JPH0657393A - Flux treating method - Google Patents

Flux treating method

Info

Publication number
JPH0657393A
JPH0657393A JP22947692A JP22947692A JPH0657393A JP H0657393 A JPH0657393 A JP H0657393A JP 22947692 A JP22947692 A JP 22947692A JP 22947692 A JP22947692 A JP 22947692A JP H0657393 A JPH0657393 A JP H0657393A
Authority
JP
Japan
Prior art keywords
flux
drying
concentration
alloy plating
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22947692A
Other languages
Japanese (ja)
Inventor
Masatake Sugimoto
正威 杉本
Koichi Sato
光一 佐藤
Atsushi Yoshioka
淳志 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP22947692A priority Critical patent/JPH0657393A/en
Publication of JPH0657393A publication Critical patent/JPH0657393A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flux treatment method for suppressing the generation of appearance defect such as pinhole and nonplating in a galvanized alloy plating. CONSTITUTION:(1) In the flux treatment process of the galvanized alloy plating, the flux treatment is executed by using the aqueous soln. of flux having 15wt.% or high concentration and then drying it at 150 to 300 deg.C. (2) In the flux treatment process of the galvanized alloy plating, the flux treatment is executed by using a aqueous soln. of flux having 1.0 to 5.5 hydrogen ion concentration and then drying it at a temp. between and 300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフラックス処理方法に関
し、詳しくは、溶融亜鉛合金めっきのフラックス処理工
程において、塩基性塩化亜鉛や水酸化亜鉛等の生成を極
力抑えることによって、めっき時のピンホール、不めっ
き等のめっき欠陥を未然に防止するフラックス処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux treatment method, and more specifically, in the flux treatment step of hot dip zinc alloy plating, by suppressing the formation of basic zinc chloride, zinc hydroxide, etc. , A flux treatment method for preventing plating defects such as non-plating.

【0002】[0002]

【従来の技術】近年、高耐食性、メインテナンスフリー
化要求によって、亜鉛アルミニウム合金めっきを初めと
して、種々の亜鉛合金めっきが開発され、実用化されて
きた。
2. Description of the Related Art In recent years, various zinc alloy platings including zinc aluminum alloy plating have been developed and put into practical use in response to the demand for high corrosion resistance and maintenance-free.

【0003】鋼板のような連続めっきがなされる場合を
除けば、一般に溶融亜鉛合金の溶融した浴に大気中で鋼
材を浸漬する方法が行なわれている。このような溶融亜
鉛合金めっきにおいては、通常、鋼材の前処理工程とし
て、油脂類の除去を目的とした脱脂、錆、酸化物の除去
を目的とした酸洗、そして鋼材の清浄表面を維持し、め
っき層成膜時の濡れ付着を起こさせることを目的とした
フラックス処理を行なっている。
Except for the case where continuous plating such as steel plate is performed, a method of immersing a steel material in a molten bath of molten zinc alloy in the atmosphere is generally used. In such hot-dip zinc alloy plating, usually, as a pretreatment step of steel material, degreasing for the purpose of removing oils and fats, pickling for the purpose of removing rust and oxides, and maintaining a clean surface of the steel material. The flux treatment is carried out for the purpose of causing wet adhesion when the plating layer is formed.

【0004】溶融亜鉛合金めっき用フラックスとしては
アルミニウムを含まない亜鉛合金めっきについては塩化
アンモニウム、塩化亜鉛、あるいは塩化亜鉛と塩化アン
モニウムの複塩が用いられる。またアルミニウムを含ん
だ亜鉛合金めっきについては、アルミニウムの選択酸
化、塩化アルミニウムの昇華散逸によって正常なフラッ
クス反応が阻害されるため、特公昭64−5110号公
報に記載されているようなフラックスを用いる必要があ
る。
As the flux for hot-dip zinc alloy plating, ammonium chloride, zinc chloride, or a double salt of zinc chloride and ammonium chloride is used for zinc alloy plating containing no aluminum. For zinc alloy plating containing aluminum, the normal flux reaction is hindered by the selective oxidation of aluminum and the sublimation and dissipation of aluminum chloride. Therefore, it is necessary to use the flux described in JP-B-64-5110. There is.

【0005】これらのフラックスは通常水溶液とし、酸
洗を処理済みの表面が清浄な鋼材をこのフラックス水溶
液に浸漬し、フラックスを鋼材表面に付着させた後、水
分を除くため乾燥を経てめっき工程に供される。
These fluxes are usually made into an aqueous solution, and a steel material which has been subjected to pickling treatment and has a clean surface is immersed in this aqueous solution of the flux, and the flux is attached to the surface of the steel material. Be served.

【0006】従来、亜鉛合金めっき浴は、亜鉛めっき浴
に比べ鋼板への濡れ性が低下することから、脱脂、酸洗
時に鋼板を充分に清浄化し、フラックスがむらなく、均
一に付着するように配慮し、フラックスの組成配合も適
正に保たれるよう注意が払われてきた。
Conventionally, zinc alloy plating baths have lower wettability to steel sheets than zinc plating baths. Therefore, the steel sheets are sufficiently cleaned during degreasing and pickling so that flux is evenly adhered. Consideration has been paid to ensure that the composition of the flux is properly maintained.

【0007】ところが、従来のフラックス処理方法にお
いては、鋼板表面の清浄度やフラックスの組成は適性で
ありながらも、時にはピンホール等の濡れ性不良による
ものと考えられる外観不良が起こることから、濡れ性不
良の原因究明と対策が求められていた。
However, in the conventional flux treatment method, although the cleanliness of the surface of the steel sheet and the composition of the flux are appropriate, appearance defects, which are considered to be due to poor wettability such as pinholes, sometimes occur, so It was required to investigate the cause of the poor sex and take countermeasures.

【0008】一方、フラックスの水溶液濃度、あるいは
フラックス水溶液の水素イオン濃度については、従来か
らコントロールされておらず、フラックスを物理的に付
着させればよいと考えられていた。また、フラックス処
理後の乾燥については、水分の残存が溶融状態の金属と
の接触によって爆発、溶湯の飛散を招くため、安全対策
として水分乾燥が必要との考えで、加熱した鉄板の上に
乗せ、あるいは自然乾燥をさせるといった乾燥方法がと
られており、フラックスに対しては温度をかけすぎて分
解、変質が起こらぬようとの配慮がなされる程度であっ
た。
On the other hand, the aqueous solution concentration of the flux or the hydrogen ion concentration of the aqueous flux solution has not been conventionally controlled, and it was thought that the flux should be physically attached. Also, regarding the drying after the flux treatment, the residual water content explodes due to contact with molten metal and causes the molten metal to fly off. Or, a drying method such as natural drying was used, and it was only considered that the flux was heated too much and was not decomposed or deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、溶融亜鉛合
金めっきにおいて、ピンホールや不めっき等の外観不良
の発生を抑制するフラックス処理方法を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a flux treatment method for suppressing the occurrence of appearance defects such as pinholes and non-plating in hot dip galvanizing.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
に沿って、鋭意検討し、フラックスの水溶液濃度や水素
イオン濃度に着目し、これらの値を変え、塩基性塩化亜
鉛、水酸化亜鉛の生成条件を調べたところ、フラックス
濃度が低下したり、水素イオン濃度が上昇する場合に
は、フラックス水溶液や鋼材に付着したフラックス中に
塩基性塩化亜鉛、水酸化亜鉛が生成し、白濁が観察され
た。フラックス水溶液濃度5重量%、水素イオン濃度
6.0の場合のフラックス白濁物のX線回析ピークを図
1に示す。そして、塩基性塩化亜鉛、水酸化亜鉛の生成
が濡れ性不良の原因となり、これがピンホールや不めっ
きといった外観不良となることが判った。
Means for Solving the Problems The inventors of the present invention have made diligent studies in accordance with the above objects, paying attention to the aqueous solution concentration and hydrogen ion concentration of the flux, and changing these values to change basic zinc chloride and hydroxide. When the conditions for producing zinc were examined, when the flux concentration decreased or the hydrogen ion concentration increased, basic zinc chloride and zinc hydroxide were produced in the flux aqueous solution or the flux adhering to the steel material, resulting in cloudiness. Was observed. FIG. 1 shows the X-ray diffraction peak of the flux cloudy matter in the case where the flux aqueous solution concentration is 5% by weight and the hydrogen ion concentration is 6.0. It has been found that the formation of basic zinc chloride and zinc hydroxide causes poor wettability, which results in poor appearance such as pinholes and non-plating.

【0011】従って、上記目的は、濡れ不良が起こらな
いように水溶液濃度または水素イオン濃度を制御し、か
つ乾燥温度を一定範囲とすることによって達成される。
Therefore, the above object can be achieved by controlling the concentration of the aqueous solution or the concentration of hydrogen ions so that the poor wetting does not occur and keeping the drying temperature within a certain range.

【0012】すなわち、本発明は、溶融亜鉛合金めっき
のフラックス処理工程において、濃度15重量%以上の
フラックス水溶液を用いるか、または水素イオン濃度
1.0〜5.5のフラックス水溶液を用いてフラックス
処理を行ない、引き続いて150〜300℃で乾燥させ
ることを特徴とするフラックス処理方法にある。
That is, according to the present invention, in the flux treatment step of hot dip galvanizing, the flux treatment is performed using a flux aqueous solution having a concentration of 15% by weight or more, or a flux aqueous solution having a hydrogen ion concentration of 1.0 to 5.5. And subsequently drying at 150 to 300 ° C.

【0013】本発明においては、溶融亜鉛合金めっきの
フラックス処理工程において、15重量%以上の濃度の
フラックス水溶液を用いるか、水素イオン濃度が1.0
〜5.0のフラックス水溶液を用いる。このような条件
を満たさない場合には、塩基性塩化亜鉛あるいは水酸化
亜鉛の生成による白濁が認められ、このようなフラック
ス水溶液を用いてめっきした場合には、ピンホール等の
外観不良がめっき表面に認められる。
In the present invention, in the flux treatment step of hot dip zinc alloy plating, a flux aqueous solution having a concentration of 15% by weight or more is used, or the hydrogen ion concentration is 1.0.
A flux aqueous solution of ~ 5.0 is used. If these conditions are not met, white turbidity due to the formation of basic zinc chloride or zinc hydroxide is observed, and when plating is performed using such an aqueous flux solution, poor appearance such as pinholes may result in poor plating surface. Recognized by.

【0014】フラックス処理を行なった後には、迅速に
乾燥されるが、本発明において、乾燥温度は150〜3
00℃であることが必要である。乾燥温度が150℃未
満では、上記と同様に塩基性塩化亜鉛あるいは水酸化亜
鉛が生成し、ピンホール等の外観不良がめっき表面に認
められる。この原因は塩化亜鉛の潮解性性質に基づくH
2O、OH-イオンの増加によるものと考えられる。ま
た、乾燥温度が300℃を超えるとフラックスが分解し
てしまい外観不良となる。この乾燥は、熱風乾燥、炉内
乾燥等が採用され、特に限定されない。
After the flux treatment, it is dried quickly. In the present invention, the drying temperature is 150 to 3
It must be 00 ° C. If the drying temperature is lower than 150 ° C., basic zinc chloride or zinc hydroxide is produced as in the above case, and poor appearance such as pinholes is recognized on the plating surface. The cause of this is H based on the deliquescent property of zinc chloride.
It is considered that this is due to an increase in 2 O and OH ions. Further, if the drying temperature exceeds 300 ° C., the flux is decomposed and the appearance becomes poor. For this drying, hot air drying, oven drying or the like is adopted, and is not particularly limited.

【0015】本発明は、Zn−Alめっきに限らず、Z
n−Niめっき、Zn−Alめっき等の亜鉛合金めっき
全般に適用可能である。例えば特願平3−267006
号の亜鉛合金めっきについても適用できる。
The present invention is not limited to Zn-Al plating, but can be applied to Z
It is applicable to all zinc alloy plating such as n-Ni plating and Zn-Al plating. For example, Japanese Patent Application No. 3-267006
It is also applicable to the zinc alloy plating of No.

【0016】また、フラックス組成も亜鉛塩類と塩素化
合物を含むフラックスに広く適用することができ特に限
定されず、その一例として特公昭64−5110号公報
に記載のフラックスが挙げられる。
Further, the flux composition can be widely applied to fluxes containing zinc salts and chlorine compounds and is not particularly limited, and an example thereof is the flux described in Japanese Patent Publication No. 64-5110.

【0017】[0017]

【作用】X線回折法等の分析手段を用いて、濡れ性が
良、不良時のフラックス処理液、鋼材付着フラックスを
調査したところ、濡れ性不良時のフラックス水溶液、あ
るいは鋼材付着フラックス中にはZn5(OH)8Cl2
・xH2O、ZnCl2・4Zn(OH)2、ZnCl2
4Zn(OH)2等の塩基性塩化亜鉛や水酸化亜鉛が確
認された(図1)。
The flux treatment liquid when the wettability is good or bad and the steel material adhered flux are investigated by using an analysis means such as X-ray diffraction method. Zn 5 (OH) 8 Cl 2
· XH 2 O, ZnCl 2 · 4Zn (OH) 2, ZnCl 2 ·
Basic zinc chloride and zinc hydroxide such as 4Zn (OH) 2 were confirmed (Fig. 1).

【0018】すなわち、フラックス組成が適正であった
としても、フラックス水溶液濃度が稀薄となり、OHが
増加したり、乾燥時に常温に近い状態におかれたものは
例えば5Zn2+8OH-+2Cl-+xH2O→Zn
5(OH)8Cl2・xH2OやZn2++2OH-→Zn
(OH)2の反応によって塩基性塩化亜鉛や水酸化亜鉛
の生成が起こり、本来フラックスとして適性な濃度であ
るべきZn2+イオン、Cl-イオン濃度(乾燥後はZn
Cl2濃度)が適正域から逸脱し、フラックスの組成配
合バランスが崩れることとなる。
That is, even if the flux composition is proper, the concentration of the flux aqueous solution becomes dilute, the OH increases, and the one left at room temperature during drying is, for example, 5Zn 2 + 8OH + 2Cl + xH 2 O. → Zn
5 (OH) 8 Cl 2 · xH 2 O and Zn 2+ + 2OH → Zn
The reaction of (OH) 2 causes the formation of basic zinc chloride and zinc hydroxide, and the concentration of Zn 2+ ion and Cl ion (which should be Zn 2+ ion after drying) should be the proper concentration as a flux.
(Cl 2 concentration) deviates from the proper range, and the composition balance of the flux is lost.

【0019】このように塩基性塩化亜鉛や水酸化亜鉛の
生成を抑えるフラックス処理方法が必要なことが判明し
た。次に、フラックス水溶液の濃度、水素イオン濃度、
乾燥方法、温度を変え、このとき塩基性塩化亜鉛、水酸
化亜鉛の有無を調べ、めっき表面のピンホール不良率と
の関係を調べた。
As described above, it has been found that a flux treatment method for suppressing the formation of basic zinc chloride or zinc hydroxide is necessary. Next, the concentration of the flux aqueous solution, the hydrogen ion concentration,
The drying method and temperature were changed, and the presence or absence of basic zinc chloride and zinc hydroxide was examined at this time, and the relationship with the pinhole defect rate on the plated surface was examined.

【0020】この結果、フラックス濃度を高濃度とする
か、塩酸添加によって酸性側に保ったフラックス水溶液
を用いて、鋼材のフラックス処理を行ない、続いて鋼材
に付着したフラックス中の水分を迅速に、充分蒸発させ
うる温度で乾燥させることによって、濡れ性不良が起こ
らず、ピンホール等の外観不良が発生しない亜鉛合金め
っきが安定的に得られた。
As a result, the flux concentration of the steel material is increased by increasing the flux concentration or by using the flux aqueous solution kept on the acidic side by the addition of hydrochloric acid, and then the moisture in the flux adhered to the steel material is promptly removed. By drying at a temperature at which it can be sufficiently vaporized, a zinc alloy plating that did not cause poor wettability and did not cause appearance defects such as pinholes was stably obtained.

【0021】[0021]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on Examples and the like.

【0022】実施例1〜14および比較例1〜4 SS 400一般構造用圧延鋼材50mmW×100m
mL×3.2mmTに通常のアルカリ脱脂、酸洗を施し
表面を清浄にした後、塩化亜鉛60モル%、塩化ナトリ
ウム10モル%、塩化カリウム5モル%、塩化アンモニ
ウム24モル%、塩化スズ1モル%とからなる特公昭6
4−5110号に記載された組成のフラックスを用い、
表1に示したように種々の水溶液濃度、水素イオン濃度
を調整したフラックス水溶液中で90℃、5分間浸漬処
理を行なった。なお、水素イオン濃度は塩酸で調整し
た。
Examples 1 to 14 and Comparative Examples 1 to 4 SS 400 Rolled steel for general structure 50 mmW × 100 m
After cleaning the surface by subjecting mL × 3.2 mmT to ordinary alkaline degreasing and pickling, the surface is cleaned, and then 60 mol% zinc chloride, 10 mol% sodium chloride, 5 mol% potassium chloride, 24 mol% ammonium chloride, 1 mol tin chloride. Special public account 6 consisting of%
Using the flux of the composition described in 4-5110,
As shown in Table 1, immersion treatment was carried out at 90 ° C. for 5 minutes in a flux aqueous solution in which various aqueous solution concentrations and hydrogen ion concentrations were adjusted. The hydrogen ion concentration was adjusted with hydrochloric acid.

【0023】続いて、表1に示したような乾燥条件下
(温度、方法)で乾燥を行ない、各種亜鉛合金めっき浴
を用いて460℃、1分間の溶融亜鉛合金めっきを行な
った。なお、フラックス処理から乾燥、乾燥からめっき
までの時間はそれぞれ1〜2分以内であった。
Subsequently, drying was performed under the drying conditions (temperature, method) as shown in Table 1, and hot dip zinc alloy plating was performed at 460 ° C. for 1 minute using various zinc alloy plating baths. The time from the flux treatment to the drying and the time from the drying to the plating were each within 1 to 2 minutes.

【0024】このようにして溶融亜鉛めっき表面のピン
ホールの有無をルーペ、顕微鏡を用い調べ、結果を表1
に示した。
Thus, the presence or absence of pinholes on the surface of the hot-dip galvanized layer was examined with a magnifying glass and a microscope, and the results are shown in Table 1.
It was shown to.

【0025】[0025]

【表1】 [Table 1]

【0026】この結果、実施例1〜14では、いずれも
ピンホールは認められなかったが、比較例1〜4ではピ
ンホールが発生した。
As a result, no pinholes were observed in Examples 1 to 14, but pinholes were generated in Comparative Examples 1 to 4.

【0027】[0027]

【発明の効果】以上の説明したように、フラックス処理
工程において、フラックス水溶液の濃度または水素イオ
ン濃度を一定範囲とし、かつ一定温度で乾燥することに
よって、良好な濡れ性が発揮され、ピンホール等の外観
不良のない亜鉛合金めっきが安定的に得られる。
As described above, in the flux treatment step, good wettability is exhibited by drying the flux aqueous solution concentration or hydrogen ion concentration within a certain range and at a certain temperature, and pinholes, etc. are exhibited. It is possible to stably obtain the zinc alloy plating without the appearance defect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 濃度5重量%、水素イオン濃度6.0のフラ
ックス水溶液を用いた場合の鋼材表面のフラックス白濁
物のX線回折ピーク。
FIG. 1 is an X-ray diffraction peak of a flux cloudy substance on the surface of a steel material when a flux aqueous solution having a concentration of 5% by weight and a hydrogen ion concentration of 6.0 was used.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融亜鉛合金めっきのフラックス処理工
程において、濃度15重量%以上のフラックス水溶液を
用いてフラックス処理を行ない、引き続いて150〜3
00℃で乾燥させることを特徴とするフラックス処理方
法。
1. In the flux treatment step of hot dip zinc alloy plating, flux treatment is performed using a flux aqueous solution having a concentration of 15% by weight or more, and subsequently 150 to 3
A flux treatment method characterized by drying at 00 ° C.
【請求項2】 溶融亜鉛合金めっきのフラックス処理工
程において、水素イオン濃度1.0〜5.5のフラック
ス水溶液を用いてフラックス処理を行ない、引き続いて
150〜300℃で乾燥させることを特徴とするフラッ
クス処理方法。
2. The flux treatment step of hot dip zinc alloy plating is performed by using an aqueous flux solution having a hydrogen ion concentration of 1.0 to 5.5 and subsequently drying at 150 to 300 ° C. Flux treatment method.
JP22947692A 1992-08-06 1992-08-06 Flux treating method Pending JPH0657393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22947692A JPH0657393A (en) 1992-08-06 1992-08-06 Flux treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22947692A JPH0657393A (en) 1992-08-06 1992-08-06 Flux treating method

Publications (1)

Publication Number Publication Date
JPH0657393A true JPH0657393A (en) 1994-03-01

Family

ID=16892777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22947692A Pending JPH0657393A (en) 1992-08-06 1992-08-06 Flux treating method

Country Status (1)

Country Link
JP (1) JPH0657393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108154A (en) * 2005-09-14 2007-04-26 Olympus Corp Method for detecting biological sample continuously or for long period
JP2015045089A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
JP2015045088A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108154A (en) * 2005-09-14 2007-04-26 Olympus Corp Method for detecting biological sample continuously or for long period
JP2015045089A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel
JP2015045088A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Flux for hot dip galvanizing, flux bath for hot dip galvanizing, method for manufacturing hot dip galvanized steel

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
FI61044C (en) LEGERING FOER GALVANISERING AV STAOL
JP6137339B2 (en) Method for producing hot-dip galvanized steel
JPS60125360A (en) Zinc alloy hot-dipped steel material and its production and flux composition
US3971861A (en) Alloy plating system
US8703241B2 (en) Surface preparation of steel parts for batch hot-dip galvanizing
PL204280B1 (en) Preparation of steel surfaces for single-dip aluminium-rich zinc galvanising
JP2002012958A (en) Alloyed hot-dip galvanized steel sheet and its manufacturing method
JPH0657393A (en) Flux treating method
JP5871035B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP2005139557A (en) Hot dip galvannealed steel sheet, and its production method
US3206324A (en) Method and pre-flux for coating ferrous metals with nickel prior to galvanizing
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP3083872B2 (en) Method for forming chemical conversion coating on surface of zinc or zinc alloy and method of using this method
JP2544678B2 (en) Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same
US7311787B2 (en) Method for the darkening of a surface layer of a piece of material containing zinc
JP5979186B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JPS6112987B2 (en)
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
JPS5817254B2 (en) Method for improving corrosion resistance of galvanized steel
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPH04221053A (en) Production of galvanized stainless steel material
JPH04176852A (en) Aluminum-zinc alloy hot-dipping method
JPS6063385A (en) Production of electrogalvanized steel sheet having resistance to blackening
KR20040054271A (en) Manufacturing method of galvanealed steel sheets with a good frictional property