JPH0658356B2 - Measuring method for quench hardening of columnar material - Google Patents

Measuring method for quench hardening of columnar material

Info

Publication number
JPH0658356B2
JPH0658356B2 JP62319220A JP31922087A JPH0658356B2 JP H0658356 B2 JPH0658356 B2 JP H0658356B2 JP 62319220 A JP62319220 A JP 62319220A JP 31922087 A JP31922087 A JP 31922087A JP H0658356 B2 JPH0658356 B2 JP H0658356B2
Authority
JP
Japan
Prior art keywords
sound velocity
hardness
ultrasonic
quenching
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319220A
Other languages
Japanese (ja)
Other versions
JPH01161144A (en
Inventor
吉雄 大久保
秀秋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP62319220A priority Critical patent/JPH0658356B2/en
Publication of JPH01161144A publication Critical patent/JPH01161144A/en
Publication of JPH0658356B2 publication Critical patent/JPH0658356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波の音速の変化を利用して円柱材の外表面
から非破壊的に硬化層の厚さを測定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for nondestructively measuring the thickness of a hardened layer from the outer surface of a cylindrical material by utilizing the change in the sound velocity of ultrasonic waves.

超音波の音速は内在欠陥、材質、組織、圧力、温度等の
要因によって変化するが、本願は熱処理による組織の変
化を超音波音速の変化として検出し、超音波伝播経路の
硬さの変化を測定する方法に関する。
The sound velocity of ultrasonic waves changes depending on factors such as internal defects, materials, tissues, pressure, temperature, etc., but this application detects changes in tissues due to heat treatment as changes in ultrasonic sound velocity, and detects changes in hardness of ultrasonic propagation paths. Regarding how to measure.

(従来の技術) 材料の表層のみに焼入れを施して用いる鉄鋼材料は、そ
の焼入表面が他の材料との接触によって磨耗する場合が
多い。このため表面の硬さのみならず、内部の硬さ分布
も重要となってくる。例えば鋼板製造用の圧延用ロール
においては、外表面は摩耗及び使用中に発生する表面疵
除去のための研削によって減肉するため、一定の深さま
で使用出来るように内部の硬さが保持されている必要が
ある。この硬化された範囲が深いほど圧延ロールの寿命
が長くなる。
(Prior Art) A steel material used by quenching only the surface layer of the material often wears its quenched surface due to contact with another material. Therefore, not only the hardness of the surface but also the hardness distribution inside is important. For example, in a rolling roll for steel sheet production, the outer surface is thinned by abrasion and grinding to remove surface defects that occur during use, so the internal hardness is maintained so that it can be used to a certain depth. Need to be The deeper the hardened range, the longer the life of the rolling roll.

従来、硬化深度を非破壊的に測定する方法としては、焼
入による組織変化を磁気的性質の変化として検出する方
法が特公昭45-28274号に開示されている。
Conventionally, as a method of nondestructively measuring the hardening depth, Japanese Patent Publication No. 45-28274 discloses a method of detecting a structural change due to quenching as a change in magnetic properties.

また、別の方法として超音波伝播の音速を利用した方法
が特開昭53-32054号に開示されている。この方法の一例
として、第8図示のように、表層に焼入等による表面硬
化層21-1を有する検体21の表面に超音波発受信器24から
の超音波パルス信号を送信探触子22で入射させ、検体21
の内部に超音波を伝播させる。この伝播した超音波は反
対側の面に到達後、その一部が反射して戻ってくる。こ
の戻り超音波を受信探触子23で受けて再び超音波パルス
信号に変換し、前記超音波発受信器24で受信して発信か
ら受信までの時間Thを測定する。これとは別に硬化層を
有しない同じ材質、同じ寸法の検体21′に同様な方法で
超音波を伝播させ、この場合の発信から受信までの時間
Tnを測定する。この両データに基づき、次式から表面硬
化層の深さdを求めていた。
Further, as another method, a method utilizing the sound velocity of ultrasonic wave propagation is disclosed in JP-A-53-32054. As an example of this method, as shown in FIG. 8, an ultrasonic pulse signal from an ultrasonic wave transmitter / receiver 24 is transmitted to the surface of a specimen 21 having a surface hardened layer 21-1 by quenching or the like on its surface to transmit a probe 22. Specimen 21
Propagate ultrasonic waves inside the. This propagated ultrasonic wave reaches the surface on the opposite side, and then part of it is reflected back. This return ultrasonic wave is received by the reception probe 23, converted into an ultrasonic pulse signal again, and received by the ultrasonic wave transmitter / receiver 24, and the time Th from transmission to reception is measured. Separately from this, the ultrasonic wave is propagated in the same way to the specimen 21 'of the same material and the same size that does not have a hardened layer, and in this case the time from transmission to reception
Measure Tn. Based on these two data, the depth d of the surface-hardened layer was calculated from the following equation.

Ed:硬化層のヤング率 Et:非硬化層のヤング率 T:全体の厚さ (発明が解決しようとする問題点) 上述の従来例には次のような欠点がある。 Ed: Young's modulus of hardened layer Et: Young's modulus of non-hardened layer T: Overall thickness (Problems to be solved by the invention) The above-mentioned conventional example has the following drawbacks.

1)磁気的方法では表層近くの測定のみで、深さ90mm
(半径の30%)に及ぶ深い位置までの測定は困難であ
る。
1) The magnetic method only measures near the surface, and the depth is 90 mm.
It is difficult to measure to a deep position (30% of radius).

2)超音波伝播方法では板材等には有効な方法である
が、同一材質で同一寸法の別の検体が必要であり、厚板
等の場合には非硬化層に対して硬化層が薄く、変化率の
小さいので測定精度が低下するという欠点がある。
2) The ultrasonic wave propagation method is an effective method for a plate material or the like, but requires another specimen of the same material and having the same size. In the case of a thick plate or the like, the hardened layer is thinner than the non-hardened layer, Since the rate of change is small, there is a drawback that the measurement accuracy is reduced.

本発明は上述の欠点を解決して、円柱状の表層部に焼入
れを施した材料の焼入れによる硬さ分布状態を外表面か
ら半径の約30%の深さまで、非破壊的に測定出来る方法
を提供することを目的とする。
The present invention solves the above-mentioned drawbacks, and a method of nondestructively measuring the hardness distribution state by quenching of a material having a cylindrical surface layer portion from the outer surface to a depth of about 30% of the radius. The purpose is to provide.

(問題点を解決するための手段) 本発明は上述の目的を達成するために、表層に焼入を施
した円柱状1の焼入による硬化層の厚さを非破壊的に測
定する方法において、円柱材1の一点からこの円柱状1
の断面に内接する各種の正多角形の一辺である弧方向に
超音波パルスを順次入射し、上記各種の多角形の辺に沿
って伝播して来た上記超音波パルスを上記入射点で順次
受信して各層の超音波音速を求め、この超音波音速が伝
播媒体である円柱材1の硬さと相関性があることを利用
して各層の硬さを測定することにより焼入された円柱材
1の硬化深度を測定する方法である。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a method for nondestructively measuring the thickness of a hardened layer by quenching of a cylindrical column 1 whose surface is quenched. From one point of columnar material 1
The ultrasonic pulse is sequentially incident in the arc direction, which is one side of various regular polygons inscribed in the cross section of, and the ultrasonic pulse propagated along the sides of the various polygons is sequentially incident at the incident point. The ultrasonic wave velocity of each layer is received, and the hardness of each layer is measured by utilizing the fact that this ultrasonic wave velocity correlates with the hardness of the columnar material 1 which is a propagation medium. It is a method of measuring the curing depth of 1.

(作用) 鋼の焼入れによる硬さ増加の主因は、鋼がオーステナイ
ト領域から急冷されることにより、γ鉄(f.c.c)にて
多量に固溶していた炭素をα鉄(b.c.c)の炭素固溶量
まで炭素を放出せずに炭素を固溶するマルテンサイト変
態と呼ばれる八面体中心に炭素を固溶し、炭素原子が結
晶格子を上下に歪ませるために発生するものと考えられ
ている。この歪みは弾性定数の変化となり、これは波動
方程式の基本式である。(1)式に示されるように、音速
の変化となって現れる。
(Function) The main cause of the increase in hardness due to quenching of steel is the fact that the steel is rapidly cooled from the austenite region, causing a large amount of carbon that was solid-solved in γ-iron (fcc) to form solid-solution in α-iron (bcc). It is believed that carbon is dissolved in the octahedral center called the martensite transformation, which is a solid solution of carbon without releasing carbon up to a certain amount, and carbon atoms distort the crystal lattice up and down. This strain results in a change in elastic constant, which is the basic equation of the wave equation. As shown in equation (1), it appears as a change in sound velocity.

焼入された円柱材の組織は、第2図に示すようにマルテ
ンサイト含有量が外表面に近いほど高い組織形態とな
り、その硬さはマルテンサイト含有量と比例している。
同図ではマルテンサイト組織、はベイナイト組織、
はパーライト組織、はγ化したパーライト組織、
は焼入前組織である。
As shown in FIG. 2, the structure of the hardened columnar material has a higher morphology as the martensite content is closer to the outer surface, and its hardness is proportional to the martensite content.
In the figure, the martensite structure, the bainite structure,
Is a pearlite structure, is a gamma-ized pearlite structure,
Is the structure before quenching.

材料は音速はマルテンサイトによって大きく変化するこ
とから、その含有量に比例して音速が変化し、音速と硬
さの関係はマルテンサイトの含有量によって定まること
になる。焼入れされたロールのシャルピー硬度(Hs)と
外表面からの深さ(mm)の関係を第3図に示した。又、
その時のロール内を伝播する音速(m/sec)と外表面か
らの深さ(mm)の関係を第4図に示した。第3図と第4
図から得られるシャルピー硬度(Hs)と音速(m/sec)
との関係は第5図に示すように、Hs=70〜100 の間では
比例しており、この関係から超音波音速分布により硬さ
分布を推定することが可能である。
Since the sound velocity of a material greatly changes depending on the content of martensite, the sound velocity changes in proportion to its content, and the relationship between the sound velocity and hardness is determined by the content of martensite. The relationship between the Charpy hardness (Hs) of the hardened roll and the depth (mm) from the outer surface is shown in FIG. or,
Fig. 4 shows the relationship between the speed of sound propagating in the roll (m / sec) and the depth from the outer surface (mm) at that time. Figures 3 and 4
Charpy hardness (Hs) and sound velocity (m / sec) obtained from the figure
As shown in FIG. 5, the relationship with and is proportional between Hs = 70 to 100, and from this relationship, the hardness distribution can be estimated from the ultrasonic sound velocity distribution.

測定された音速値は各伝播経路における平均音速である
ため、各点における音速値は正n角形と正n-1角形の平
均音速の比較による一次式の近似的方法によって求めら
れる。第6図において、距離Bの中心点BPにおける音速
は距離Mを通る正n角形の平均音速(VM)とほぼ等し
い。距離Aの中心点APの音速は距離Lにおける正n-1角
形の平均音速(VL)から距離Bにおける正n角形の平均
音速(VM)を差し引いた音速として求められ、点Pにお
ける音速(VPP)はBP、APにおける音速と位置関係から
(2) 式によって求められる。
Since the measured sound velocity value is the average sound velocity in each propagation path, the sound velocity value at each point is obtained by an approximate method of a linear expression by comparing the average sound velocity of a regular n-gon and a regular n-1 polygon. In FIG. 6, the sound velocity at the center point BP of the distance B is almost equal to the average sound velocity (VM) of the regular n-gon passing through the distance M. The sound velocity at the center point AP of the distance A is obtained by subtracting the mean sound velocity (VM) of the regular n-gon at the distance B from the mean sound velocity (VL) of the regular n-1 polygon at the distance L, and the sound velocity at the point P (VPP ) Is based on the sound velocity and positional relationship in BP and AP.
It is calculated by the equation (2).

VP=VM+〔A/((L/VL)-(B/VM))-VM〕〔(L+A)/L〕……(2) 計算によって求められた各経路の音速VP及びVBは、測定
された全ての経路の位置と音速に対して近似的な平均処
理を行うことにより、第4図に示す音速分布図として求
められる。
VP = VM + [A / ((L / VL)-(B / VM))-VM] [(L + A) / L] (2) The sound speeds VP and VB of each path calculated are By performing an approximate averaging process on the positions and sound velocities of all the measured paths, the sound velocity distribution chart shown in FIG. 4 can be obtained.

この結果、各層の硬度分布が第5図から求められる。As a result, the hardness distribution of each layer can be obtained from FIG.

(実施例) 超音波は第1図に示すように、円柱材の断面に内接する
正n角形(nは4以上)の第1番目の辺である弧方向に
円柱材の外周の一点から超音波パルスを送信探触子7で
入射する。この超音波パルスは上記正n角形の辺に沿っ
て進行し円柱状の表面で内部反射を繰り返し、第n番目
の辺を通って元の入射点に戻って来る。この超音波パル
スは入射点に前記正n角形の第n番目の辺方向に設けら
れている受信探触子9で受け、この間の伝播時間を図示
しない計測器で検出する。
(Example) As shown in FIG. 1, ultrasonic waves are transmitted from a point on the outer circumference of a cylindrical material in an arc direction which is the first side of a regular n-gon (n is 4 or more) inscribed in the cross section of the cylindrical material. A sound wave pulse is incident on the transmission probe 7. This ultrasonic pulse travels along the regular n-side and repeats internal reflection on the cylindrical surface, and returns to the original incident point through the n-th side. The ultrasonic pulse is received at the incident point by the reception probe 9 provided in the n-th side direction of the regular n-sided polygon, and the propagation time during this time is detected by a measuring device (not shown).

この操作を正n角形のnが4、5、6、…と必要な回数
だけ測定し、この測定データを図示しないマイクロコン
ピュータにより計算処理して表示するものである。
This operation is performed by measuring the required number of times such that the regular n-sided polygon n is 4, 5, 6, ..., And displaying the measured data by calculation processing by a microcomputer (not shown).

上記送信探触子7、受信探触子9は第7図示の構造の保
持装置により保持されている。即ち、フレーム2の中央
部に水等の液体の媒体5を入れる媒体槽4がフレーム2
を貫通して設けられている。フレーム2は脚2-1 で媒体
槽4の底の中央部が円柱材1の表面に僅かに接触するよ
うに保持されている。フレーム2には脚2-1が設けられ
ている両側で固定され、かつ、上記媒体槽4の円柱状1
との接触点を中心とする円形のならい板3が設けられて
いる。このならい板3にはその両側面に摺動可能に2個
の保持部材8、8が設けられており、この保持部材8に
は一方には送信探触子7、他方には受信探触子9が上記
円柱材1との接触点に向けて固定されている。この保持
部材8の上端には切り込み8-1 が設けられており、モー
タ19で駆動される角度調節ねじ6に螺合しているスラ
イダー11に植設したピンと係合している。角度調節ねじ
6は中央を境として左右が逆方向のねじとなっており、
回転により両保持部材8、8が同一角度で接近若しくは
離隔される。また、他端には角度検出器10が設けられて
おり、送信探触子7及び受信探触子9の円柱状1に対す
る傾斜角が検出されるようになっている。
The transmitting probe 7 and the receiving probe 9 are held by a holding device having the structure shown in FIG. That is, the medium tank 4 for containing the liquid medium 5 such as water in the center of the frame 2 is
Is provided to penetrate. The frame 2 is held by legs 2-1 such that the center of the bottom of the medium tank 4 slightly contacts the surface of the columnar material 1. The frame 2 is provided with legs 2-1 and is fixed on both sides, and the columnar shape 1 of the medium tank 4 is provided.
A circular follower plate 3 having a contact point with the center is provided. This holding plate 3 is provided with two holding members 8, 8 slidably on both sides thereof. The holding member 8 has a transmitting probe 7 on one side and a receiving probe on the other side. 9 is fixed toward the contact point with the columnar material 1. A notch 8-1 is provided at the upper end of the holding member 8 and engages with a pin planted on a slider 11 screwed to an angle adjusting screw 6 driven by a motor 19. The angle adjusting screw 6 is a screw whose left and right are opposite to each other with the center as a boundary.
Due to the rotation, both holding members 8 and 8 approach or separate at the same angle. Further, an angle detector 10 is provided at the other end so that the tilt angles of the transmission probe 7 and the reception probe 9 with respect to the columnar shape 1 can be detected.

次にこの装置の動作について説明する。Next, the operation of this device will be described.

先ず、前記接触点を通る円柱材1の半径方向に対する各
探触子7、9の傾斜角θ(゜)を前記n角形のnの数値
により次のように調整する。
First, the inclination angle θ (°) of each of the probes 7 and 9 with respect to the radial direction of the cylindrical member 1 passing through the contact point is adjusted as follows by the numerical value of n of the n-sided polygon.

ただしn=7の場合の角度はまるめてある。 However, the angle is rounded when n = 7.

上記のそれぞれの角度に調整した後、超音波パルスを入
射すれば、各n角形の経路の音速が測定され、第4図の
音速分布図が作成される。
When the ultrasonic pulse is incident after adjusting the respective angles described above, the sound velocity of each n-gonal path is measured, and the sound velocity distribution chart of FIG. 4 is created.

この音速分布図に基づき、第5図から外表面からの硬さ
分布が求められる。
Based on this sound velocity distribution chart, the hardness distribution from the outer surface can be obtained from FIG.

(発明の効果) 本発明は上述のように、焼入れ済の円柱状のみで表面か
ら中央方向にかけての硬さ分布が測定出来るので、従来
例のように焼入前の検体は必要としない。
(Effects of the Invention) As described above, the present invention can measure the hardness distribution from the surface to the central direction only with the quenched columnar shape, so that a specimen before quenching is not required unlike the conventional example.

また、測定可能な深さも円柱材の半径の約30%まで可能
であるので、従来例の場合より著しく深くまで測定可能
である。
Further, since the measurable depth can be up to about 30% of the radius of the columnar material, the depth can be remarkably deeper than that of the conventional example.

【図面の簡単な説明】[Brief description of drawings]

第1図は超音波の伝播経路の説明図、第2図は焼入れに
よる組織変化の説明図、第3図は焼入れ後の硬さ分布
図、第4図は焼入れ後の音速分布図、第5図は音速と硬
さの特性図、第6図は音速関係図、第7図は探触子保持
装置の構成図、第8図は従来の超音波方式の焼入れ硬化
深度測定方法の説明図である。 1:円柱材、7:送信探触子、9:受信探触子。
FIG. 1 is an explanatory view of a propagation path of ultrasonic waves, FIG. 2 is an explanatory view of a microstructure change due to quenching, FIG. 3 is a hardness distribution diagram after quenching, FIG. 4 is a sound velocity distribution diagram after quenching, and FIG. Fig. 6 is a characteristic diagram of sound velocity and hardness, Fig. 6 is a sound velocity relationship diagram, Fig. 7 is a configuration diagram of a probe holding device, and Fig. 8 is an explanatory diagram of a conventional ultrasonic hardening quench hardening depth measuring method. is there. 1: Cylindrical material, 7: Transmission probe, 9: Reception probe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表層に焼入を施した円柱状の焼入による硬
化層の厚さを非破壊的に測定する方法において、円柱材
の一点からこの円柱状の断面に内接する各種の正多角形
の一辺である弧方向に超音波パルスを順次入射し、上記
各種の多角形の辺に沿って伝播して来た上記超音波パル
スを上記入射点で順次受信して各層の超音波音速を求
め、この超音波音速が伝播媒体である円柱材の硬さと相
関性があることを利用して各層の硬さを測定することを
特徴とする円柱材の焼入硬化深度測定方法。
1. A method of nondestructively measuring the thickness of a hardened layer formed by quenching a columnar surface having a quenching applied thereto, comprising: The ultrasonic pulse is sequentially incident in the arc direction which is one side of the polygon, and the ultrasonic pulse propagated along the sides of the various polygons is sequentially received at the incident point to determine the ultrasonic velocity of each layer. A method for measuring the depth of quench hardening of a cylindrical material, characterized in that the hardness of each layer is measured by utilizing the fact that the ultrasonic velocity of sound is correlated with the hardness of the cylindrical material that is the propagation medium.
JP62319220A 1987-12-16 1987-12-16 Measuring method for quench hardening of columnar material Expired - Lifetime JPH0658356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319220A JPH0658356B2 (en) 1987-12-16 1987-12-16 Measuring method for quench hardening of columnar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319220A JPH0658356B2 (en) 1987-12-16 1987-12-16 Measuring method for quench hardening of columnar material

Publications (2)

Publication Number Publication Date
JPH01161144A JPH01161144A (en) 1989-06-23
JPH0658356B2 true JPH0658356B2 (en) 1994-08-03

Family

ID=18107750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319220A Expired - Lifetime JPH0658356B2 (en) 1987-12-16 1987-12-16 Measuring method for quench hardening of columnar material

Country Status (1)

Country Link
JP (1) JPH0658356B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567471B2 (en) * 2010-12-28 2014-08-06 非破壊検査株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
JP5567472B2 (en) * 2010-12-28 2014-08-06 非破壊検査株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
JP6893187B2 (en) * 2018-02-19 2021-06-23 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332054A (en) * 1976-09-06 1978-03-25 Komatsu Mfg Co Ltd Method of measuring hardened depth on surface
JPS6042415B2 (en) * 1978-03-29 1985-09-21 株式会社クボタ Adapter for ultrasonic flaw detection of pipes
JPS5716348A (en) * 1980-07-04 1982-01-27 Hitachi Ltd Nondestructive measuring method and equipment for hardened layer
JPS60205357A (en) * 1984-03-30 1985-10-16 Toyota Motor Corp Ultrasonic flaw detecting method
JPS60205353A (en) * 1984-03-30 1985-10-16 Sumitomo Metal Ind Ltd Method for measuring hardened depth of rolled material
JPH0668484B2 (en) * 1985-09-25 1994-08-31 株式会社神戸製鋼所 Ultrasonic flaw detection method for stainless cladding

Also Published As

Publication number Publication date
JPH01161144A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
Toozandehjani et al. On the correlation between microstructural evolution and ultrasonic properties: a review
JP3653984B2 (en) Ultrasonic flaw detection method for bearing rings
JPH02307053A (en) Method and device for measuring fine scattered body interval space distribution
US4574637A (en) Method for measuring surface and near surface properties of materials
Collins et al. Ultrasonic non-destructive evaluation of the matrix structure and the graphite shape in cast iron
JPH0658356B2 (en) Measuring method for quench hardening of columnar material
Lee et al. Ultrasonic nondestructive evaluation of matrix structures and nodularity in cast irons
JPH0614026B2 (en) Ultrasonic measurement of the depth of the hardened layer
Du et al. Characterization of microstructural anisotropy in pearlitic steel with mode-converted ultrasonic scattering
Sayers Scattering of ultrasound by minority phases in polycrystalline metals
Dally et al. Measuring the stress intensity factor for propagating cracks with strain gages
Canella et al. Ultrasonic inspection of hot thick steel products
JPH05281201A (en) Method and apparatus for measurement of depth of quenched and hardened layer
Augereau et al. Non-destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments
RU2405140C1 (en) Method of determining graininess characteristics of flat metal articles using ultrasound
Good et al. Measurement of thin case depth in hardened steel by ultrasonic pulse-echo angulation techniques
JP2012189352A (en) Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface
Shattuck et al. Correction of refraction and other angle errors in beam tracking speed of sound estimations using multiple tracking transducers
JP3510137B2 (en) Ultrasonic thickness measurement method and device
Curtis et al. Texture studies of austenitic weld metal using elastic surface waves
Fay Ultrasonic backscattering: fundamentals and applications
JPS6326340B2 (en)
JPS63243746A (en) Ultrasonic probe
JPS5847243A (en) Method of and apparatus for monitoring phase modification of steel
Engle et al. Relationship between near-surface ultrasonic shear-wave backscatter and grain size in metals