JPH065741B2 - Planar type semiconductor device manufacturing method - Google Patents

Planar type semiconductor device manufacturing method

Info

Publication number
JPH065741B2
JPH065741B2 JP2462783A JP2462783A JPH065741B2 JP H065741 B2 JPH065741 B2 JP H065741B2 JP 2462783 A JP2462783 A JP 2462783A JP 2462783 A JP2462783 A JP 2462783A JP H065741 B2 JPH065741 B2 JP H065741B2
Authority
JP
Japan
Prior art keywords
conductivity type
layer
opening
insulating film
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2462783A
Other languages
Japanese (ja)
Other versions
JPS59151462A (en
Inventor
直弘 門馬
広一 井上
進 村上
秀男 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2462783A priority Critical patent/JPH065741B2/en
Publication of JPS59151462A publication Critical patent/JPS59151462A/en
Publication of JPH065741B2 publication Critical patent/JPH065741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプレーナ型半導体装置に係わり、特に接合の高
耐圧化を可能にしたプレーナ型半導体装置の製造方法に
関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar semiconductor device, and more particularly to a method for manufacturing a planar semiconductor device capable of increasing the breakdown voltage of a junction.

〔従来技術〕[Prior art]

従来のpnpn4層構造のプレーナ型サイリスタやnp
n3層構造のトランジスタの主要接合部の概略図を第1
図に、また第1図におけるa−b−c断面の不純物濃度
分布を第2図に示した。
Conventional pnpn 4-layer structure planar type thyristor and np
First, a schematic view of the main junction portion of an n3 layer structure transistor is shown.
FIG. 2 shows the impurity concentration distribution in the ab-c section in FIG. 1.

通常プレーナ型サイリスタやトランジスタなどにおいて
は、不純物拡散により二重のプレーナ構造のpn接合4
0,50が形成された半導体基板1の表面をシリコンの
酸化膜等からなる絶縁被膜(図示せず)で被覆して高信
頼化を達成するようにしている。しかしpn接合40,
50に逆方向電圧を印加すると半導体基板の表面が絶縁
被膜中又はその表面に存在する電荷により、導電率の変
化もしくは導電型反転現象を起こし、耐圧低下やもれ電
流の増加などの問題を生ずることがある。このような問
題は、ペース層2の表面の不純物濃度が低い程おきやす
いことから、通常ベース層2は例えば外向拡散を伴なわ
ないボロン拡散などによつて形成され、その不純物濃度
分布は第2図に示したように表面付近が濃度が最も大き
く、表面から内部にいく程濃度が小さくなる形となつて
いる。このような不純物濃度分布のベース層2を有する
ブレーナ構造の主接合50に関しては導電型反転なども
おきにくく安定な接合耐圧が得やすい反面、エミツタ層
3とベース層2の間のpn接合(以下EB接合)40の
逆耐圧は通常数ボルト程度と低い値しか得られないとい
う問題がある。特にゲートターンオフサイリスタ(以下
GTO)においては、EB接合40に逆バイアスを印加
してターンオフさせるがターンオフ可能な最大アノード
電流はEB接合40の逆耐圧の大きさに比例するため、
電流容量を大きくするためにはEB接合耐圧を大きくす
る必要がある。またEB接合耐圧を大きくできれば、タ
ーンオフ時間が短かくできることおよびゲートターンオ
フ電荷を小さくできるなどの利点がある。またトランジ
スタにおいても高速にターンオフさせるためにEB接合
間に逆バイアスを印加する場合もあり、EB接合耐圧は
高いにこしたことはない。
In a normal planar type thyristor or transistor, a pn junction 4 with a double planar structure is formed by impurity diffusion.
The surface of the semiconductor substrate 1 on which 0 and 50 are formed is covered with an insulating film (not shown) made of a silicon oxide film or the like to achieve high reliability. However, the pn junction 40,
When a reverse voltage is applied to 50, the electric conductivity of the surface of the semiconductor substrate in or on the insulating coating causes a change in conductivity or a conductivity type inversion phenomenon, which causes problems such as a decrease in breakdown voltage and an increase in leakage current. Sometimes. Since such a problem is more likely to occur as the impurity concentration on the surface of the pace layer 2 is lower, the base layer 2 is usually formed by, for example, boron diffusion without outward diffusion, and its impurity concentration distribution is the second. As shown in the figure, the concentration is highest near the surface, and the concentration decreases from the surface to the inside. With respect to the main junction 50 of the brener structure having the base layer 2 having such an impurity concentration distribution, it is easy to obtain a stable junction breakdown voltage with less inversion of conductivity type, but on the other hand, a pn junction between the emitter layer 3 and the base layer 2 (hereinafter There is a problem that the reverse breakdown voltage of the EB junction) 40 is usually as low as several volts. Particularly in a gate turn-off thyristor (hereinafter referred to as GTO), a reverse bias is applied to the EB junction 40 to turn it off, but the maximum anode current that can be turned off is proportional to the reverse breakdown voltage of the EB junction 40.
In order to increase the current capacity, it is necessary to increase the EB junction breakdown voltage. Further, if the EB junction breakdown voltage can be increased, there are advantages that the turn-off time can be shortened and the gate turn-off charge can be reduced. Also in the transistor, a reverse bias may be applied between the EB junctions in order to turn them off at a high speed, and the EB junction breakdown voltage has never been higher.

このように従来のプレーナ型半導体装置においては、E
B装置耐圧が低く、特性に対する要求に十分応えられな
いという欠点があつた。また一方EB接合耐圧を高める
ためにベース層2の不純物濃度を第3図に示すように表
面より内部に濃度の極大をもつ形状にする方法もある
が、ベース層2の表面の不純物濃度が低いと表面層の導
電型が反転すること等により、プレーナ接合の場合に
は、ベース層2とコレクタ層1aの間の主接合50の阻
止特性が損なわれてしまう。
Thus, in the conventional planar semiconductor device, E
There is a drawback in that the B device has a low withstand voltage and cannot sufficiently meet the requirements for characteristics. On the other hand, in order to increase the EB junction breakdown voltage, there is also a method in which the impurity concentration of the base layer 2 has a maximum concentration inside the surface as shown in FIG. 3, but the impurity concentration on the surface of the base layer 2 is low. When the conductivity type of the surface layer is inverted, the blocking characteristic of the main junction 50 between the base layer 2 and the collector layer 1a is impaired in the case of the planar junction.

以上のように従来のプレーナ型半導体装置においては、
ベース層2とコレクタ層1aの間の主接合50とEB間
接合40の阻止特性を同時に満足することが難しい問題
があつた。
As described above, in the conventional planar semiconductor device,
There is a problem that it is difficult to simultaneously satisfy the blocking characteristics of the main junction 50 between the base layer 2 and the collector layer 1a and the EB junction 40.

〔発明の目的〕[Object of the Invention]

本発明の目的はかかる問題点を解決し、主接合及びEB
間接合の阻止特性が共に優れたプレーナ型半導体装置の
製造方法を提供することにある。
The object of the present invention is to solve the above problems and to solve the problems of main joining and EB.
An object of the present invention is to provide a method for manufacturing a planar semiconductor device having excellent interjunction blocking characteristics.

〔発明の概要〕[Outline of Invention]

本発明プレーナ型半導体装置の製造方法の特徴とすると
ころは、第一導電型の半導体基板の一主表面に第一の開
口を有する第二導電型の不純物を通し易い層とその上に
重ねられた第二電動型の不純物を通しにくい層からなる
第一の絶縁膜を形成する工程と、第一の絶縁膜の第一の
開口を通して半導体基板内に第二導電型の不純物を案内
して第二導電型の第一半導体領域を形成する工程と、第
一の絶縁膜の第一の開口に不純物を通し易い層とその上
に重ねられた第二導電型の不純物を通しにくい層を形成
し、これによって半導体基板の一主表面全面を再び第二
導電型の不純物を通し易い層とその上に重ねられた第二
導電型の不純物を通しにくい層からなる第二の絶縁膜で
被覆する工程と、半導体基板を第一半導体領域内の第二
導電型の不純物が拡散するに十分な温度で加熱する工程
と、第二の絶縁膜に第一半導体領域の一部が露出する第
二の開口を形成する工程と、半導体基板を第一半導体領
域内の第二導電型の不純物が拡散するに十分な温度で再
度加熱し、これによって第二の開口から第二導電型の不
純物を外向拡散して第一半導体領域の第二の開口に露出
する部分の最大不純物濃度位置を半導体基板を一主表面
から内部に後退させる工程と、第二の絶縁膜を除去した
後、半導体基板の一主表面全面に第一導電型の不純物を
通しにくい第三の絶縁膜を形成する工程と、第三の絶縁
膜の第二の開口と略同位置に第二の開口より小さい第三
の開口を形成する工程と、第三の絶縁膜の第三の開口を
通して半導体基板の第一半導体領域内に第一導電型の不
純物を案内して、第一半導体領域の最大不純物濃度位置
と略同じ深さの第一導電型の第二半導体領域を形成する
工程とを具備する点にある。
The feature of the method for manufacturing a planar semiconductor device of the present invention is that a layer of a first conductivity type semiconductor substrate having a first opening on which a second conductivity type impurity is easily passed and a layer overlaid thereon are provided. And a step of forming a first insulating film made of a layer that does not easily pass the second electric type impurity, and guiding the second conductive type impurity into the semiconductor substrate through the first opening of the first insulating film. A step of forming a first conductivity type second semiconductor region, and forming a layer through which impurities easily pass through the first opening of the first insulating film and a layer overlying the layer of second conductivity type through which impurities hardly pass A step of covering the entire main surface of the semiconductor substrate with a second insulating film composed of a layer through which impurities of the second conductivity type easily pass and a layer overlying the layer of which impurities of the second conductivity type do not pass easily The semiconductor substrate with impurities of the second conductivity type in the first semiconductor region. Heating at a temperature sufficient to disperse, a step of forming a second opening in the second insulating film that exposes a portion of the first semiconductor region, and a semiconductor substrate having a second conductivity in the first semiconductor region. Again at a temperature sufficient to diffuse the impurity of the second type, whereby the impurity of the second conductivity type is outwardly diffused from the second opening and the maximum impurity concentration of the portion exposed in the second opening of the first semiconductor region. A step of retracting the position of the semiconductor substrate from one main surface to the inside, and after removing the second insulating film, form a third insulating film on the entire one main surface of the semiconductor substrate through which impurities of the first conductivity type cannot pass easily. And a step of forming a third opening smaller than the second opening at substantially the same position as the second opening of the third insulating film, and a step of forming a third opening of the semiconductor substrate through the third opening of the third insulating film. By guiding impurities of the first conductivity type into one semiconductor region, In that it and forming a substantially second semiconductor region of a first conductivity type having the same depth as the large impurity concentration position.

第1図に示す従来のプレーナ型半導体装置のEB接合耐
圧(以下VEBと略す)が低い理由は次のように考えられ
る。即ち、VEBはEB接合40の位置におけるベース層
2の不純物濃度(以下NJEBと略す)で決まり、NJEB
大きい程VEBが低くなる。従来のようにベース層2の不
純物濃度が表面に近づく程高い場合にはEB接合40の
各点のうち表面に近い位置ほどNJEBが大きくなる。V
EBは表面付近のNJEBの高い位置できまるためVEBが低
くなつてしまうのである。
The reason why the conventional planar semiconductor device shown in FIG. 1 has a low EB junction breakdown voltage (hereinafter abbreviated as V EB ) is considered as follows. That is, V EB is determined by the impurity concentration of the base layer 2 at the position of the EB junction 40 (hereinafter abbreviated as NJ EB ), and the larger N J EB is, the lower V EB is. When the impurity concentration of the base layer 2 is higher as it approaches the surface as in the conventional case, NJ EB becomes larger at a position closer to the surface among the points of the EB junction 40. V
Since EB can be located at a high position near NJ EB near the surface, V EB becomes low.

一方EB接合40の半導体基板の主表面と平行な平坦部
におけるNJEBは装置のオンおよびオフ特性を左右する
重要な因子の1つであり要求される特性に応じて決定さ
れる。
On the other hand, NJ EB in the flat portion of the EB junction 40 parallel to the main surface of the semiconductor substrate is one of the important factors that affect the on and off characteristics of the device and is determined according to the required characteristics.

従つて、本発明によれば、EB接合の平坦部以外の点に
おけるNJEBの値が平坦部のそれ以下であるから、VEB
の大きさは、要求される他の特性を満足する範囲内で最
も大きくできることになる。
Therefore, according to the present invention, since the value of N JEB at points other than the flat portion of the EB junction is less than that of the flat portion, V EB
Can be maximized within the range of satisfying other required characteristics.

ところでオン・オフ特性を左右する他の重要な因子の1
つとしてベース層のシート抵抗(以下ρsBと略す)が
あり、特性の揃つた装置を歩留りよく製作するためには
ρsBを精密に制御する必要がある。特に通常のサイリ
スタとちがつてゲート信号によつてターンオンするばか
りでなく、ターンオフ機能も有するGTOにおいては、
ρsBの設計許容範囲がきわめて小さく、ρsBの高精度
制御が極めて重要である。ρsBの制御を容易にすると
いう観点からというベース層の不純物濃度分布は第3図
に示すようにエミツタ層の深さに相当する深さ付近ない
しはそれよりも深い位置に不純物濃度の最大値を有し、
方面に近づくにつれて不純物濃度が減少する形が望まし
い。しかしながらベース層の不純物濃度分布を第3図の
ようにした場合に、メサもしくはモード構造のようにp
n接合が主表面において終端しない場合においては問題
ないが、pn接合が主表面で終端するプレーナ構造にお
いては、ベース表面の不純物濃度が低いと、主接合が逆
バイアスされた場合、ベース層表面が導電率の変化もし
くは極端な場合は導電型の反転現象等を生じ、主接合の
阻止特性が低下する問題がある。従つて、主接合がプレ
ーナ構造の場合には主接合が逆バイアスされた場合に、
ベース層表面の導電型の反転現象が起きないことはもち
ろん、空乏層がエミツタ層に到着しない程度に、主接合
が終端する表面近傍のベース層表面の不純物濃度を高め
ておく必要がある。
By the way, one of the other important factors that affect the on / off characteristics
One of them is the sheet resistance of the base layer (hereinafter abbreviated as ρs B ), and it is necessary to precisely control ρs B in order to manufacture a device having uniform characteristics with high yield. Especially in the GTO, which has a turn-off function as well as a turn-on by a gate signal, which is different from a normal thyristor,
The design tolerance of ρs B is extremely small, and high-precision control of ρs B is extremely important. From the viewpoint of facilitating the control of ρ s B , the impurity concentration distribution of the base layer has a maximum impurity concentration value near the depth corresponding to the depth of the emitter layer or at a position deeper than that as shown in FIG. Have,
It is desirable that the impurity concentration decreases as it approaches the direction. However, when the impurity concentration distribution of the base layer is set as shown in FIG.
This is not a problem when the n-junction does not terminate on the main surface, but in the planar structure where the pn junction terminates on the main surface, if the impurity concentration on the base surface is low, the base layer surface may be degraded when the main junction is reverse-biased. When the conductivity changes or in an extreme case, a conductivity type inversion phenomenon occurs, and there is a problem that the blocking characteristics of the main junction deteriorate. Therefore, when the main junction is a planar structure, when the main junction is reverse biased,
The conductivity type inversion phenomenon on the surface of the base layer does not occur, and it is necessary to increase the impurity concentration on the surface of the base layer near the surface where the main junction terminates so that the depletion layer does not reach the emitter layer.

本発明の特徴を図示すれば、第4図においてベース層2
の不純物濃度分布はエミツタ層3を含むA領域では第5
図のようにエミツタ層深さの付近の位置で不純物濃度が
ほぼ最大となり主表面に近づくにつれて不純物濃度が減
少する形とし、エミツタ層3を含まない主接合50が表
面で終端する近傍のB領域では第6図に示すように表面
付近の不純物濃度が高くなるような不純物濃度分布とし
ている。これによつてEB接合40及び主接合50の阻
止特性が共に良好なプレーナ型半導体装置を得ることが
できる。
To illustrate the features of the present invention, in FIG.
The impurity concentration distribution of is 5th in the area A including the emitter layer 3.
As shown in the figure, the impurity concentration is almost maximum at a position near the depth of the emitter layer, and the impurity concentration decreases as it approaches the main surface, and the B region near the end of the main junction 50 not including the emitter layer 3 is terminated. Then, as shown in FIG. 6, the impurity concentration distribution is such that the impurity concentration near the surface becomes high. This makes it possible to obtain a planar semiconductor device in which both the EB junction 40 and the main junction 50 have good blocking characteristics.

第4図に示したようにA領域とB領域とで異なつた不純
物濃度分布をもつベース層2を形成する方法としてはい
くつか考えられる。いまベース層2の導電型がp型の場
合について一例を挙げればまずガリウム、アルミニウム
のように外向拡散を伴なう不純物を選択拡散し、まず第
3図のように表面により内部に不純物濃度の極大値を有
するベース層2を形成したのち、第4図のB領域に相当
する部分に例えばボロンを選択拡散して、B領域におけ
るpベース層2の表面不純物濃度を高め第6図に示した
ような不純物濃度分布を得ることができる。また以下の
実施例で説明するように、ガリウムやアルミニウムのイ
オン打込み−ドライブイン拡散を利用する方法が本発明
のプレーナ型半導体装置を製作する上で極めて有効であ
る。
There are several possible methods for forming the base layer 2 having different impurity concentration distributions in the A region and the B region as shown in FIG. Now, as an example of the case where the conductivity type of the base layer 2 is p-type, first, impurities such as gallium and aluminum accompanied by outward diffusion are selectively diffused, and first, as shown in FIG. After forming the base layer 2 having the maximum value, for example, boron is selectively diffused in the portion corresponding to the B region in FIG. 4 to increase the surface impurity concentration of the p base layer 2 in the B region, as shown in FIG. Such an impurity concentration distribution can be obtained. Further, as described in the following embodiments, the method of utilizing the ion implantation-drive-in diffusion of gallium or aluminum is extremely effective in manufacturing the planar type semiconductor device of the present invention.

〔発明の実施例〕Example of Invention

以下、GTOを例にあげて本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below by taking GTO as an example.

第7図にGTOの製作プロセスを示す。用いた半導体基
板1はFZ,n型,抵抗率約20Ωcmのシリコンウエハ
である。このウエハを水蒸気と酸素の混合雰囲気中で8
00℃で1時間熱処理し、(a)図に示すように表面に約
500Åの酸化膜(SiO2)100を形成する。次に75
0℃、1Torrの雰囲気でSiH2Cl2とNH3の反応によ
り試料の一表面にSiN150を形成する。約40分で
1000Åの皮膜が得られる。続いて通常のホトエツチング
で所望のpベース領域幅を得るため熱リン酸で窒化膜
(SiN)150をエツチングし続いてHFとNH
の混合エツチヤントでSiO100をエツチングす
る。(a)図が示すように59Gaを70KeVの加速エ
ネルギーで1×1016cm-2投込み、打込みp層21を形
成する。SiN150はAl及びGaのあ拡散係数が小
さいので(a)図が示すように選択的に打込みp層21を
形成することができる。続いて打込みp層21上に再び
上記の方法で、SiO100とSiN150を形成し、
窒素雰囲気中で、1250℃9時間ドライブをして打込みp
層をシリコンウエハ1中に深く拡散すると(b)図が示す
ようなpベース層2を得ることができる。この場合Si
NはGaの外向拡散を防止できるので第6図に示したよ
うに表面に最大の不純物濃度を有し、内部にいくに従つ
て単調減少する不純物濃度分布が得られる。続いてpベ
ース層2の表面のSiO2100が及びSiNを(a)図で説明し
たのと同様の方法で一部分ホトエツチングし、(C)図に
示す開口部15を設け、酸素雰囲気中で1250℃、19時
間再びドライブする。そうすれば、Gaの外向拡散のた
め開口部15の下のpベース層2の不純物濃度分布は第
5図で示したような表面からある一定の距離に最大不純
物濃度を有し、表面に近づくに従つて低下したものとな
る。次に上記に示したGa拡散に使用したSiN150
を除去し、再びSiO100を形成し、ホトエツチン
グで(c)図に示した開口部15の幅より狭い窓開けを
し、またシリコンウエハ1表面の一部も窓開けをし、PO
Cl3を原料として(d)図が示すようにnエミツタ層3及び
チヤンネルカツトn層5を酸素雰囲気中で1000℃、1
時間拡散して形成する。nエミッタ層3は第4図に示す
ようにpベース層2の最大不純物濃度位置bと略同じ深
さとなるように形成される。次に(d)図の工程中で形成
された裏面SiO2膜100を除去して(e)図の構造にした
後、ボロンナイトライドウエハを用いて裏面にボロンデ
ボ層を形成しその後1200℃、5時間酸素雰囲気中でドラ
イブして(f)図に示すようにpエミツタ層4を形成す
る。最後にpベース層2、nエミツタ層3、pエミツタ
層4の電極と接触する所望の位置が露出するよう通常の
ホトエツチングにより窓開けをしアルミニウムなどの金
属を蒸着し、ホトエツチングにより、(g)図に示すよう
にゲート電極200、カソード電極300、アノード電
極400を形成する。尚、不純物が拡散されなかつた部
分はGTOのnベース層1aとして示されている。
FIG. 7 shows the GTO manufacturing process. The semiconductor substrate 1 used is a FZ, n-type silicon wafer having a resistivity of about 20 Ωcm. This wafer is placed in a mixed atmosphere of water vapor and oxygen for 8
After heat treatment at 00 ° C. for 1 hour, an oxide film (SiO 2 ) 100 of about 500 Å is formed on the surface as shown in FIG. Then 75
SiN150 is formed on one surface of the sample by reaction of SiH 2 Cl 2 and NH 3 in an atmosphere of 0 ° C. and 1 Torr. In about 40 minutes
A film of 1000Å can be obtained. Then, the nitride film (SiN) 150 is etched with hot phosphoric acid in order to obtain a desired width of the p base region by normal photoetching, and then HF and NH 4 F are added.
Etch SiO 2 100 with the mixed etchant. As shown in the figure (a), 59 Ga + is implanted at 1 × 10 16 cm -2 at an acceleration energy of 70 KeV to form a p - type implanted layer 21. Since SiN 150 has a small diffusion coefficient of Al and Ga, the implanted p-layer 21 can be selectively formed as shown in FIG. Subsequently, SiO 2 100 and SiN 150 are formed again on the implanted p-layer 21 by the above method,
Drive in a nitrogen atmosphere at 1250 ° C for 9 hours and drive p
If the layers are deeply diffused in the silicon wafer 1, a p-base layer 2 as shown in FIG. In this case Si
Since N can prevent outward diffusion of Ga, it has a maximum impurity concentration on the surface as shown in FIG. 6, and an impurity concentration distribution that monotonically decreases toward the inside can be obtained. Then, SiO 2 100 on the surface of the p base layer 2 and SiN are partially photo-etched by the same method as described in FIG. (A), the opening 15 shown in FIG. Drive again at ℃ for 19 hours. Then, due to the outward diffusion of Ga, the impurity concentration distribution of the p base layer 2 below the opening 15 has the maximum impurity concentration at a certain distance from the surface as shown in FIG. 5, and approaches the surface. It becomes the thing which declined according to. Next, the SiN150 used for Ga diffusion shown above
Is removed, SiO 2 100 is formed again, and a window narrower than the width of the opening 15 shown in FIG. 3C is opened by photoetching.
Using Cl 3 as a raw material, the n emitter layer 3 and the channel cut n + layer 5 as shown in FIG.
It is formed by time diffusion. As shown in FIG. 4, the n emitter layer 3 is formed to have substantially the same depth as the maximum impurity concentration position b of the p base layer 2. Next, after removing the back surface SiO 2 film 100 formed in the step of FIG. 3D to form the structure of FIG. By driving in an oxygen atmosphere for 5 hours, a p-emitter layer 4 is formed as shown in FIG. Finally, a window is opened by ordinary photoetching so as to expose a desired position of the p base layer 2, the n emitter layer 3, and the p emitter layer 4 in contact with the electrodes, and a metal such as aluminum is vapor-deposited. As shown, a gate electrode 200, a cathode electrode 300, and an anode electrode 400 are formed. The part where impurities are not diffused is shown as the n-base layer 1a of GTO.

以上の本実施例で述べた方法により製作した結果、nエ
ミツタ層3とpベース層2間のEB接合の耐圧は約20
V、pベース層2とnベース層1aの間の主接合の耐圧
は約400Vであり、ターンオフ性能の優れたゲートタ
ーンオフサイリスタを得ることができた。
As a result of being manufactured by the method described in this embodiment, the breakdown voltage of the EB junction between the n emitter layer 3 and the p base layer 2 is about 20.
The breakdown voltage of the main junction between the V, p base layer 2 and the n base layer 1a was about 400 V, and a gate turn-off thyristor with excellent turn-off performance could be obtained.

本発明の不純物濃度分布を得る方法は、第7図に示した
製作プロセスだけに限られるものではない。
The method of obtaining the impurity concentration distribution of the present invention is not limited to the manufacturing process shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、nエミツタ層及
びpベース層によつて形成されるプレーナ構造のpn接
合における逆耐圧は高く、表面が安定化され、接合形成
におけるpベース層のシート抵抗の制御が著しく向上す
ることにより、ゲートターンオフサイリスタやトランジ
スタに適用した場合には最大可制御電流の増大、ターン
オフタイムの短縮、ターンオフ電荷の減少等のターンオ
フ性能の優れた半導体装置を得ることが可能である。
As described above, according to the present invention, the reverse breakdown voltage is high in the pn junction of the planar structure formed by the n emitter layer and the p base layer, the surface is stabilized, and the sheet of the p base layer in the junction formation is formed. By significantly improving the control of resistance, it is possible to obtain a semiconductor device with excellent turn-off performance such as an increase in the maximum controllable current, a reduction in turn-off time, and a reduction in turn-off charge when applied to gate turn-off thyristors and transistors. It is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のプレーナ型サイリスタやトランジスタの
主要接合部の概略断面図、第2図は第1図におけるa−
b−c線上の不純物濃度分布を示す図、第3図は従来よ
り公知の一不純物濃度分布を示す図、第4図は本発明の
製造方法によって製造したプレーナ型半導体装置の主要
接合部の概略断面図、第5図,第6図は第4図における
a−b−c線及びa′−b′−c′線上のpベースの不
純物濃度分布を示す図、第7図である。 1…半導体基板、1a…コレクタ層(nベース層)、2
…pベース層、3…nエミツタ層、40…EB接合、5
0…主接合。
FIG. 1 is a schematic sectional view of a main junction portion of a conventional planar type thyristor or transistor, and FIG. 2 is a- in FIG.
FIG. 3 is a diagram showing an impurity concentration distribution on the line bc, FIG. 3 is a diagram showing one conventionally known impurity concentration distribution, and FIG. 4 is an outline of a main junction portion of a planar semiconductor device manufactured by the manufacturing method of the present invention. FIGS. 5 and 6 are sectional views, FIG. 7 and FIG. 7 showing the p-type impurity concentration distributions on the lines abc and a'-b'-c 'in FIG. 1 ... Semiconductor substrate, 1a ... Collector layer (n base layer), 2
... p base layer, 3 ... n emitter layer, 40 ... EB junction, 5
0 ... Main junction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 秀男 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (56)参考文献 特開 昭50−38475(JP,A) 特開 昭51−149779(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Honma 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (56) References JP-A-50-38475 (JP, A) JP-A-51-149779 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の半導体基板の一主表面に第一
の開口を有する第二導電型の不純物を通し易い層とその
上に重ねられた第二電動型の不純物を通しにくい層から
なる第一の絶縁膜を形成する工程と、 第一の絶縁膜の第一の開口を通して半導体基板内に第二
導電型の不純物を案内して第二導電型の第一半導体領域
を形成する工程と、 第一の絶縁膜の第一の開口に不純物を通し易い層とその
上に重ねられた第二導電型の不純物を通しにくい層を形
成し、これによって半導体基板の一主表面全面を再び第
二導電型の不純物を通し易い層とその上に重ねられた第
二導電型の不純物を通しにくい層からなる第二の絶縁膜
で被覆する工程と、 半導体基板を第一半導体領域内の第二導電型の不純物が
拡散するに十分な温度で加熱する工程と、 第二の絶縁膜に第一半導体領域の一部が露出する第二の
開口を形成する工程と、 半導体基板を第一半導体領域内の第二導電型の不純物が
拡散するに十分な温度で再度加熱し、これによって第二
の開口から第二導電型の不純物を外向拡散して第一半導
体領域の第二の開口に露出する部分の最大不純物濃度位
置を半導体基板の一主表面から内部に後退させる工程
と、 第二の絶縁膜を除去した後、半導体基板の一主表面全面
に第一導電型の不純物を通しにくい第三の絶縁膜を形成
する工程と、 第三の絶縁膜の第二の開口と略同位置に第二の開口より
小さい第三の開口を形成する工程と、 第三の絶縁膜の第三の開口を通して半導体基板の第一半
導体領域内に第一導電型の不純物を案内して、第一半導
体領域の最大不純物濃度位置と略同じ深さの第一導電型
の第二半導体領域を形成する工程と、を具備することを
特徴とするプレーナ型半導体装置の製造方法。
1. A layer having a first opening on one main surface of a semiconductor substrate of the first conductivity type, through which impurities of the second conductivity type can easily pass, and a layer on which a second electrically conductive type impurity hardly penetrates. A step of forming a first insulating film made of, and guiding a second conductive type impurity into the semiconductor substrate through the first opening of the first insulating film to form a second conductive type first semiconductor region. Steps, and a layer through which impurities easily pass through the first opening of the first insulating film and a layer through which impurities of the second conductivity type do not easily pass through are formed to cover the entire main surface of the semiconductor substrate. A step of covering the semiconductor substrate again with a second insulating film composed of a layer through which impurities of the second conductivity type easily pass and a layer overlying the layer through which impurities of the second conductivity type hardly pass, and the semiconductor substrate in the first semiconductor region Heating at a temperature sufficient to diffuse impurities of the second conductivity type; Forming a second opening in the insulating film to expose a part of the first semiconductor region, and heating the semiconductor substrate again at a temperature sufficient to diffuse impurities of the second conductivity type in the first semiconductor region, Thereby, a step of outwardly diffusing the second conductivity type impurity from the second opening to recede the maximum impurity concentration position of the portion exposed in the second opening of the first semiconductor region from one main surface of the semiconductor substrate to the inside. After removing the second insulating film, a step of forming a third insulating film on the entire main surface of the semiconductor substrate through which impurities of the first conductivity type are less likely to pass, and a second opening of the third insulating film. Forming a third opening smaller than the second opening at substantially the same position, and guiding impurities of the first conductivity type into the first semiconductor region of the semiconductor substrate through the third opening of the third insulating film. , The first conductivity type of the same depth as the maximum impurity concentration position of the first semiconductor region And a step of forming a second semiconductor region, the method of manufacturing a planar semiconductor device.
JP2462783A 1983-02-18 1983-02-18 Planar type semiconductor device manufacturing method Expired - Lifetime JPH065741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2462783A JPH065741B2 (en) 1983-02-18 1983-02-18 Planar type semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2462783A JPH065741B2 (en) 1983-02-18 1983-02-18 Planar type semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPS59151462A JPS59151462A (en) 1984-08-29
JPH065741B2 true JPH065741B2 (en) 1994-01-19

Family

ID=12143372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2462783A Expired - Lifetime JPH065741B2 (en) 1983-02-18 1983-02-18 Planar type semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JPH065741B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975652B (en) * 2022-07-25 2022-12-23 浙江晶科能源有限公司 Photovoltaic cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59151462A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
US4546536A (en) Fabrication methods for high performance lateral bipolar transistors
US5289019A (en) Insulated gate bipolar transistor
EP0345435B2 (en) Semiconductor device with a high breakdown voltage and method for its manufacture
JPH05347413A (en) Manufacture of semiconductor device
JP3727827B2 (en) Semiconductor device
KR900005123B1 (en) Bipolar transistor manufacturing method
EP0160525B1 (en) A gate turn-off thyristor and a method of producing the same
US6448588B2 (en) Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode
US4089020A (en) High power semiconductor diode
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
JP3436220B2 (en) Vertical semiconductor device
US4860086A (en) Semiconductor device
US4780426A (en) Method for manufacturing high-breakdown voltage semiconductor device
JPH07176536A (en) Bipolar transistor
US4451844A (en) Polysilicon emitter and base contacts separated by lightly doped poly separator
JPH065741B2 (en) Planar type semiconductor device manufacturing method
JP4401453B2 (en) Method of manufacturing power semiconductor device using semi-insulating polysilicon (SIPOS) film
CA1205577A (en) Semiconductor device
JP3789580B2 (en) High voltage semiconductor device
JPH10335630A (en) Semiconductor device and its manufacture
JPS6046549B2 (en) Gate turn-off thyristor
JPH10294450A (en) Gate turn-off thyristor and its manufacture
US3504243A (en) Low saturation voltage transistor with symmetrical structure
JP3083542B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JPS61136267A (en) Bipolar semiconductor device