JPH0657427A - Hard carbon film coated sintered hard alloy tool and its production - Google Patents

Hard carbon film coated sintered hard alloy tool and its production

Info

Publication number
JPH0657427A
JPH0657427A JP21524192A JP21524192A JPH0657427A JP H0657427 A JPH0657427 A JP H0657427A JP 21524192 A JP21524192 A JP 21524192A JP 21524192 A JP21524192 A JP 21524192A JP H0657427 A JPH0657427 A JP H0657427A
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
base material
tool
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21524192A
Other languages
Japanese (ja)
Inventor
Seiji Kameoka
誠司 亀岡
Toshiki Sato
俊樹 佐藤
Tsutomu Ikeda
孜 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21524192A priority Critical patent/JPH0657427A/en
Publication of JPH0657427A publication Critical patent/JPH0657427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adhesion of the base of the base metal of a tool and a hard carbon film by coating the base metal with W, bringing an excited carbon-contg. gas into contact with it to form porous WC and thereafter coating it with a hard carbon film having small grain diameter. CONSTITUTION:The surface of the base metal of the tool of WC sintered hard alloy is coated with metallic W into about 1 to 3mum thickness. An excited carbon-cong. gas is brought into contact with the coated metallic W to form porous WC having >=0.1mum average grain diameter as a substrate. The substrate is coated with a hard carbon film having average grain diameter smaller than that of the porous WC by using a vapor phase synthesis method. In this way, the prevention of the diffusion of Co on the surface of the base metal can be attained, by which the hard carbon film coated sintered hard alloy tool in which the adhesion of the base metal and hard carbon film is excellent can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、WC系の超硬合金を工
具母材とし、該母材にダイヤモンドや非晶質炭素等の硬
質炭素膜を被覆した硬質炭素膜被覆超硬合金工具および
その製造方法に関し、殊に硬質炭素膜の母材への良好な
密着性を達成し、切削工具や耐摩工具として最適な硬質
炭素被覆超硬合金工具、およびその様な工具を製造する
為の方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard carbon film-coated cemented carbide tool in which a WC-based cemented carbide is used as a tool base material and the base material is coated with a hard carbon film such as diamond or amorphous carbon. Regarding its manufacturing method, in particular, a hard carbon coated cemented carbide tool that achieves good adhesion to a base material of a hard carbon film and is optimal as a cutting tool or wear resistant tool, and a method for manufacturing such a tool Related to the improvement of.

【0002】[0002]

【従来の技術】ダイヤモンドや非晶質炭素等の硬質炭素
は、従来硬質材料として汎用されてきたアルミナ,窒化
珪素,タングステンカーバイド等に比べて極めて高い硬
度を有し、また熱伝導率も高いことから、切削工具や耐
摩工具等の素材としての応用開発が盛んに進められてい
る。
2. Description of the Related Art Hard carbon such as diamond and amorphous carbon has extremely high hardness and high thermal conductivity as compared with alumina, silicon nitride, tungsten carbide and the like which have been widely used as conventional hard materials. Therefore, application development as a material for cutting tools, wear resistant tools, etc. is being actively pursued.

【0003】ダイヤモンドを切削工具の素材として応用
する技術の一例としては、超高圧・高温下で焼結して合
成されたダイヤモンドを用いたダイヤモンド焼結体工具
も知られているが、高価であり、またダイヤモンドより
高硬度のものがないとの理由から複雑な形状への加工が
困難であり、形状的にも制約を受けることになる。
As an example of a technique for applying diamond as a material for a cutting tool, a diamond sintered body tool using diamond synthesized by sintering under ultrahigh pressure and high temperature is known, but it is expensive. In addition, it is difficult to process into a complicated shape because there is no one having a hardness higher than that of diamond, and the shape is also restricted.

【0004】最近ではマイクロ波や熱フィラメント等で
励起状態にした炭素含有ガス(例えば水素と炭化水素の
混合ガス)を利用した化学気相合成法によって、ダイヤ
モンドや非晶質炭素等の硬質炭素膜を母材上に形成する
ことが可能となっており、この技術では複雑形状の工具
に対しても容易に且つ安価に硬質炭素膜を形成できるこ
とから、この技術を応用して工具の開発が活発に進めら
れている。
Recently, a hard carbon film such as diamond or amorphous carbon is formed by a chemical vapor phase synthesis method using a carbon-containing gas (for example, a mixed gas of hydrogen and hydrocarbon) excited by a microwave or a hot filament. Since it is possible to form a hard carbon film on a base material, and this technology can easily and inexpensively form a hard carbon film even for tools with complex shapes, tool development is actively applying this technology. Is being advanced to.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、気相合
成した硬質炭素膜は、膜の内部応力が大きく、しかも母
材との密着強度が弱いため、例えば切削工具にコーティ
ングしても切削中に容易に剥離し、硬質炭素本来の高硬
度、高熱伝導性という優れた特性を生かせないという問
題がある。特に工具母材がWC系超硬合金の様に結合剤
として5〜20%程度のCoを含んでいる場合は、合成時
に炭素がCo中に溶解して硬質炭素膜が形成されず、た
とえ部分的に硬質炭素膜が形成されても工具母材との密
着強度が十分でなく、簡単に剥離してしまうという欠点
がある。従って、WC系超硬合金母材と硬質炭素膜にお
ける密着性を向上させる為の最大のポイントは、母材表
面のCo拡散の防止を図ることであると言われている。
However, the hard carbon film synthesized by vapor phase has a large internal stress of the film and a weak adhesion strength with the base material. There is a problem in that the excellent characteristics of hard carbon such as high hardness and high thermal conductivity cannot be fully utilized. Especially when the tool base material contains about 5 to 20% of Co as a binder like WC cemented carbide, carbon is not dissolved in Co during synthesis to form a hard carbon film. However, even if a hard carbon film is formed, the adhesion strength to the tool base material is not sufficient, and there is a drawback that peeling occurs easily. Therefore, it is said that the most important point for improving the adhesion between the WC-based cemented carbide base material and the hard carbon film is to prevent Co diffusion on the base material surface.

【0006】こうした不都合を解消する為の一つの提案
として、超硬合金母材表面に下地層を形成することによ
って、超硬合金母材と硬質炭素膜の密着性を向上させよ
うという試みがなされている。例えば、特開昭63-19987
0 号,同58-126972 号,特開平1-201478号および同1-20
1480号等において、超硬合金母材表面に下地層を形成す
る方法が開示されている。しかしながらこれらの技術に
おいては、複雑な処理工程が必要となるばかりでなく、
下地層を炭化物や酸化物として母材表面に予め形成して
おくので、下地層と母材との密着性がなお不十分であ
り、実用に耐え得る段階には至らないという欠点があっ
た。
As one of the proposals for solving such inconvenience, an attempt has been made to improve the adhesion between the cemented carbide base material and the hard carbon film by forming an underlayer on the surface of the cemented carbide base material. ing. For example, JP-A-63-19987
No. 0, No. 58-126972, JP-A-1-201478 and No. 1-20
No. 1480 and the like disclose a method of forming an underlayer on the surface of a cemented carbide base material. However, these techniques not only require complicated processing steps, but also
Since the underlayer is previously formed as a carbide or oxide on the surface of the base material, the adhesion between the underlayer and the base material is still insufficient, and there is a drawback that it cannot reach the stage of practical use.

【0007】一方、特開平1-275759号においても、超硬
合金母材上に下地層を形成することによって、母材表面
のCo拡散防止を図った技術が提案されている。この技
術においては、下地層としてIVa,Va,VIa族金
属およびSiから選ばれる一種以上の金属を被覆し、こ
れらの金属を炭化させて下地層を形成しつつ硬質炭素膜
を形成することによって、密着性の向上を図ろうとする
ものである。しかしながらこの技術においても、期待す
るほどの密着性向上効果が得られていない。即ち、この
技術においては、合成温度が900 ℃と比較的高く、合成
初期における硬質炭素の核発生よりも前記金属の炭化反
応が優先的に進行し、硬質炭素の核発生密度が大幅に抑
制されてしまうことになる。その結果、硬質炭素膜の合
成そのものが抑制され、或はたとえ膜状になったとして
も下地層との界面にはボンドが多数残留して良好な密着
性が得られない。またこの技術では、下地層の種類とし
てIVa,Va,VIa族やSi等の金属が示されてい
るが、これらの金属の炭化物と超硬合金との熱膨張係数
が異なっていることが多く、母材と下地層の密着性も悪
くなる。
On the other hand, Japanese Patent Laid-Open No. 1-275759 also proposes a technique for preventing Co diffusion on the surface of the base material by forming an underlayer on the base material of the cemented carbide. In this technique, one or more metals selected from Group IVa, Va, VIa metals and Si are coated as an underlayer, and these metals are carbonized to form a hard carbon film while forming an underlayer. The purpose is to improve the adhesion. However, even with this technique, the expected effect of improving the adhesiveness has not been obtained. That is, in this technology, the synthesis temperature is relatively high at 900 ° C, the carbonization reaction of the metal is preferentially promoted over the nucleation of hard carbon in the initial stage of synthesis, and the nucleation density of hard carbon is significantly suppressed. Will be lost. As a result, the synthesis of the hard carbon film itself is suppressed, or even if it becomes a film, a large number of bonds remain at the interface with the underlying layer, and good adhesion cannot be obtained. Further, in this technique, a metal such as IVa, Va, VIa group or Si is shown as the type of the underlayer, but the thermal expansion coefficient of the carbide of these metals and the cemented carbide is often different, Adhesion between the base material and the underlayer also deteriorates.

【0008】本発明はこうした状況のもとになされたも
のであって、その目的は、超硬合金母材と硬質炭素膜の
密着性に優れた硬質炭素膜被覆超硬合金工具、およびそ
の様な工具を製造する為の有用な方法を提供することに
ある。
The present invention has been made under these circumstances, and an object thereof is a hard carbon film-coated cemented carbide tool excellent in adhesion between a cemented carbide base material and a hard carbon film, and such a tool. It is to provide a useful method for manufacturing a simple tool.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明方法は、WC系の超硬合金を工具母材とし、下地層
上に気相合成法によって硬質炭素膜を被覆して硬質炭素
膜被覆超硬合金工具を製造するに当たり、前記母材表面
に金属Wを被覆し、次いで励起した炭素含有ガスを該金
属Wに接触させて平均粒径が0.1 μm 以上の多孔質WC
を下地層として形成した後、気相合成法を適用して前記
多孔質WCの結晶粒径よりも小さい平均粒径の硬質炭素
膜で下地層表面を被覆する点に要旨を有するものであ
り、この方法を実施することによって、密着性に優れた
硬質炭素膜被覆超硬合金工具が得られる。
According to the method of the present invention which has achieved the above object, a WC-based cemented carbide is used as a tool base material, and a hard carbon film is coated on the underlayer by a vapor phase synthesis method. In producing a carbon film-coated cemented carbide tool, a metal W is coated on the surface of the base material, and then an excited carbon-containing gas is brought into contact with the metal W to form a porous WC having an average particle size of 0.1 μm or more.
Is formed as an underlayer, and the vapor phase synthesis method is applied to coat the underlayer surface with a hard carbon film having an average particle size smaller than the crystal grain size of the porous WC. By carrying out this method, a hard carbon film-coated cemented carbide tool having excellent adhesion can be obtained.

【0010】[0010]

【作用】本発明者らは、上記課題を解決する為、様々な
角度から検討を加えた。そしてまずWC系超硬合金母材
表面のCo拡散防止に最も効果を発揮する下地層の素材
は、前記超硬合金の主成分であるWCが最も望ましいこ
とがわかった。即ち他の炭化物を下地層として用いた場
合は、硬質炭素膜との密着性が十分であっても、母材で
ある超硬合金との密着性が劣る。しかし、下地層がWC
であればこの様な不都合は生じないことがわかった。
In order to solve the above problems, the present inventors have studied from various angles. First, it was found that WC, which is the main component of the cemented carbide, is the most desirable as the material of the underlayer that is most effective in preventing Co diffusion on the surface of the WC-based cemented carbide base material. That is, when another carbide is used as the underlayer, the adhesion with the hard carbon film is poor, but the adhesion with the cemented carbide as the base material is poor. However, the underlayer is WC
Then, it turns out that such inconvenience does not occur.

【0011】またWCからなる下地層を母材表面上に形
成し、その上に硬質炭素膜を形成する手段としては、W
C系超硬合金母材表面に金属Wを被覆し、次いで励起し
た炭素含有ガスを該金属Wに接触させて平均粒径が0.1
μm 以上の多孔質WCを下地層として形成した後、気相
合成法を適用することによって、前記多孔質WCの結晶
粒径(従って、WCは多結晶性である)よりも小さい平
均粒径の硬質炭素膜で下地層表面を被覆することが最適
であることを見出し、本発明を完成した。
Further, as a means for forming an underlayer made of WC on the surface of the base material and forming a hard carbon film thereon, W is used.
The surface of the C-based cemented carbide base material is coated with the metal W, and then the excited carbon-containing gas is brought into contact with the metal W to obtain an average particle size of 0.1.
After forming a porous WC having a size of μm or more as an underlayer, a vapor phase synthesis method is applied to obtain an average particle size smaller than that of the porous WC (hence, WC is polycrystalline). The inventors have found that it is optimal to coat the surface of the underlayer with a hard carbon film, and completed the present invention.

【0012】本発明では上述の如く、超硬合金母材表面
に被覆した金属Wに、励起した炭素含有ガスを接触させ
て炭化させることによって、平均粒径0.1 μm 以上の多
孔質WCを下地層として形成する。そしてこの多孔質W
Cの内部に入り込む様にして、前記WCの結晶粒径より
小さい平均粒径の硬質炭素膜を成長させることによっ
て、前記下地層と硬質炭素膜の接触面積の著しい増大を
図り、これによって両者の密着性向上を達成したもので
ある。またこうした観点からして、下地層を形成した
後、該下地層表面に微細な疵を形成し、その後その上に
硬質炭素膜を被覆する様にしてもよい。
In the present invention, as described above, the metal W coated on the surface of the cemented carbide base material is brought into contact with an excited carbon-containing gas to carbonize the metal W, thereby carbonizing the porous Wc having an average particle diameter of 0.1 μm or more. To form as. And this porous W
By growing a hard carbon film having an average particle size smaller than the crystal grain size of WC so as to enter the inside of C, the contact area between the underlayer and the hard carbon film is remarkably increased. Achieved improved adhesion. From this point of view, after forming the underlayer, fine flaws may be formed on the surface of the underlayer, and then a hard carbon film may be coated thereon.

【0013】尚本発明において、超硬合金母材表面に被
覆する金属Wの厚さは1〜3μm とするのが好ましい。
即ち厚さが1μm 未満であると母材である超硬合金から
Coが拡散してしまい、3μm を超えると下地層と母材
との熱膨張係数の差による応力の影響が無視できなくな
り、いずれにしても剥離が生じ易くなる。また金属Wを
炭化する際の温度は、WCの平均粒径を0.1 μm 以上に
するという観点からして500 〜1000℃程度が好ましい。
更に、本発明において下地層上に被覆される硬質炭素膜
の厚さは、特に限定するものではないが、実用的には3
〜20μm 程度で良く、より好ましくは10〜20μm 程度で
ある。
In the present invention, the thickness of the metal W coating the surface of the cemented carbide base material is preferably 1 to 3 μm.
That is, if the thickness is less than 1 μm, Co diffuses from the cemented carbide as the base material, and if it exceeds 3 μm, the effect of stress due to the difference in the thermal expansion coefficient between the underlayer and the base material cannot be ignored, and However, peeling is likely to occur. The temperature at which the metal W is carbonized is preferably about 500 to 1000 ° C. from the viewpoint that the average particle size of WC is 0.1 μm or more.
Further, in the present invention, the thickness of the hard carbon film coated on the underlayer is not particularly limited, but practically 3
It is about 20 to 20 μm, more preferably about 10 to 20 μm.

【0014】以下本発明を実施例によって更に説明する
が、下記実施例は本発明を限定する性質のものではな
く、前・後記の趣旨に徴して設計変更することはいずれ
も本発明の技術的範囲に含まれるものである。例えば下
記実施例では、金属Wのコーティング法としてイオンプ
レーティング法を、硬質炭素膜のコーティング方法とし
てマイクロ波プラズマCVD法を示したが、前者におい
てはその他のPVD法を、後者においてはその他のCV
D法(熱フィラメント法、高周波プラズマCVD法等)
を用いることができる。また下記実施例では、チップお
よびドリルとして適用する場合について示したが、本発
明工具はこれらに限らず例えばエンドミルにも適用でき
るのは勿論である。
The present invention will be further described below with reference to examples, but the following examples are not of a nature limiting the present invention, and any modification of the design in view of the spirits of the preceding and the following will be technical aspects of the present invention. It is included in the range. For example, in the following examples, the ion plating method was used as the method for coating the metal W and the microwave plasma CVD method was used as the method for coating the hard carbon film. However, other PVD methods are used in the former case and other CV methods are used in the latter case.
D method (hot filament method, high frequency plasma CVD method, etc.)
Can be used. Further, in the following embodiments, the case where the tool of the present invention is applied as a tip and a drill is shown, but it goes without saying that the tool of the present invention is not limited to these and can be applied to, for example, an end mill.

【0015】[0015]

【実施例】【Example】

実施例1 超硬合金母材として、WC−6%Coのスローアウェイ
チップ(形状SPGN)を用い、このチップの逃げ面お
よびすくい面にイオンプレーティング法によって金属W
をコーティングした。このとき、金属Wの厚さは0.5 μ
m ,1.0 μm ,2.0 μm,3.0 μm および4.0 μm とし
た。次に、マイクロ波プラズマCVD法を適用して励起
したメタン−水素混合ガスに、前記金属Wを1時間接触
させた。尚このときの母材温度は約750 ℃とした。母材
表面のSEM観察およびX線回折によれば、前記金属W
は平均粒径0.6 μmの多孔質WC(多結晶性膜)に変化
していることが確認された。引き続きこれらの母材を、
ダイヤモンド砥粒(粒径約0.5 μm )を分散させたエタ
ノール懸濁液に浸漬し、超音波処理を施すことによって
多孔質WCの表面に微細な疵を生成した。
Example 1 As a cemented carbide base material, a throwaway tip (shape SPGN) of WC-6% Co was used, and a metal W was formed on the flank and rake surface of this tip by an ion plating method.
Was coated. At this time, the thickness of the metal W is 0.5 μ
m, 1.0 μm, 2.0 μm, 3.0 μm and 4.0 μm. Next, the metal W was brought into contact with the methane-hydrogen mixed gas excited by applying the microwave plasma CVD method for 1 hour. The base material temperature at this time was about 750 ° C. According to SEM observation and X-ray diffraction of the surface of the base material, the metal W
Was confirmed to have changed to a porous WC (polycrystalline film) having an average particle size of 0.6 μm. Continue to use these base materials
Fine flaws were formed on the surface of the porous WC by immersing it in an ethanol suspension in which diamond abrasive grains (particle size: about 0.5 μm) were dispersed and performing ultrasonic treatment.

【0016】これらの母材に、マイクロ波プラズマCV
D法を適用して励起したメタン−水素混合ガスで約12時
間気相合成し、硬質炭素膜を厚さ約15μm 形成した。尚
このときの合成条件は、母材温度:900 ℃,メタン濃
度:2容量%とした。また比較のため、下地層をコーテ
ィングしない以外は同一のチップも作成した。ラマン分
析およびX線回折分析の結果、下地層表面には、ダイヤ
モンドと非晶質炭素の混合物からなり、ビッカース硬度
が7000〜8000である硬質炭素膜が形成されていることが
確認された。上記6種のチップを用いて切削試験を行
い、その切削寿命を比較した。このとき被削材はAl−
20%Siを用い、切削速度,送り量,切込み量は各々50
0m/min,0.6 mm/rev,1.0mm とした。その結果を表1に
示す。
Microwave plasma CV is applied to these base materials.
A hard carbon film was formed to a thickness of about 15 μm by gas phase synthesis with a methane-hydrogen mixed gas excited by applying the method D for about 12 hours. The synthesis conditions at this time were: base material temperature: 900 ° C., methane concentration: 2% by volume. Also, for comparison, the same chip was prepared except that the underlayer was not coated. As a result of Raman analysis and X-ray diffraction analysis, it was confirmed that a hard carbon film made of a mixture of diamond and amorphous carbon and having a Vickers hardness of 7000 to 8000 was formed on the surface of the underlayer. A cutting test was performed using the above 6 types of chips and their cutting lives were compared. At this time, the work material is Al-
20% Si is used, and the cutting speed, feed amount and depth of cut are 50
It was set to 0 m / min, 0.6 mm / rev, and 1.0 mm. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかな様に、No.2〜4の実施
例のものは、切込み量の大きい過酷な条件においても摩
耗量が圧倒的に少ない、或は寿命が伸びることが明らか
である。しかしながら、金属Wの厚みが0.5 μm または
4.0 μm の場合(No.1,5)では、比較例(No.6)
と比べて良好であるとはいうものの、本発明の効果が十
分に発揮されていない。金属Wの厚みが0.5 μm の場合
には、硬質炭素膜とWC下地層との間で剥離が発生して
おり、この母材表面(即ちWC層の表面)をEPMA分
析したところ、Coが検出された。これはWC形成時あ
るいは硬質炭素膜合成時に、母材に含まれるCoが下地
層を透過して局部的に析出し、このCoの存在が硬質炭
素膜とWC下地層の密着性を低下させたものと考えられ
る。一方、金属Wの厚みが4.0 μm の場合には、WC下
地層と母材との間で剥離が発生していた。W膜が3μm
を超えると、全膜厚に渡って均一に炭化させるのに長時
間を要し界面にもろい(MCo)6C状の析出物を形成す
る結果悪影響を及ぼすこととなる。また短時間の炭化で
は界面まで進行しないため、界面に未炭化の金属Wを残
す結果となり母材との熱膨張係数の差による応力の影響
が無視できなくなり、上記と同様に密着性には悪影響を
及ぼすこととなる。
As is apparent from Table 1, it is clear that the examples of Nos. 2 to 4 have an overwhelmingly small amount of wear or a long life even under severe conditions with a large depth of cut. . However, the thickness of the metal W is 0.5 μm or
In case of 4.0 μm (No. 1, 5), comparative example (No. 6)
However, the effect of the present invention is not sufficiently exerted. When the thickness of the metal W is 0.5 μm, peeling occurs between the hard carbon film and the WC underlayer, and when the base material surface (that is, the surface of the WC layer) is analyzed by EPMA, Co is detected. Was done. This is because Co contained in the base material permeates the underlayer and is locally deposited during the formation of the WC or the synthesis of the hard carbon film, and the presence of this Co reduces the adhesion between the hard carbon film and the WC underlayer. It is considered to be a thing. On the other hand, when the thickness of the metal W was 4.0 μm, peeling occurred between the WC underlayer and the base material. W film is 3 μm
If it exceeds, it takes a long time to uniformly carbonize over the entire film thickness, and a brittle (MCo) 6 C-like precipitate is formed at the interface, resulting in an adverse effect. In addition, since short-time carbonization does not proceed to the interface, uncarbonized metal W is left at the interface, and the effect of stress due to the difference in thermal expansion coefficient from the base metal cannot be ignored, and the adhesion is adversely affected as in the above. Will be affected.

【0019】実施例2 工具母材として、軸径8mmの超硬合金ドリル(Co含有
量:約10%)を用いる以外は、実施例1と同様にして
硬質炭素膜被覆超硬合金ドリルを作製した。尚このとき
の金属Wの被覆厚さは約2μm とした。比較として、本
発明によらない未処理のドリルについても作製した。こ
れらのドリルについて、切削試験を行った。このとき被
削材はAl−16%Siとし、切削条件は切削速度:150m
/min,送り量:0.1 mm/revおよび切削長:25mmとした。
その結果、本発明のドリルでは約3000穴切削後も膜の剥
離が無かったのに対し、比較例では約250 穴切削した時
点で刃先の摩耗が激しく、寿命に達していた。
Example 2 A hard carbon film-coated cemented carbide drill was produced in the same manner as in Example 1 except that a cemented carbide drill having a shaft diameter of 8 mm (Co content: about 10%) was used as the tool base material. did. The coating thickness of the metal W at this time was about 2 μm. For comparison, an untreated drill not according to the invention was also made. A cutting test was performed on these drills. At this time, the work material was Al-16% Si, and the cutting conditions were a cutting speed of 150 m.
/ min, feed rate: 0.1 mm / rev and cutting length: 25 mm.
As a result, in the drill of the present invention, there was no peeling of the film even after cutting about 3000 holes, whereas in the comparative example, the blade edge was severely worn at the time of cutting about 250 holes, and the life was reached.

【0020】[0020]

【発明の効果】本発明によれば、超硬合金母材表面のC
o拡散防止を達成することができ、その結果母材との密
着性に極めて優れた硬質炭素膜被覆超硬合金工具が実現
でき、その工業的価値は極めて大きい。
According to the present invention, C on the surface of the cemented carbide base material
o Diffusion prevention can be achieved, and as a result, a hard carbon film-coated cemented carbide tool having excellent adhesion to the base material can be realized, and its industrial value is extremely large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 WC系の超硬合金を工具母材とし、下地
層上に気相合成法によって硬質炭素膜を被覆して硬質炭
素膜被覆超硬合金工具を製造するに当たり、前記母材表
面に金属Wを被覆し、次いで励起した炭素含有ガスを該
金属Wに接触させて平均粒径が0.1 μm 以上の多孔質W
Cを下地層として形成した後、気相合成法を適用して前
記多孔質WCの結晶粒径よりも小さい平均粒径の硬質炭
素膜で下地層表面を被覆することを特徴とする硬質炭素
膜被覆超硬合金工具の製造方法。
1. When manufacturing a hard carbon film-coated cemented carbide tool by coating a hard carbon film on a base layer by a vapor phase synthesis method using a WC-based cemented carbide as a tool base material, the surface of the base material is used. The metal W is coated with the metal W, and then the excited carbon-containing gas is brought into contact with the metal W to form a porous W having an average particle size of 0.1 μm or more.
After forming C as an underlayer, a vapor phase synthesis method is applied to coat the surface of the underlayer with a hard carbon film having an average particle size smaller than the crystal grain size of the porous WC. A method for manufacturing a coated cemented carbide tool.
【請求項2】 請求項1に記載の方法において、金属W
の被覆厚さが1〜3μm である製造方法。
2. The method of claim 1, wherein the metal W
The coating method according to claim 1, wherein the coating thickness is 1-3 μm.
【請求項3】 請求項1または2に記載の方法によって
製造されたものである硬質炭素膜被覆超硬合金工具。
3. A hard carbon film-coated cemented carbide tool manufactured by the method according to claim 1.
JP21524192A 1992-08-12 1992-08-12 Hard carbon film coated sintered hard alloy tool and its production Pending JPH0657427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21524192A JPH0657427A (en) 1992-08-12 1992-08-12 Hard carbon film coated sintered hard alloy tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21524192A JPH0657427A (en) 1992-08-12 1992-08-12 Hard carbon film coated sintered hard alloy tool and its production

Publications (1)

Publication Number Publication Date
JPH0657427A true JPH0657427A (en) 1994-03-01

Family

ID=16669060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21524192A Pending JPH0657427A (en) 1992-08-12 1992-08-12 Hard carbon film coated sintered hard alloy tool and its production

Country Status (1)

Country Link
JP (1) JPH0657427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2010202978A (en) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd Amorphous carbon covered member
US9354245B2 (en) 2011-11-25 2016-05-31 Toppan Printing Co., Ltd. Pipette tip set to be used in dispensing device and method for perforating reagent cartridge film using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2010202978A (en) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd Amorphous carbon covered member
JP4560964B2 (en) * 2000-02-25 2010-10-13 住友電気工業株式会社 Amorphous carbon coated member
US9354245B2 (en) 2011-11-25 2016-05-31 Toppan Printing Co., Ltd. Pipette tip set to be used in dispensing device and method for perforating reagent cartridge film using same

Similar Documents

Publication Publication Date Title
KR101065572B1 (en) Diamond film coated tool and process for producing the same
KR0165923B1 (en) Coated cutting tool and production thereof
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP2003340610A (en) Cutting tool insert
JP3658949B2 (en) Coated cemented carbide
JP3097912B2 (en) Method for preparing a surface of a composite article comprising hard ceramic particles and a metal binder
JP2002144109A (en) Surface coat cemented carbide cutting tool having excellent chipping resistance
KR100305315B1 (en) Diamond coated cutting tools and manufacturing method thereof
JP3452615B2 (en) Cemented carbide, hard carbon film coated cemented carbide, method for producing cemented carbide, and tool using these alloys
JPH0657427A (en) Hard carbon film coated sintered hard alloy tool and its production
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH0762542A (en) Production of surface-coated cutting tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP4284144B2 (en) Surface coated cutting tool
JPH0569204A (en) Hard layer coated tungsten carbide group cemented carbide made cutting tool
JPH0657428A (en) Hard carbon film coated sintered hard alloy tool and its production
JP4936742B2 (en) Surface coating tools and cutting tools
KR100576318B1 (en) A improvement method of surface roughness of diamond coating film to cutting tool
JPH09241826A (en) Cemented carbide structural body, its production and cutting tool using the same
JP2974285B2 (en) Manufacturing method of coated carbide tool
CN114144272B (en) Coated cutting tool and cutting tool provided with same
JPH06248422A (en) Coated sintered compact and its production
JPH05186870A (en) Cemented carbide member coated with high adhesion hard carbon film and its production
JPH08118109A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having carbonaceous hard coated layer excellent in adhesion
JP3044944B2 (en) Manufacturing method of substrate for vapor phase synthetic diamond film formation

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305