JPH0656743A - Production of pyruvic ester - Google Patents

Production of pyruvic ester

Info

Publication number
JPH0656743A
JPH0656743A JP4229184A JP22918492A JPH0656743A JP H0656743 A JPH0656743 A JP H0656743A JP 4229184 A JP4229184 A JP 4229184A JP 22918492 A JP22918492 A JP 22918492A JP H0656743 A JPH0656743 A JP H0656743A
Authority
JP
Japan
Prior art keywords
ester
catalyst
lactate
pyruvate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4229184A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEEGAN TSUSHO KK
Taoka Chemical Co Ltd
Original Assignee
BEEGAN TSUSHO KK
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEEGAN TSUSHO KK, Taoka Chemical Co Ltd filed Critical BEEGAN TSUSHO KK
Priority to JP4229184A priority Critical patent/JPH0656743A/en
Publication of JPH0656743A publication Critical patent/JPH0656743A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce a pyruvic ester by oxidizing a lactic ester with oxygen in the presence of a catalyst. CONSTITUTION:A pyruvic ester is provided by oxidizing a lactic ester with molecular oxygen in the presence of a tin-molybdenum double oxide. The pyruvic ester can be produced from the lactic ester in a high selectivity on a practical industrial scale at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乳酸エステルを触媒の
存在下、酸素酸化することを特徴とするピルビン酸エス
テルの製造方法に関する。ピルビン酸エステルを加水分
解することによって得られるピルビン酸は、生体内の代
謝経路、とくに解糖系やアルコール発酵で重要な役割を
もつ物質で、酵素の存在によるL−アミノ酸の製造の先
駆体として重要であり、またピルビン酸エステルは電子
材料(フォトレジスト)等の溶剤として、安全性が高い
ことで注目されており、該ピルビン酸エステルの触媒技
術の活用による経済的な新しい製造プロセスの開発が望
まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pyruvate ester, which comprises oxidizing a lactate ester with oxygen in the presence of a catalyst. Pyruvate obtained by hydrolyzing a pyruvate ester is a substance that plays an important role in metabolic pathways in vivo, especially glycolysis and alcohol fermentation, and serves as a precursor of L-amino acid production by the presence of an enzyme. Pyruvate ester is important because it is highly safe as a solvent for electronic materials (photoresist) and the like, and the development of an economical new manufacturing process by utilizing the pyruvate ester catalyst technology. Is desired.

【0002】[0002]

【従来の技術】ピルビン酸エステルの製造方法に関して
は、従来から次のような方法が知られている。
2. Description of the Related Art The following methods are conventionally known as methods for producing pyruvic acid esters.

【0003】(1)乳酸エステルを鉄−モリブデン系複
合酸化物(特公昭38−3662号公報)またはバナジ
ウム−モリブデン系複合酸化物(特公昭56−1985
4号公報)の存在下に気相で酸化する方法。 (2)乳酸エステルを白金、パラジウムなどの貴金属触
媒の存在下に液相で酸化する方法(特開昭54−138
514)。 (3)チタン、ジルコニウムまたはニオブ酸化物(特開
昭63−132859号公報)あるいはタングステン酸
化物(特公昭64−11011)の存在下、乳酸エステ
ルを液相で酸素酸化する方法。
(1) An iron-molybdenum-based composite oxide (Japanese Patent Publication No. 38-3662) or a vanadium-molybdenum-based composite oxide (Japanese Patent Publication 56-1985).
No. 4) in the gas phase in the presence of the above. (2) A method of oxidizing a lactate ester in the liquid phase in the presence of a noble metal catalyst such as platinum or palladium (JP-A-54-138)
514). (3) A method of oxygen-oxidizing a lactate ester in a liquid phase in the presence of titanium, zirconium or niobium oxide (Japanese Patent Laid-Open No. 63-132859) or tungsten oxide (Japanese Patent Publication No. 64-11011).

【0004】しかしながら、これら従来知られている方
法は、気相法においては、装置設備が高価となる他、固
定床の連続流通式のため生産規模の調節がむずかしく、
大量生産品目でないと経済性に難点がある。これに対し
て、液相法は設備費が安く、操業安定性に優れ、任意の
生産規模に適応できる他、触媒が劣化した場合も取り替
えや補給が容易であることなど多くの利点がある。しか
し、液相でも貴金属触媒系は触媒が高価なためわずかの
活性劣化も製品価格に悪影響が及ぶ。また、前記(3)
の酸化物系は触媒価格、安定性、ピルビン酸エステルの
選択性などすぐれた性質を有しているが、活性が低く、
工業的実用性の観点から、必ずしも満足できる域に達し
ていない。
However, in these conventionally known methods, in the vapor phase method, the equipment is expensive, and the production scale is difficult to control because of the fixed bed continuous flow system,
If it is not a mass-produced item, there is a difficulty in economic efficiency. On the other hand, the liquid phase method has many advantages such as low facility cost, excellent operational stability, adaptability to any production scale, and easy replacement and replenishment even when the catalyst deteriorates. However, even in the liquid phase, since the precious metal catalyst system is expensive, even a slight deterioration in activity adversely affects the product price. In addition, (3)
Oxide system has excellent properties such as catalyst price, stability, and selectivity of pyruvate ester, but its activity is low,
From the viewpoint of industrial practicability, it has not necessarily reached a satisfactory level.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、乳酸エ
ステルを酸化してピルビン酸エステルを製造するに当た
り、工業的実用性の優れたピルビン酸エステルの製造方
法について、特に複合酸化物を用いる酸素酸化方法につ
いて鋭意研究、検討した。この複合酸化物は、表面積、
酸性質など構成成分の単味酸化物とは全く異なった性質
を示すのが通例であって、新しい機能を発揮させるため
の組合せに融通性があるが、一般には気相酸化に用いら
れることが多く、液相酸化の事例は全くみられない。前
記(3)の酸化物を含めて多くの単味酸化物およびそれ
らの組合せによる二元酸化物系について、乳酸エステル
酸化活性とピルビン酸エステルの選択率について詳細に
比較、検討の結果、これまで液相酸化に使われたことの
ない特定の複合酸化物が優れた選択率でピルビン酸エス
テルを製造できることを見出し、本発明を完成した。
DISCLOSURE OF THE INVENTION When the present inventors oxidize a lactate ester to produce a pyruvate ester, the present invention uses a complex oxide as a method for producing a pyruvate ester excellent in industrial practicality. We have studied and studied the oxygen oxidation method. This complex oxide has a surface area of
It is customary to show completely different properties from the simple oxides of the constituents such as acid properties, and there is flexibility in the combination for exhibiting new functions, but it is generally used for gas phase oxidation. In many cases, there are no cases of liquid phase oxidation. As a result of detailed comparison and examination of lactate oxidation activity and pyruvate selectivity with respect to many simple oxides including the oxides of the above (3) and binary oxides including combinations thereof, The present invention has been completed by finding that a specific complex oxide which has never been used for liquid phase oxidation can produce pyruvic acid ester with excellent selectivity.

【0006】[0006]

【課題を解決するための手段】本発明は、乳酸エステル
を錫−モリブデン系複合酸化物の存在下、分子状酸素で
酸化することを特徴とするピルビン酸エステルの製造方
法である。
The present invention is a method for producing a pyruvate ester, which comprises oxidizing a lactate ester with molecular oxygen in the presence of a tin-molybdenum complex oxide.

【0007】本発明の出発原料として用いられる乳酸エ
ステルは、例えば乳酸メチル、乳酸エチル、乳酸n−プ
ロピル、乳酸i−プロピル、乳酸n−ブチルなどを挙げ
ることができる。
Examples of the lactate ester used as the starting material of the present invention include methyl lactate, ethyl lactate, n-propyl lactate, i-propyl lactate and n-butyl lactate.

【0008】本発明に用いられる触媒は、錫−モリブデ
ン系複合酸化物であり、具体的には酸化錫−酸化モリブ
デン(SnO2−MoO3)であり、次に記載する方法によって
調製することができる。
The catalyst used in the present invention is a tin-molybdenum-based composite oxide, specifically tin oxide-molybdenum oxide (SnO 2 —MoO 3 ), which can be prepared by the method described below. it can.

【0009】塩化第2錫・二水塩SnCl2 ・2H2O 13
6.6g(720mmol)を1リットルの三角フラス
コにとり、脱イオン水120mlに溶解させた。電磁式
で攪拌しながら6N−アンモニア水240mlをゆっく
り加え、錫の水酸化物を沈澱させた。一夜静置、熟成の
のち、吸引濾過し、脱イオン水で繰り返し洗浄、白色ペ
ーストを得た。
Stannous chloride dihydrate SnCl 2 · 2H 2 O 13
6.6 g (720 mmol) was placed in a 1-liter Erlenmeyer flask and dissolved in 120 ml of deionized water. While stirring magnetically, 240 ml of 6N-ammonia water was slowly added to precipitate the hydroxide of tin. After standing overnight and aging, suction filtration and repeated washing with deionized water gave a white paste.

【0010】次に、パラモリブデン酸アンモン(NH4)6M
o7O24 ・4H2O 14.13g(11.4mmol) を20
mlの脱イオン水に溶解させ、錫の水酸化物ペーストに
加えると泥色に変色する。擂潰混和機で1時間よく練り
合わせたのち、ガラス板に広げて風乾、さらに100℃
で7時間乾燥した (得量101.3g)。この乾燥体の
一部を石英管に充填し、空気を通じながら300℃また
は500℃に5時間焼成し、触媒として使用した。窒素
吸着による表面積は、それぞれ51.9m2/gおよび4
6.7m2/gであった。この触媒はSn/Mo=9/1(原
子比)である。
Next, ammonium paramolybdate (NH 4 ) 6 M
o 7 O 24 · 4H 2 O 14.13g a (11.4mmol) 20
Dissolve in ml of deionized water and add to the tin hydroxide paste to turn a mud color. After thoroughly kneading for 1 hour with a crusher / mixer, spread on a glass plate and air dry, then 100 ° C.
And dried for 7 hours (101.3 g yield). A part of this dried material was filled in a quartz tube, calcined at 300 ° C. or 500 ° C. for 5 hours while passing air, and used as a catalyst. The surface area due to nitrogen adsorption is 51.9 m 2 / g and 4 respectively.
It was 6.7 m 2 / g. This catalyst has Sn / Mo = 9/1 (atomic ratio).

【0011】本発明の酸化錫−酸化モリブデン(SnO2
MoO3)のSn/Mo(原子比)は、9.5〜5/0.5〜5
の割合範囲で使用される。触媒の使用量は特に限定的で
はないが、通常、反応液50ml当たり0.05〜1g
が好ましく、触媒量によって変化率に大きな差異はみら
れない。
The tin oxide-molybdenum oxide (SnO 2
MoO 3) of Sn / Mo (atomic ratio) is 9.5 to 5 / 0.5 to 5
Used in a range of percentages. The amount of the catalyst used is not particularly limited, but is usually 0.05 to 1 g per 50 ml of the reaction solution.
Is preferable, and there is no great difference in the rate of change depending on the amount of catalyst.

【0012】本発明は、乳酸エステルを酸素酸化してピ
ルビン酸エステルを製造するに当たり、触媒として錫−
モリブデン系複合酸化物の存在下に行うことを特徴とす
るものであり、この方法は、液相のみならず、気相にお
いても工業的に有利に実施することができる。
In the present invention, when a lactate ester is oxidized with oxygen to produce a pyruvate ester, tin-catalyst is used as a catalyst.
The method is performed in the presence of a molybdenum-based composite oxide, and this method can be industrially advantageously carried out not only in the liquid phase but also in the gas phase.

【0013】液相で実施する場合は、通常、90〜17
0℃の温度、好ましくは100〜150℃で行なわれ
る。
When carried out in the liquid phase, it is usually 90 to 17
It is carried out at a temperature of 0 ° C, preferably 100-150 ° C.

【0014】また、気相で実施する場合は、通常、18
0〜350℃の温度、好ましくは200℃〜300℃で
行なわれる。この場合、例えば、固定床流通式気相連続
操作が好ましく用いられる。
When it is carried out in the gas phase, it is usually 18
It is carried out at a temperature of 0 to 350 ° C, preferably 200 to 300 ° C. In this case, for example, a fixed bed flow type continuous vapor phase operation is preferably used.

【0015】液相での反応時間は特に限定されないが、
10時間以下、好ましくは5時間以下で行われる。ま
た、反応圧は一般に1〜10気圧で行われる。
The reaction time in the liquid phase is not particularly limited,
It is carried out for 10 hours or less, preferably 5 hours or less. The reaction pressure is generally 1 to 10 atm.

【0016】本発明において酸素酸化に使用する分子状
酸素としては、酸素ガス又は酸素と任意の割合の窒素と
の混合ガス(例えば空気)が一般に使用される。
As the molecular oxygen used for oxygen oxidation in the present invention, oxygen gas or a mixed gas of oxygen and nitrogen in an arbitrary ratio (for example, air) is generally used.

【0017】また、酸素の供給方法としては、反応混合
物を攪拌し、気相部に流入させる方法、液中に吹き込む
方法、前記加圧系においては、オートクレーブ中で圧力
調節機などを用い、酸素分圧を常に一定に保つ方法など
が考えられる。
Further, as a method of supplying oxygen, a method of stirring the reaction mixture and flowing it into a gas phase part, a method of blowing it into a liquid, and a pressure regulator in an autoclave in the pressurization system are used. A possible method is to keep the partial pressure constant.

【0018】本発明において生成するピルビン酸エステ
ルは反応性が高く、しかも比較的高温での反応となるた
め、出発原料である乳酸エステルの仕込み濃度は低い方
が好ましい。このためには反応溶媒を用いることが好ま
しい。用いられる溶媒としては、エステル系であり、な
お精製をより簡単にする為にはピルビン酸エステルより
も高沸点のものが好ましく、琥珀酸ジメチルや琥珀酸ジ
エチル又はアセトフェノン等を挙げることが出来る。
The pyruvic acid ester produced in the present invention is highly reactive, and since it is a reaction at a relatively high temperature, it is preferable that the starting concentration of the lactate ester is low. For this purpose, it is preferable to use a reaction solvent. The solvent used is an ester-based solvent, and a solvent having a higher boiling point than that of pyruvic acid ester is preferable in order to simplify the purification, and examples thereof include dimethyl succinate, diethyl succinate, and acetophenone.

【0019】目的とするピルビン酸エステルの精製法
は、反応後、触媒を濾過もしくはデカンテーション等に
より分離し、その後減圧蒸留等の操作により行なわれ
る。
The desired method for purifying pyruvic acid ester is carried out by separating the catalyst by filtration or decantation after the reaction, and then performing distillation under reduced pressure or the like.

【0020】[0020]

【発明の効果】本発明の方法によれば、乳酸エステルか
ら高い選択率で目的とするピルビン酸エステルを工業
的、実用的に有利に製造することができる。
Industrial Applicability According to the method of the present invention, the desired pyruvate ester can be produced from lactate ester with high selectivity, industrially and practically.

【0021】[0021]

【実施例】次に、実施例により本発明の方法を更に具体
的、詳細に説明するが,本発明は実施例によって何ら限
定されるものではない。
EXAMPLES Next, the method of the present invention will be described more specifically and in detail by way of examples, but the present invention is not limited to the examples.

【0022】実施例1 還流冷却器、ガス導入口および液採取口を備えた平底三
つ口フラスコに乳酸エチル240mmolを含む琥珀酸
ジメチル希釈液50mlと触媒 SnO2-MoO3(300℃焼
成) の100メッシュ以下の粉末0.1gをくわえ、油
浴温度130℃に加熱、電磁式で1000rpmに攪拌
しながらテフロン毛管より酸素ガスを6リットル/時間
で吹き込んだ。3時間後に反応液を採取して小型遠心器
で触媒を分離、ガスクロマトグラフィーで分析したとこ
ろ、乳酸エチルの変化率38.4%、ピルビン酸エチル
の選択率は98.9%であった。
Example 1 In a flat-bottomed three-necked flask equipped with a reflux condenser, a gas inlet and a liquid outlet, 50 ml of a dimethyl succinate dilute solution containing 240 mmol of ethyl lactate and a catalyst SnO 2 -MoO 3 (calcined at 300 ° C.) were added. 0.1 g of powder of 100 mesh or less was added, heated to an oil bath temperature of 130 ° C., and oxygen gas was blown at 6 liters / hour from a Teflon capillary while stirring electromagnetically at 1000 rpm. After 3 hours, the reaction solution was sampled, the catalyst was separated with a small centrifuge, and analyzed by gas chromatography. As a result, the conversion rate of ethyl lactate was 38.4% and the selectivity of ethyl pyruvate was 98.9%.

【0023】実施例2 触媒 SnO2-MoO3を500℃5時間焼成体を用い、5時間
反応させた他は実施例1と全く同様に行ったところ、乳
酸エチルの変化率36.4%、ピルビン酸エチルの選択
率94.2%であった。
Example 2 The same procedure as in Example 1 was carried out except that the catalyst SnO 2 —MoO 3 was used for 5 hours at 500 ° C. and the reaction was carried out for 5 hours. The conversion rate of ethyl lactate was 36.4%. The ethyl pyruvate selectivity was 94.2%.

【0024】実施例3 内径8mmのガラス製反応管に、触媒 SnO2-MoO3(500
℃焼成) の10〜14メッシュ通過破砕片2cm3 を充填
して、乳酸エチル5%、酸素10%を含む混合ガスを空
間速度3600/時間となるように通気した。250℃
での通塔3時間ののちに流出ガスを氷冷n−プロパノー
ルに吸収してガスクロマトグラフィーで分析したとこ
ろ、乳酸エチルの変化率54.0%、ピルビン酸エチル
の選択率は81.8%であった。
Example 3 A glass reaction tube having an inner diameter of 8 mm was charged with the catalyst SnO 2 -MoO 3 (500
2 cm 3 of 10-14 mesh passing crushed pieces (calcined at 0 ° C.) were charged, and a mixed gas containing 5% ethyl lactate and 10% oxygen was aerated so that the space velocity was 3600 / hour. 250 ° C
After 3 hours of passing through the column, the effluent gas was absorbed in ice-cold n-propanol and analyzed by gas chromatography. The conversion rate of ethyl lactate was 54.0% and the selectivity of ethyl pyruvate was 81.8%. Met.

【0025】比較例1 実施例1において、触媒 SnO2-MoO3(300℃焼成)に
代え、酸化モリブデン(MoO3)の単味酸化物を用いた他は
実施例1と全く同様に行ったところ、乳酸エチルの変化
率37%、ピルビン酸エチルの選択率66%であった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that molybdenum oxide (MoO 3 ) simple oxide was used in place of the catalyst SnO 2 —MoO 3 (calcined at 300 ° C.) in Example 1. However, the change rate of ethyl lactate was 37% and the selectivity of ethyl pyruvate was 66%.

【0026】比較例2 実施例1において、触媒 SnO2-MoO3(300℃焼成)に
代え、酸化錫(SnO2)(500℃焼成)を用いた他は実
施例1と全く同様に行ったところ、乳酸エチルの変化率
16%、ピルビン酸エチルの選択率88%であった。 比較例3 実施例1において、触媒 SnO2-MoO3(300℃焼成)に
代え、酸化鉄−酸化モリブデン(Fe2O3-MoO3) を用いた
他は実施例1と全く同様に行ったところ、乳酸エチルの
変化率3%、ピルビン酸エチルの選択率14%であっ
た。
Comparative Example 2 The same procedure as in Example 1 was repeated except that tin oxide (SnO 2 ) (calcined at 500 ° C.) was used instead of the catalyst SnO 2 —MoO 3 (calcined at 300 ° C.) in Example 1. However, the change rate of ethyl lactate was 16% and the selectivity of ethyl pyruvate was 88%. Comparative Example 3 The same procedure as in Example 1 was carried out except that iron oxide-molybdenum oxide (Fe 2 O 3 —MoO 3 ) was used instead of the catalyst SnO 2 —MoO 3 (calcined at 300 ° C.) in Example 1. However, the change rate of ethyl lactate was 3% and the selectivity of ethyl pyruvate was 14%.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 乳酸エステルを錫−モリブデン系複合酸
化物の存在下、分子状酸素で酸化することを特徴とする
ピルビン酸エステルの製造方法。
1. A method for producing a pyruvate ester, which comprises oxidizing a lactate ester with molecular oxygen in the presence of a tin-molybdenum-based composite oxide.
【請求項2】 液相で酸化することを特徴とする請求項
1に記載ピルビン酸エステルの製造方法。
2. The method for producing a pyruvic acid ester according to claim 1, which comprises oxidizing in a liquid phase.
【請求項3】 90〜170℃の温度で行う請求項2に
記載のピルビン酸エステルの製造方法。
3. The method for producing a pyruvic acid ester according to claim 2, which is carried out at a temperature of 90 to 170 ° C.
【請求項4】 気相で酸化することを特徴とする請求項
1に記載ピルビン酸エステルの製造方法。
4. The method for producing a pyruvic acid ester according to claim 1, which comprises oxidizing in a gas phase.
【請求項5】 180〜350℃の温度で行う請求項4
に記載のピルビン酸エステルの製造方法。
5. The method according to claim 4, wherein the temperature is 180 to 350 ° C.
The method for producing a pyruvic acid ester according to 1.
JP4229184A 1992-08-04 1992-08-04 Production of pyruvic ester Pending JPH0656743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229184A JPH0656743A (en) 1992-08-04 1992-08-04 Production of pyruvic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229184A JPH0656743A (en) 1992-08-04 1992-08-04 Production of pyruvic ester

Publications (1)

Publication Number Publication Date
JPH0656743A true JPH0656743A (en) 1994-03-01

Family

ID=16888123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229184A Pending JPH0656743A (en) 1992-08-04 1992-08-04 Production of pyruvic ester

Country Status (1)

Country Link
JP (1) JPH0656743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523459A (en) * 1994-03-25 1996-06-04 Ube Industries, Ltd. Preparation of α-keto acid ester
US6429719B1 (en) 1998-11-27 2002-08-06 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for charge generation type detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523459A (en) * 1994-03-25 1996-06-04 Ube Industries, Ltd. Preparation of α-keto acid ester
US6429719B1 (en) 1998-11-27 2002-08-06 Matsushita Electric Industrial Co., Ltd. Signal processing circuit for charge generation type detection device

Similar Documents

Publication Publication Date Title
Almeida et al. Ruthenium (II)‐Catalyzed Oppenauer‐Type Oxidation of Secondary Alcohols
RU2238144C2 (en) Oxidation catalyst and a method implemented using it
JPH1067701A (en) Production of malonic acid or salt of the same
JPH1072401A (en) Production of 3-hydroxyproptonic acid or its salt
JPH0656743A (en) Production of pyruvic ester
JP3616642B2 (en) Method for producing 1,4-butanediol
WO2021062916A1 (en) Method for catalytically synthesizing ketoisophorone using perovskite-type composite oxide
KR950010785B1 (en) Method for preparing cyclohexanol and cyclohexanon and catalpt for preparing same
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
JPH0673042A (en) Production 0f gamma-butyrolactone
JPS6230180B2 (en)
KR20090097952A (en) Ethane oxidation catalyst and process utilising the catalyst
JP2003012575A (en) Method for producing adamantanol and adamantanone
JPH0149700B2 (en)
WO1987004086A1 (en) Process for producing methacrylic acid and catalysts for the process
CN107983334A (en) A kind of graphene-supported tin tungsten bimetallic catalyst and its preparation method and application
JP3173860B2 (en) Method for producing .GAMMA.-butyrolactone
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
CN115463657B (en) Preparation method and application of Zr-based oxide supported catalyst
JP2592680B2 (en) Method for producing α, β-unsaturated carbonyl compound
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JPH07309793A (en) Oxidation of hydrocarbons
JPH08301815A (en) Production of glyoxylic acid ester
JP4014288B2 (en) Method for producing 3-acyloxycyclohexene
JPS5862136A (en) Preparation of pyruvic acid ester