凝縮器7の入口管
7aに戻る一連のもので、該管路18内に二元側冷媒を
循環させるものである。19は一元側冷媒管路12と二
元側冷媒管路18とから成り、一元側凝縮器(カスケー
ドコンデンサ)7を二元側冷媒の蒸発器として利用する
二元冷凍機(カスケード式冷凍装置)である、20は吐
出三方弁で、二元側圧縮機13の吐出管13bにその二
方口を介在して連結し、残りの一吉日20aを分岐する
もので、21は該−吉日20aに連結した分岐管である
。22は前記一元側蒸発器1内に配置した二元側冷媒伝
熱管で、一元側冷媒伝熱管2と熱交換するもので、その
一端を分岐管21の先端に連結し、除霜工程において吐
出三方弁20を一吉日20a側に切替え、吐出三方弁2
0の一吉日20aを介して二元側圧縮機13からの二元
側高圧ガス冷媒を分岐管21を経て通過させ、一元側冷
媒伝熱管2の外表面に付着した霜に二元側圧縮機13の
軸動力のほぼ3〜4倍に達する凝縮器熱量を与え、該霜
を除霜するものである。23は第1図に示すように二元
側凝縮器14と別個に設けたデフロスト用熱交換器で、
内部に空気又は水等が通過する伝熱管24を付設し、そ
の一端をデフロスト用膨張弁25を介在した管26によ
り二元側冷媒伝熱管22の他端に連結したもので、該伝
熱管22内で除霜のために凝縮熱を奪われて液化した二
元側高圧液冷媒をデフロスト用膨張弁25により膨張減
圧して二元側低圧液冷媒として導入し、伝熱管24内を
通過する空気又は水等から気化熱を得て、二元側低圧ガ
ス冷媒とするものである。27は吸入三方弁で、その二
方口を二元側圧縮機13の吸入管13aに介在連結した
もので、残りの一方ロ27aを分岐し、該−吉日27a
に分岐管28を介してデフロスト用熱交換器23の他端
に連結し、除霜工程時に吸入三方弁27を一吉日2Ta
側に切替え、該熱交換器23で蒸発した二元側低圧ガス
冷媒を二元側圧縮機13に戻すものである。
Reference numeral 16 denotes a binary side expansion valve, which is interposed between the outlet pipe 14b of the condenser 14 and the lower inlet pipe 7a of the single side condenser 7, and is located on the binary side from the outlet pipe 14b of the condenser 14. The single-side condenser 7 expands the high-pressure liquid refrigerant and converts it into a dual-side low-pressure liquid refrigerant.
It is intended to cause an inflow into the country. 17 is a liquid level control device such as a float valve attached to the upper part of the single-side condenser 7, and when the low-pressure liquid refrigerant on the dual-side side in the condenser 7 reaches a certain level, the dual-side expansion valve 16 is activated. It is equipped to block it. 18
is a binary side refrigerant pipe line, which runs from the inlet pipe 7a to the outlet pipe 7b of the single side condenser 7, and the compressor 13 on the binary side,
A series of refrigerants return to the inlet pipe 7a of the condenser 7 via the condenser 14 and the expansion valve 16, and circulate the dual-side refrigerant within the conduit 18. Reference numeral 19 denotes a binary refrigerating machine (cascade type refrigeration system) which is composed of a primary side refrigerant pipe 12 and a secondary side refrigerant pipe 18, and uses the primary side condenser (cascade condenser) 7 as an evaporator for the secondary side refrigerant. , 20 is a discharge three-way valve, which is connected to the discharge pipe 13b of the two-way compressor 13 through its two-way opening, and branches off the remaining auspicious day 20a, and 21 is a discharge three-way valve that These are connected branch pipes. Reference numeral 22 denotes a dual-side refrigerant heat exchanger tube disposed within the primary-side evaporator 1, which exchanges heat with the primary-side refrigerant heat exchanger tube 2. One end of the tube is connected to the tip of the branch pipe 21, and is discharged during the defrosting process. Switch the three-way valve 20 to the Ichiyoshihichi 20a side, and open the discharge three-way valve 2.
The binary side high pressure gas refrigerant from the binary side compressor 13 is passed through the branch pipe 21 via the single auspicious day 20a of The condenser heat amount is approximately 3 to 4 times the shaft power of No. 13, and is used to defrost the frost. 23 is a defrost heat exchanger provided separately from the binary side condenser 14 as shown in FIG.
A heat transfer tube 24 through which air, water, etc. passes is attached, and one end of the heat transfer tube 24 is connected to the other end of the dual-side refrigerant heat transfer tube 22 through a tube 26 with a defrost expansion valve 25 interposed therebetween. The high-pressure liquid refrigerant on the binary side, which has been liquefied by removing condensation heat for defrosting, is expanded and depressurized by the defrost expansion valve 25 and introduced as low-pressure liquid refrigerant on the binary side, and the air passing through the heat transfer tubes 24 is Alternatively, the heat of vaporization is obtained from water or the like and used as a binary low pressure gas refrigerant. Reference numeral 27 denotes a suction three-way valve, whose two-way port is interposed and connected to the suction pipe 13a of the two-way compressor 13, and the remaining one side valve 27a is branched, and the auspicious day 27a is connected to the suction pipe 13a of the two-way compressor 13.
is connected to the other end of the defrosting heat exchanger 23 via a branch pipe 28, and the suction three-way valve 27 is connected to the
The low-pressure gas refrigerant on the binary side evaporated in the heat exchanger 23 is returned to the compressor 13 on the binary side.

また第2図及び第3図は第1図の二元側凝縮器14とデ
フロスト用熱交換器23とを一体化した二元側凝縮器兼
デフロスト用熱交換器29の実施例を示すもので、第2
図は外面にファン30を設けて、第1図の二元側凝縮器
14を空冷式とし、該凝縮器14の入口管14aと出口
管14bとを伝熱管31で連結し、デフロスト用膨張弁
25と吸入三方弁27とを連結した前記それぞれの管2
6及び28の管端を二元側凝縮器14内において、伝熱
管31と別途の伝熱管32で連結したもので、二元側圧
縮機13からの二元側高圧ガス冷媒を伝熱管31内に流
通させ、ファン30よりの空気と熱交換し、該空気によ
り凝縮熱を奪い、伝熱管31内で二元側高圧ガス冷媒を
二元側高圧液冷媒とし、一方除霜工程時に吐出三方弁2
0の一吉日20aより一元側蒸発器lの二元側冷媒伝熱
管22内を通過する二元側高圧ガス冷媒により前記同様
に一元側冷媒伝熱管2の外表面に付着した霜の除霜を行
い、該霜に凝縮熱を奪われた二元側高圧ガス冷媒を二元
側高圧液冷媒とし、デフロスト用膨張弁25で膨張減圧
した二元側低圧液冷媒を伝熱管32内に流通させ、ファ
ン30よりの前記凝縮熱により加熱された空気から気化
熱を奪い、該伝熱管32内で該二元側低圧液冷媒を蒸発
させ、二元側低圧ガス冷媒とするものである。
Furthermore, FIGS. 2 and 3 show an embodiment of a dual-side condenser and defrost heat exchanger 29 that integrates the dual-side condenser 14 and the defrost heat exchanger 23 shown in FIG. , second
The figure shows a fan 30 provided on the outer surface to make the dual-side condenser 14 of FIG. 25 and the suction three-way valve 27.
The tube ends of 6 and 28 are connected to the heat exchanger tube 31 in the binary side condenser 14 by a separate heat exchanger tube 32, and the binary side high pressure gas refrigerant from the binary side compressor 13 is transferred into the heat exchanger tube 31. It exchanges heat with the air from the fan 30, removes condensation heat, and converts the binary high pressure gas refrigerant into a binary high pressure liquid refrigerant in the heat transfer tube 31, while the discharge three-way valve is used during the defrosting process. 2
From the auspicious day 20a of 0, the frost adhering to the outer surface of the single-side refrigerant heat exchanger tube 2 is defrosted in the same manner as described above by the high-pressure gas refrigerant on the dual-side side passing through the inside of the dual-side refrigerant heat exchanger tube 22 of the single-side evaporator l. The high-pressure gas refrigerant on the binary side that has lost condensation heat to the frost is made into a high-pressure liquid refrigerant on the binary side, and the low-pressure liquid refrigerant on the binary side expanded and depressurized by the defrosting expansion valve 25 is made to flow through the heat transfer tube 32. Heat of vaporization is removed from the air heated by the heat of condensation from the fan 30, and the binary side low pressure liquid refrigerant is evaporated within the heat transfer tube 32 to become a binary side low pressure gas refrigerant.

第3図は水を通過させる伝熱管33を伝熱管15と同様
に内部に設けて第1図の二元側凝縮器14を水冷式とし
、デフロスト用膨張弁25と吸入三方弁27とを連結し
たそれぞれの管26及び28の管端を第2図と同様に伝
熱管32で連結したもので、その動作は二元側冷媒の凝
縮及び蒸発が水冷式で、かつ二元側冷媒の凝縮が二元側
凝縮器兼デフロスト熱交換器29内で行われる以外は第
2図と同様に説明できる。
In FIG. 3, a heat transfer tube 33 for passing water is provided inside like the heat transfer tube 15, so that the binary side condenser 14 in FIG. The tube ends of the tubes 26 and 28 are connected by a heat transfer tube 32 in the same manner as shown in FIG. The explanation can be made in the same manner as in FIG. 2 except that the process is carried out in the binary side condenser/defrost heat exchanger 29.

更に第4図及び第5図は一元側蒸発器1の別の実施例を
示し、特許請求の範囲第3項のもので、34は一元側冷
媒伝熱管で、内部に同心状に二元側冷媒伝熱管35を両
転熱管34.35の間に放射状に多数のインナーフィン
36を形成して二重とし、二重フィン管37としたもの
で、両転熱管34.35と各インナーフィン36で囲ま
れた多数の空間を一元側冷媒流路38、二元側冷媒伝熱
管35の内部を二元側冷媒流路39とするものである。
Furthermore, FIGS. 4 and 5 show another embodiment of the single-side evaporator 1, which is in claim 3, in which reference numeral 34 denotes a single-side refrigerant heat transfer tube, in which a dual-side refrigerant tube is arranged concentrically. The refrigerant heat transfer tube 35 is made double by forming a large number of inner fins 36 radially between both heat transfer tubes 34 and 35 to form a double fin tube 37. Both heat transfer tubes 34 and 35 and each inner fin 36 A large number of spaces surrounded by the above are defined as a single-side refrigerant flow path 38, and the inside of the dual-side refrigerant heat transfer tube 35 is designated as a dual-side refrigerant flow path 39.

40は多数のアウターフィンで、該二重フィン管37を
多列かつ多段にケーシング41に固定し、各二重フィン
管37の外側の一元側冷媒伝熱管34に挿通して固定し
たものである。42は各二重フィン管37の両端に付設
したカバーで、一端を一元側冷媒伝熱管34の外周に挿
嵌し、他端を一元側冷媒伝熱管34の両側に突出した二
元側冷媒伝熱管35の外周に挿嵌し、胴部側面に連結口
43を突設したもので、上下方向の多段に隣接する各二
重フィン管37.37両側に突出した二元側冷媒伝熱管
35.35を交互にUベンド44で連結し、同様に隣接
する交互の連結口43.43を連結管45で連結し、各
二重フィン管37の一元側に冷媒流路38及び二元側冷
媒流路39を一連のものとするものである。46は一元
側冷媒入口で、一元側冷媒流路3日の上端の連結口43
の開口であり、47は一元側冷媒出口で、該冷媒流路3
8の下端の連結口43の開口である。48は二元側冷媒
入口で、二元側冷媒流路39の上端の二元側冷媒伝熱管
35の開口であり、49は二元側冷媒出口で、該冷媒流
路39の下端の該伝熱管35の開口である。また一元側
冷媒の人、出口46.47及び二元側冷媒の人、出口4
8.49にはディストリビユータ、ヘッダー等(図示せ
ず)を個別に付設して多列の一元側及び二元側の冷媒流
路38.39に一元側及び二元側の冷媒を流入、流出す
るものである。50.50は一元側蒸発器1のケーシン
グ41の下方に穿設した空気入口で、51は該ケーシン
グ41の上部に設けた空気出口であり、該空気出口51
にファン52を付設したものである。53はドレンパン
で、該ケーシング41の下面に付設したもので、除霜工
程において一元側冷媒伝熱管34の外表面に付着した霜
が融解した際の水を受けるもので、54は練水を外部に
排出するドレン孔である。また、二元側冷媒流路39を
一元側冷媒伝熱管34の外部最寄りに、アウターフィン
40を貫通して設け、アウターフィン40から熱伝導に
よって霜を除去することも可能である。
Reference numeral 40 denotes a large number of outer fins, which are fixed to the casing 41 in multiple rows and stages, and are inserted into and fixed to the single refrigerant heat transfer tube 34 outside each double fin tube 37. . Reference numeral 42 denotes a cover attached to both ends of each double fin tube 37, one end of which is inserted into the outer periphery of the single-side refrigerant heat transfer tube 34, and the other end is a cover attached to the dual-side refrigerant transfer tube that protrudes from both sides of the single-side refrigerant heat transfer tube 34. The dual-side refrigerant heat transfer tubes 35. which are inserted into the outer periphery of the heat tube 35 and have a connecting port 43 protruding from the side surface of the body, protrude on both sides of each double fin tube 37.37 adjacent to each other in multiple stages in the vertical direction. 35 are alternately connected by U-bends 44, and in the same way, adjacent alternate connection ports 43, 43 are connected by connecting pipes 45, and a refrigerant flow path 38 and a dual-side refrigerant flow are provided on the one side of each double fin pipe 37. The route 39 is a series. 46 is the primary side refrigerant inlet, and the connection port 43 at the upper end of the primary side refrigerant flow path 3rd
47 is a single side refrigerant outlet, and 47 is an opening of the refrigerant flow path 3.
This is the opening of the connection port 43 at the lower end of 8. 48 is a binary side refrigerant inlet, which is an opening of the binary side refrigerant heat transfer tube 35 at the upper end of the binary side refrigerant flow path 39; 49 is a binary side refrigerant outlet, which is the opening of the binary side refrigerant heat transfer tube 35 at the lower end of the refrigerant flow path 39; This is the opening of the heat pipe 35. Also, the single side refrigerant person, exit 46, 47 and the dual side refrigerant person, exit 4
8.49 is individually equipped with a distributor, a header, etc. (not shown), and the single-side and dual-side refrigerant flows into the multi-row single-side and dual-side refrigerant channels 38.39, It is something that flows out. 50.50 is an air inlet provided below the casing 41 of the primary side evaporator 1; 51 is an air outlet provided at the upper part of the casing 41;
A fan 52 is attached to the. Reference numeral 53 denotes a drain pan, which is attached to the lower surface of the casing 41 and receives water when the frost adhering to the outer surface of the single-side refrigerant heat transfer tube 34 melts during the defrosting process. This is a drain hole for discharging water. Furthermore, it is also possible to provide the dual-side refrigerant flow path 39 closest to the outside of the single-side refrigerant heat transfer tube 34, penetrating the outer fins 40, and remove frost from the outer fins 40 by heat conduction.

このように二重フィン管37を一元側蒸発器1に採用す
ることにより、一元側冷媒流路38の濡れ面積が増加し
、伝熱が良好となり、一元側冷媒伝熱管34を短くした
り、該伝熱管の断面積を小さくすることが可能となり、
使用冷媒量を大幅に減少することができ、低コスト化が
可能となる。
By employing the double fin tube 37 in the single-side evaporator 1 in this way, the wetted area of the single-side refrigerant flow path 38 is increased, heat transfer is improved, and the single-side refrigerant heat transfer tube 34 can be shortened. It becomes possible to reduce the cross-sectional area of the heat exchanger tube,
The amount of refrigerant used can be significantly reduced, making it possible to lower costs.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のような構成で、一元側蒸発器1内に一元
側冷媒伝熱管2と別途の流路を有する二元側冷媒伝熱管
22を別設し、二元側圧縮機13の吐出管13bに吐出
三方弁20を付設して一吉日20aを分岐し、該−吉日
20aより分岐管21を経て一元側蒸発器1の二元側伝
熱管22に導き、二元側冷媒伝熱管22内で凝縮した二
元側高圧液冷媒は管26を経てデフロス  ・ト用膨張
弁25により減圧し、デフロスト用熱交換器23又は二
元側凝縮器兼デフロスト用熱交換器29に導き、空気又
は水等と熱交換させて蒸発し、二元側圧縮機13の吸入
管13aに付設した吸入三方弁27の一方ロ27aを経
て再び二元側圧縮機13.に戻すようにしたから、除霜
工程時のデフロスト用熱源は常に維持できるものである
The present invention has the above configuration, in which a dual refrigerant heat transfer tube 22 having a flow path separate from the primary refrigerant heat transfer tube 2 is separately installed in the primary evaporator 1, and the discharge of the dual compressor 13 is controlled. A discharge three-way valve 20 is attached to the pipe 13b to branch off the one-auspicious day 20a, which leads to the two-way side heat exchanger tube 22 of the one-way side evaporator 1 through the branch pipe 21, and the two-way side refrigerant heat exchanger tube 22 The high-pressure liquid refrigerant on the binary side condensed in the refrigerant is reduced in pressure by the defrost expansion valve 25 through the pipe 26, and guided to the defrost heat exchanger 23 or the binary side condenser/defrost heat exchanger 29, where air or It is evaporated by exchanging heat with water, etc., and then passed through one side 27a of the suction three-way valve 27 attached to the suction pipe 13a of the dual-side compressor 13, and then returned to the dual-side compressor 13. Since the defrost heat source can be maintained at all times during the defrosting process.

また除霜工程時に一元側蒸発器1の二元側冷媒伝熱管2
2に導かれた二元側圧縮機13からの二元側高圧ガス冷
媒は二元側圧縮機13の軸動力のほぼ3〜4倍の凝縮熱
量を一元側冷媒伝熱管2の外表面に付着した霜に与え、
短時間で該霜を融解して除霜可能としたから、電熱ヒー
タ、低温ブライン等の他の設備が不要で、設備費が安価
となり、これらの管理の煩わしさを回避することができ
、保守が容易となり、またこれらの運転に要するエネル
ギーを省くことができ、省エネルギー化が可能となる。
Also, during the defrosting process, the dual side refrigerant heat transfer tube 2 of the primary side evaporator 1
The binary side high-pressure gas refrigerant from the binary side compressor 13 guided to the secondary side compressor 13 attaches to the outer surface of the primary side refrigerant heat transfer tube 2 with an amount of condensation heat that is approximately 3 to 4 times the shaft power of the binary side compressor 13. give it to frost,
Since the frost can be thawed and defrosted in a short period of time, other equipment such as electric heaters and low-temperature brine is not required, reducing equipment costs, avoiding the hassle of managing these items, and reducing maintenance costs. This makes it easier to operate, and the energy required for these operations can be saved, making it possible to save energy.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示すもので、第1図は本発
明の二元冷凍機の概略の回路構成図、第2図及び第3図
は二元側凝縮器とデフロスト用熱交換器とを一体とした
第1図同様の回路構成図で、第2図は空冷式のもの、第
3図は水冷式のもの、第4図及び第5図は一元側蒸発器
の他の実施例を示すもので、第4図はケーシングを断面
とした概略正面図、第5図は二重フィン管の概略を示す
もので、Aはその中央要部縦断面図、Bはその切断面を
Aと90°回転した縦断面図である。 ■・・・一元側蒸発器、2−一一一元側冷媒伝熱管、3
−・−超低温冷蔵庫、4−断熱壁、5・−・ファン、6
・−・一元側圧縮機、6a−吸入管、6b−・・吐出管
、7・−・一元側凝縮器、7a−下方入口管、7b−・
・上方出口管、8−一一一元側冷媒伝熱管、9−一一一
元側受液器、10−一一一元側膨張弁、11−管、12
−−−一元側冷媒管路、13−二元側圧縮機、13a−
・・−吸入管、13b・−吐出管、14−・二元側凝縮
器、14 a−〜入口管、14 b−・−出口管、15
−=伝熱管、16−二元側膨張弁、17−液面制御装置
、18−二元冷媒管路、19−二元冷凍機、20−・吐
出三方弁、20 a−−−一方口、21−分岐管、22
−・−・二元側冷媒伝熱管、23−デフロスト用熱交換
器、24−・−伝熱管、25−デフロスト用膨張弁、2
6−・管、27−吸入三方弁、27a・−−一方口、2
8−・−分岐管、29−二元側凝縮器兼デフロスト用熱
交換器、30−・−ファン、31、32. 33−伝熱
管、34・・−−一元側冷媒伝熱管、35・−二元側冷
媒伝熱管、36−・インナーフィン、37・−・二重フ
ィン管、38−一一一元側冷媒流路、39−・−二元側
冷媒流路、40−アウターフィン、41−・ケーシング
、42−・−カバー、43−  連絡口、44−Uベン
ド、45一連結管、46−−−一元側冷媒入口、47−
・一元側冷媒出口、48−・−二元側冷媒入口、49−
・・二元側冷媒出口、50・−・空気入口、51−・・
空気出口、52−ファン、53−  ドレンパン、54
−・−ドレン孔。 手続補正書 1.事件の表示  昭和63年特許願第126355号
λ 発明の名称  二元冷凍機におけるデフロスト方法
並びにその装置 3、補正をする者 事件との関係  特許出願人 住 所  大阪市北区中之島3丁目2番4号名称   
日新興業株式会社 代表取締役 子種 成吾橿 4、代 理 人 住 所  大阪市北区西天満2丁目8番1号6、補正の
対象  明細書の発明の詳細な説明の欄7、補正の内容 ■、明明細書第3頁1什 する。
The attached drawings show embodiments of the present invention. Figure 1 is a schematic circuit diagram of a binary refrigerator of the present invention, and Figures 2 and 3 show a binary side condenser and a defrost heat exchanger. Figure 2 is an air-cooled type, Figure 3 is a water-cooled type, and Figures 4 and 5 are other embodiments of the single-side evaporator. Fig. 4 is a schematic front view of the casing in cross section, and Fig. 5 is a schematic diagram of the double fin tube. It is a vertical cross-sectional view rotated by 90 degrees. ■... Primary side evaporator, 2-11 Primary side refrigerant heat transfer tube, 3
---Ultra-low temperature refrigerator, 4-insulation wall, 5--fan, 6
... Single side compressor, 6a- Suction pipe, 6b- Discharge pipe, 7- Single side condenser, 7a- Lower inlet pipe, 7b-.
・Upper outlet pipe, 8-11 primary side refrigerant heat transfer tube, 9-11 primary side liquid receiver, 10-11 primary side expansion valve, 11-pipe, 12
--- Single side refrigerant pipe line, 13- Binary side compressor, 13a-
...-suction pipe, 13b--discharge pipe, 14--binary side condenser, 14 a--inlet pipe, 14 b--outlet pipe, 15
- = heat transfer tube, 16 - binary side expansion valve, 17 - liquid level control device, 18 - binary refrigerant pipeline, 19 - binary refrigerator, 20 - discharge three-way valve, 20 a--- one port, 21-branch pipe, 22
- - Binary side refrigerant heat exchanger tube, 23 - Defrost heat exchanger, 24 - Heat exchanger tube, 25 - Defrost expansion valve, 2
6--Pipe, 27-Suction three-way valve, 27a--One port, 2
8--branch pipe, 29-binary side condenser and defrost heat exchanger, 30--fan, 31, 32. 33-heat exchanger tube, 34...-primary side refrigerant heat exchanger tube, 35--binary side refrigerant heat exchanger tube, 36--inner fin, 37--double fin tube, 38-11-primary side refrigerant flow Channel, 39--Two-way refrigerant flow path, 40-Outer fin, 41--Casing, 42--Cover, 43- Connection port, 44-U bend, 45 Series connection pipe, 46--One side Refrigerant inlet, 47-
・Single side refrigerant outlet, 48-・-Dual side refrigerant inlet, 49-
... Binary side refrigerant outlet, 50... Air inlet, 51-...
Air outlet, 52-fan, 53- drain pan, 54
−・−Drain hole. Procedural amendment 1. Indication of the case Patent application No. 126355 λ of 1988 Title of the invention Defrosting method and device 3 for a binary refrigerator, person making the amendment Relationship with the case Patent applicant address 3-2-4 Nakanoshima, Kita-ku, Osaka Issue name
Nichishin Gyogyo Co., Ltd. Representative Director Seigo Kotane 4, Agent Address 2-8-1-6 Nishitenma, Kita-ku, Osaka Subject of amendment Column 7 for detailed explanation of the invention in the specification, Contents of amendment ■, page 3 of the detailed specification, 1 yen.

Claims (1)

【特許請求の範囲】 1、一元側凝縮器で一元側冷媒を凝縮するために二元側
冷媒を蒸発させる二元冷凍機において、二元側の高圧ガ
ス冷媒を用いて一元側蒸発器の除霜を行うことを特徴と
する二元冷凍機におけるデフロスト方法。 2、一元側冷媒が一元側のそれぞれ圧縮機、凝縮器、膨
張弁及び蒸発器の順に循環して再び一元側圧縮機に戻る
管路と、該一元側凝縮器を一元側冷媒を凝縮させる二元
側冷媒の蒸発器とし、二元側冷媒が該一元側凝縮器から
二元側のそれぞれ圧縮機、凝縮器及び膨張弁の順に循環
して再び一元側凝縮器に戻る管路とから成る二元冷凍機
において、二元側圧縮機の吐出管よりの分岐管の先端を
一元側蒸発器内を通過する一元側冷媒と別途の回路に連
結し、該回路他端にデフロスト用膨張弁を介してデフロ
スト用熱交換器を連結し、該デフロスト用熱交換器を二
元側圧縮機の吸入管よりの分岐管と連結したことを特徴
とする二元冷凍機におけるデフロスト装置。 3、一元側蒸発器の伝熱管内に一元側冷媒が通過する流
路と二元側冷媒が通過する流路とを別途に設けたことを
特徴とする請求項2記載の二元冷凍機におけるデフロス
ト装置。 4、二元側凝縮器を空冷式とし、該凝縮器とデフロスト
用熱交換器とを合体し、デフロスト用熱交換器と該凝縮
器との熱源を同一としたことを特徴とする請求項2又は
3記載の二元冷凍機におけるデフロスト装置。 5、二元側凝縮器を水冷式とし、該凝縮器とデフロスト
用熱交換器とを合体し、デフロスト用熱交換器の熱源と
して二元側冷媒液を用いることを特徴とする請求項2又
は3記載の二次冷凍機におけるデフロスト装置。 6、空気又は水等を熱源とするデフロスト用熱交換器を
別設したことを特徴とする請求項2又は3記載の二元冷
凍機におけるデフロスト装置。
[Claims] 1. In a binary refrigerator that evaporates a binary refrigerant in order to condense the primary refrigerant in the primary condenser, the removal of the primary evaporator using a high-pressure gas refrigerant on the binary side A defrosting method in a binary refrigerator characterized by performing frosting. 2. A pipe line in which the primary side refrigerant circulates through the primary side compressor, condenser, expansion valve, and evaporator in this order and returns to the primary side compressor again, and a secondary pipe that condenses the primary side refrigerant through the primary side condenser. An evaporator for the primary refrigerant, and a pipeline in which the secondary refrigerant circulates from the primary condenser to the compressor, condenser, and expansion valve on the secondary side in this order, and returns to the primary condenser again. In the former refrigerator, the tip of the branch pipe from the discharge pipe of the dual-side compressor is connected to a separate circuit with the primary-side refrigerant passing through the primary-side evaporator, and the defrost expansion valve is connected to the other end of the circuit. 1. A defrosting device for a binary refrigerator, characterized in that the defrosting heat exchanger is connected to a branch pipe from a suction pipe of a binary compressor. 3. The binary refrigerating machine according to claim 2, wherein a flow path through which the primary refrigerant passes and a flow path through which the secondary refrigerant passes are separately provided in the heat transfer tube of the primary evaporator. Defrost device. 4. Claim 2, characterized in that the binary side condenser is air-cooled, the condenser and the defrost heat exchanger are combined, and the heat source of the defrost heat exchanger and the condenser is the same. Or the defrost device in the binary refrigerator according to 3. 5. Claim 2 or 5, characterized in that the binary side condenser is water-cooled, the condenser and a defrost heat exchanger are combined, and the binary side refrigerant liquid is used as a heat source for the defrost heat exchanger. 3. The defrost device in the secondary refrigerator according to 3. 6. The defrosting device for a binary refrigerator according to claim 2 or 3, further comprising a separate defrosting heat exchanger using air, water, or the like as a heat source.
JP12635588A 1988-05-24 1988-05-24 Defrosting in two-element refrigerator and its device Pending JPH01296067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12635588A JPH01296067A (en) 1988-05-24 1988-05-24 Defrosting in two-element refrigerator and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12635588A JPH01296067A (en) 1988-05-24 1988-05-24 Defrosting in two-element refrigerator and its device

Publications (1)

Publication Number Publication Date
JPH01296067A true JPH01296067A (en) 1989-11-29

Family

ID=14933132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12635588A Pending JPH01296067A (en) 1988-05-24 1988-05-24 Defrosting in two-element refrigerator and its device

Country Status (1)

Country Link
JP (1) JPH01296067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659770U (en) * 1993-01-20 1994-08-19 株式会社東洋製作所 Multi-source refrigerator
CN114234465A (en) * 2021-12-27 2022-03-25 上海理工大学 High-low temperature environment test box refrigerating system adopting multi-channel evaporator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513488Y1 (en) * 1967-07-03 1970-06-09
JPS536112U (en) * 1976-06-30 1978-01-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513488Y1 (en) * 1967-07-03 1970-06-09
JPS536112U (en) * 1976-06-30 1978-01-19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659770U (en) * 1993-01-20 1994-08-19 株式会社東洋製作所 Multi-source refrigerator
CN114234465A (en) * 2021-12-27 2022-03-25 上海理工大学 High-low temperature environment test box refrigerating system adopting multi-channel evaporator
CN114234465B (en) * 2021-12-27 2023-08-29 上海理工大学 High-low temperature environment test box refrigerating system adopting multichannel evaporator

Similar Documents

Publication Publication Date Title
KR101790462B1 (en) Defrost system for refrigeration device and cooling unit
CN100592007C (en) Air source heat pump type air conditioner and its defrosting method
US20090173091A1 (en) Multi-range composite-evaporator type cross-defrosting system
KR20190023010A (en) Continuous heating Air Conditioner system
BR0007808A (en) Steam compression method and system
WO2005057102A1 (en) Cooling box
NO174174B (en) Cooling and freezing facilities
KR100547669B1 (en) Heat pump system preventing refrigerants from freezing
US11965683B2 (en) Cooling system for low temperature storage
KR200178433Y1 (en) Evaporation device of refrigerator
RU2708761C1 (en) Refrigerating and/or freezing device
JPH01296067A (en) Defrosting in two-element refrigerator and its device
KR100859354B1 (en) Vapor compression refrigeration apparatus using vortex tube
JP6912673B2 (en) Defrost system
JP2005098581A (en) Freezing circuit and cooling device using the freezing circuit
KR20190026288A (en) Chilling system using waste heat recovery by chiller discharge gas
KR20120047009A (en) A defroster of refrigeration cycle
JP4270803B2 (en) Cold generation system
RU2064635C1 (en) Refrigerating machine temperature control set
CN218993788U (en) Ultralow temperature defrosting device
CN219264688U (en) Cold storage air cooler steam defrosting device
JP3082975U (en) Refrigerated defrosting equipment
CN211823237U (en) Refrigeration cycle system and refrigeration equipment with same
JPH0737867B2 (en) Defroster for dual cryogenic refrigerator
WO2016015768A1 (en) Refrigeration appliance having freezer evaporator defrost circuit