JPH0656521B2 - Method for manufacturing developer carrier - Google Patents

Method for manufacturing developer carrier

Info

Publication number
JPH0656521B2
JPH0656521B2 JP58233488A JP23348883A JPH0656521B2 JP H0656521 B2 JPH0656521 B2 JP H0656521B2 JP 58233488 A JP58233488 A JP 58233488A JP 23348883 A JP23348883 A JP 23348883A JP H0656521 B2 JPH0656521 B2 JP H0656521B2
Authority
JP
Japan
Prior art keywords
electrode
particles
electrode layer
thickness
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233488A
Other languages
Japanese (ja)
Other versions
JPS60125853A (en
Inventor
康夫 門松
君雄 安瀬
彰治 田島
芳男 宮崎
三千一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58233488A priority Critical patent/JPH0656521B2/en
Priority to US06/654,257 priority patent/US4707382A/en
Priority to GB08424272A priority patent/GB2150045B/en
Priority to FR8415010A priority patent/FR2552564B1/en
Priority to DE19843435731 priority patent/DE3435731A1/en
Publication of JPS60125853A publication Critical patent/JPS60125853A/en
Priority to US07/098,392 priority patent/US4860417A/en
Publication of JPH0656521B2 publication Critical patent/JPH0656521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は現像剤担持体の製造方法に関し、より詳細に
は、一成分高抵抗磁性トナーを使用する現像装置に好適
な現像剤担持体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a developer carrier, and more particularly to a method for manufacturing a developer carrier suitable for a developing device using a one-component high-resistance magnetic toner. is there.

従来技術 電子写真複写機やファクシミリ又はプリンタ等の静電記
録装置に於いては、原稿が線画像である場合とベタ画像
である場合とでは現像装置に要求される現像特性が異な
る。第1図は、その好適な現像特性を示したグラフ図で
あり、横軸に原稿画像濃度をとり縦軸に複写画像濃度を
とってある。図中、実線Aはベタ画像に要求される現像
特性、破線Bは線画像に要求される現像特性を示してい
る。これによれば、線画像の場合(破線B)の方がベタ
画像(実線A)の場合に比べて立上がり勾配が急峻であ
る。この理由は、原稿が線画像である場合は原稿画像濃
度が低いと画像の鮮明度が劣るので複写画像濃度を高め
てこれを補う必要があるが、原稿がベタ画像の場合は原
稿画像濃度に応じた複写画像濃度が得られれば十分鮮明
であるからである。
2. Description of the Related Art In an electrostatic recording device such as an electrophotographic copying machine, a facsimile or a printer, the developing characteristics required for a developing device differ depending on whether a document is a line image or a solid image. FIG. 1 is a graph showing the preferable developing characteristics, in which the horizontal axis represents the original image density and the vertical axis represents the copy image density. In the figure, the solid line A shows the development characteristics required for a solid image, and the broken line B shows the development characteristics required for a line image. According to this, the rising gradient of the line image (broken line B) is steeper than that of the solid image (solid line A). The reason for this is that if the original is a line image and the original image density is low, the sharpness of the image will be poor, so it is necessary to increase the copy image density to compensate for this, but if the original is a solid image, the original image density This is because if the corresponding copy image density is obtained, it is sufficiently clear.

ところで、この線画像の複写画像濃度を高める為に、所
謂エッジ効果が従来から利用されている。即ち、静電潜
像の画像縁部に於ける電解の強度が画像中央領域に於け
る電界の強度よりも強まる結果画像縁部により多量のト
ナーが付着してエッジ効果が起きる。従って、画像面積
の小さい線画像の場合は、潜像形成域の大部分が縁部に
該当してエッジ効果を受け、複写画像濃度が高値とな
る。然るに、このエッジ効果は、現像剤としてトナーと
キャリアとを含む二成分系のものを使用する場合には十
分な効果が得られるのであるが、キャリアを含まない一
成分系現像剤を使用する場合には有効なエッジ効果が得
られないという難点があった。
By the way, in order to increase the copy image density of this line image, a so-called edge effect has been conventionally used. That is, as a result of the electric field strength at the image edge portion of the electrostatic latent image becoming stronger than the electric field strength at the image central area, a large amount of toner adheres to the image edge portion to cause an edge effect. Therefore, in the case of a line image having a small image area, most of the latent image forming area corresponds to the edge portion and is subjected to the edge effect, and the copy image density becomes a high value. Therefore, this edge effect can be obtained sufficiently when a two-component developer containing a toner and a carrier is used as a developer, but when a one-component developer containing no carrier is used. Has a drawback that it cannot obtain an effective edge effect.

そこで、本願出願人は、一成分現像剤を用いた場合でも
上述した好適な現像特性を得ることが可能となる独特な
構成の現像剤担持体を具備する現像装置を提案した(特
願昭55-185726 号)。この提案に係る現像剤担持体は、
第2図に示される如く、円筒状の導電性支持体1の外周
面に導電性物質からなる半球状の多数の微小な電極粒子
2aをその周方向及び幅方向に一様に点在させてなる電
極層2が形成されて構成されており、これら個々の電極
粒子2aは相互に絶縁状態にあって電気的にフロート状
態に保持されている。尚、磁性現像剤を使用する場合に
は、支持体1の内部3に磁石ローラ(不図示)が配設さ
れる。
Therefore, the applicant of the present application has proposed a developing device equipped with a developer carrying member having a unique structure that makes it possible to obtain the above-described suitable developing characteristics even when a one-component developer is used (Japanese Patent Application No. 55-55). -185726). The developer carrier according to this proposal is
As shown in FIG. 2, a large number of hemispherical fine electrode particles 2a made of a conductive material are scattered on the outer peripheral surface of the cylindrical conductive support 1 uniformly in the circumferential direction and the width direction. The electrode layer 2 is formed so that the individual electrode particles 2a are electrically insulated from each other and held in a floating state. If a magnetic developer is used, a magnet roller (not shown) is provided inside the support body 1.

この様な現像剤担持体を製造するのに好適な方法とし
て、導電性支持体1上に接着剤2bを塗布してその上か
ら導電性粒子2aを散布し、この後外径加工を旋盤等に
よって施し電極層2表面を円滑化すると共に電極粒子を
半球状に削ってその一部を表面に露出させる方法が提案
されている。この場合、所望のエッジ効果を得る為に
は、電極粒子2aの表面に露出した面積の電極層2全表
面積に対する割合(面積率)を、所定値以上の例えば4
5%以上確保することが要求される。又、電極粒子2a
の脱離を防止する為に各粒子の体積の半分以上を切除す
ることを回避する必要もある。以上の条件を満たす為に
は、例えば個々の電極粒子の粒径が74乃至 104μm程
度の場合はその電極厚みが52乃至62μmとなる様
に、電極層2を形成すれば良い。尚、電極厚みとは、第
2図に示す如く、切除された粒子2Aの電極層厚t
向の厚みt2Aを指す。その理由は、次の通りである。
As a suitable method for producing such a developer carrier, the adhesive 2b is applied on the conductive support 1 and the conductive particles 2a are sprinkled on the adhesive 2b, after which the outer diameter is machined by a lathe or the like. Has been proposed for smoothing the surface of the electrode layer 2 and shaving the electrode particles into a hemispherical shape to expose a part thereof on the surface. In this case, in order to obtain a desired edge effect, the ratio (area ratio) of the area exposed on the surface of the electrode particles 2a to the total surface area of the electrode layer 2 is set to a predetermined value or more, for example, 4
It is required to secure at least 5%. Also, the electrode particles 2a
It is also necessary to avoid excising more than half of the volume of each particle in order to prevent desorption. In order to satisfy the above conditions, the electrode layer 2 may be formed so that the electrode thickness is 52 to 62 μm when the diameter of each electrode particle is about 74 to 104 μm. The electrode thickness refers to the thickness t 2A of the excised particles 2A in the direction of the electrode layer thickness t 2 as shown in FIG. The reason is as follows.

第3図は、電極粒子2aの厚みt2Aとその面積率A
との関係を示したグラフ図である。第3図に於いて、曲
線α,曲線β及び曲線γは、夫々、粒径が 104μmの最
大電極粒子,平均的な粒径の電極粒子及び粒径が74μ
mの最小電極粒子に於ける各関係を示している。これに
よれば、好適な現像特性を得る為に必要とされる45%
以上の面積率Aを確保する為には、最小粒子(曲線
γ)で面積率Aが45%以上となる為に電極厚みt
2Aの最大値の62μmに設定すれば良い。アンカー効
果により粒子の脱離を防止する為、最大粒子(曲線α)
の半分である52μm以上の厚みt2Aを確保する必要
がある。従って、電極粒子2aの厚みt2Aの許容範囲
は52乃至62μmとなる。
FIG. 3 shows the thickness t 2A of the electrode particle 2a and its area ratio A R.
It is a graph showing the relationship with. In Fig. 3, curves α, β and γ are the maximum electrode particles with a particle size of 104 μm, the electrode particles with an average particle size and the particle size of 74 μ, respectively.
Each relationship is shown for the smallest electrode particle of m. According to this, 45% required to obtain a suitable developing characteristic
More in order to ensure the area rate A R, the smallest particle (curve gamma) at an area ratio A R is the electrode thickness to be 45% or more t
The maximum value of 2 A may be set to 62 μm. Maximum particles (curve α) to prevent detachment of particles by the anchor effect
It is necessary to secure a thickness t 2A of 52 μm or more, which is a half of the above. Therefore, the allowable range of the thickness t 2A of the electrode particles 2a is 52 to 62 μm.

然るに、旋盤等の加工物を支持する軸(加工軸)を基準
とする旋削加工法により電極層の外径加工を施す場合、
電極層2の層厚tの変動幅を電極厚みt2Aの許容範
囲幅の10μm以下に抑えることが難しく、従って電極
厚みt2Aも上記許容範囲内に収めることが困難になる
という不都合が生じる(第2図参照)。即ち、第4図に
示されている如く、導電性支持体1は薄肉に形成される
必要がある為その両端のインロー部1aを高精度で加工
することが難しく、従って旋盤の支持具Tとの間にクリ
アランスPが生じ易い。クリアランスPが発生すると、
支持体1の中心軸Cと支持具Tの中心軸C(加工
軸)を一致させることが難しくなる。その結果、中心軸
と加工軸Cとの間にΔdの偏心が生じた場合、こ
れにより発生する電極層厚tの変動幅Vは、層厚t
の最大,最小値を夫々tMAX,tMINとすれば、 V=tMAX−tMIN=2・Δd となる。従って、電極厚みt2Aを幅10μmの許容範
囲内に収める為には、各電極粒子2aがその底面を同一
レベルH(第2図参照)に揃えて位置されるという前提
条件の下で、加工軸Cの偏心量Δdをその半分の5μ
m以下に抑えることが要求される。この様な厳しい加工
条件を満足させることは極めて難しく、これは工数増加
や延いてはコストアップの原因となる。
However, when the outer diameter of the electrode layer is processed by a turning method that uses the axis (processing axis) that supports the workpiece such as a lathe as a reference,
It is difficult to suppress the fluctuation range of the thickness t 2 of the electrode layer 2 below 10μm tolerance width of the electrode thickness t 2A, therefore disadvantageously also electrode thickness t 2A becomes difficult to fall within the allowable range (See Figure 2). That is, as shown in FIG. 4, since the conductive support 1 needs to be formed to be thin, it is difficult to process the spigot portions 1a at both ends thereof with high precision, and thus the support T of the lathe and Clearance P is likely to occur between the two. When the clearance P occurs,
It becomes difficult to match the central axis C 0 of the support 1 and the central axis C 1 (machining axis) of the support tool T. As a result, if the eccentricity of Δd between the center axis C 0 and the machining axis C 1 occurs, is thereby variation width V R of the electrode layer thickness t 2 that occurs, the layer thickness t
If 2 of the maximum, the minimum value of each t MAX, and t MIN, the V R = t MAX -t MIN = 2 · Δd. Therefore, in order to keep the electrode thickness t 2A within the allowable range of the width of 10 μm, the processing is performed under the precondition that the bottom surfaces of the electrode particles 2a are aligned at the same level H (see FIG. 2). The eccentricity amount Δd of the axis C 1 is half that of 5 μ
It is required to keep it below m. It is extremely difficult to satisfy such severe processing conditions, which causes increase in man-hours and cost.

目 的 本発明は以上の点に鑑みてなされたものであって、所望
のエッジ効果を発揮させ一成分現像剤によっても高度な
画像品質を安定して得ることが可能な現像剤担持体を容
易に製造できる製造方法を提供することを目的とする。
Aim The present invention has been made in view of the above points, and facilitates a developer carrier capable of exhibiting a desired edge effect and stably obtaining a high image quality even with a one-component developer. It is an object of the present invention to provide a manufacturing method that can be manufactured.

構 成 以下、本発明の構成について具体的な実施例に基づき詳
細に説明する。本例の製造方法により製造される現像剤
担持体は、第16(a)図,第16(b)図に示される
如く、導電性支持体1上に誘電層4を被着形成した後電
極層2が積層され構成された現像剤担持体11である。
尚、誘電層4は、エッジ効果対策から導電性支持体1上
に必要な誘電体領域を(誘電厚み)を確保する為に設け
られている。
Configuration Hereinafter, the configuration of the present invention will be described in detail based on specific examples. As shown in FIGS. 16 (a) and 16 (b), the developer carrying member manufactured by the manufacturing method of the present example has a structure in which the dielectric layer 4 is adhered and formed on the conductive support 1 and then the electrode is formed. The developer carrying member 11 is formed by stacking layers 2.
The dielectric layer 4 is provided to secure a necessary dielectric region (dielectric thickness) on the conductive support 1 in order to prevent the edge effect.

先ず、第5図に示される如く、導電性支持体1を円筒状
に形成する。この場合、現像剤として磁性現像剤を用い
磁力でこれを担持する形式の現像装置に適用される場合
は導電性支持体1を非磁性の例えばステンレス等で薄肉
に形成する。
First, as shown in FIG. 5, the conductive support 1 is formed into a cylindrical shape. In this case, when the magnetic developer is used as the developer and is applied to a developing device of a type that carries it by magnetic force, the conductive support 1 is made thin with non-magnetic material such as stainless steel.

次に、支持体1の外周面を脱脂処理した後、この外周面
全体に亘って均一に誘電性材料からなる誘電体塗膜を被
着する。具体的には、例えば第5図に示す如く、内部に
ヒータ5が装着された円柱状のシーズヒータ6を水平に
回転可能に設け、これに上述の如く形成した支持体1を
外挿し、支持体1を 180℃近傍に加熱すると共に所定の
速度で両者を略一体に回転させつつ、静電塗装ガン7で
誘電性パウダー4′を静電塗装法により支持体1外周面
上に均一に吹き付ける。この場合、誘電性パウダー4′
としては熱効果性樹脂粉末の例えばエポキシ樹脂粉末等
が好適である。そして、塗装ガン7をシーズヒータ6に
平行に等速度で往復移動可能な保持台(不図示)等にセ
トして目的とする例えば約 500μmの層厚に達するまで
吹き付け作業を繰り返し実施すれば良い。吹き付け塗装
終了後はシーズヒータ6で加熱したまま支持体1の回転
を適長時間継続し、第6図に示される如く誘電体塗膜4
を硬化させる。これにより、誘電体塗膜4′の膜厚
′が、幅方向だけでなく周方向に於いても大略均一
となる。尚、支持体1の加熱方法としては、遠赤外線ヒ
ータ等により外部から加熱する方法でも良い。
Next, after degreasing the outer peripheral surface of the support 1, a dielectric coating film made of a dielectric material is uniformly applied over the entire outer peripheral surface. Specifically, for example, as shown in FIG. 5, a cylindrical sheathed heater 6 in which a heater 5 is mounted is provided rotatably horizontally, and the support 1 formed as described above is externally inserted and supported. While heating the body 1 to around 180 ° C. and rotating them substantially at a predetermined speed, the electrostatic coating gun 7 uniformly sprays the dielectric powder 4 ′ onto the outer peripheral surface of the support 1 by the electrostatic coating method. . In this case, dielectric powder 4 '
As the heat-effective resin powder, for example, epoxy resin powder or the like is suitable. Then, the coating gun 7 may be set parallel to the sheath heater 6 on a holding table (not shown) that can be reciprocally moved at a constant speed, and the spraying operation may be repeated until the target layer thickness of, for example, about 500 μm is reached. . After the spray coating is completed, the rotation of the support 1 is continued for an appropriate time while being heated by the sheath heater 6, and the dielectric coating film 4 is formed as shown in FIG.
Cure. Thus, the 'thickness t 4 of the' dielectric coating 4, a generally even in the circumferential direction as well as the width direction uniform. The method of heating the support 1 may be a method of heating from the outside with a far infrared heater or the like.

被着形成された誘電体塗膜4′の表面には通常多数の凹
凸が形成されているが、前述した許容範囲内に電極粒子
の厚みを収める為にはこの表面がある程度円滑であるこ
とが要求される。従って、被着された誘電体塗膜4′表
面に例えば旋盤等により外径加工を施して表面を円滑化
し、第7図に示される如く層厚tが 400μm程度の誘
電層4を形成する。尚、本外径加工を他の例えば円筒研
削盤等により実施することも可能である。
A large number of irregularities are usually formed on the surface of the deposited dielectric coating film 4 ', but in order to keep the thickness of the electrode particles within the above-mentioned allowable range, this surface must be smooth to some extent. Required. Therefore, to smooth the surface by applying an outer diameter machining by, for example, a lathe or the like deposited dielectric coating 4 'surface, the layer thickness t 4 as shown in FIG. 7 to form a dielectric layer 4 of about 400μm . It is also possible to carry out the outer diameter processing by using another cylindrical grinder or the like.

外径加工により誘電層4を形成した後は、誘電層4表面
を清浄し、次いで、第8図に示す如く、例えば圧送式エ
アスプレイ8によって、誘電層4の表面に誘電性で例え
ば常温硬化型のアクリルウレタン等の接着剤を一様に吹
き付け塗布する。これによる第9図に示す如き接着剤膜
2bが被着されるが、その膜厚t2Bは、次順の工程
(第10図参照)で散布される電極粒子2aが例えば粒
径が74乃至 104μmの銅粒子である場合には、散布し
た粒子を誘電層4表面に確実に付着させ得る3乃至15
μm程度が好適である。尚、本工程に於いても、被加工
物(以下ワークWと表わす)である支持体1上に誘電層
4が被着形成された中間製品を、誘電体塗膜形成時と同
様に適切な速度で回転させつつ水平に支持し、これに沿
って上述の接着剤の塗布を反復して行なえば、略均一な
膜厚を有する接着剤膜2bを容易に被着形成することが
できる。
After forming the dielectric layer 4 by the outer diameter processing, the surface of the dielectric layer 4 is cleaned, and then, as shown in FIG. 8, the surface of the dielectric layer 4 is dielectrically cured, for example, at room temperature by, for example, a pressure-feeding air spray 8. Spray and apply an adhesive such as acrylic urethane on the mold. As a result, the adhesive film 2b as shown in FIG. 9 is applied. The film thickness t 2B of the electrode film 2a dispersed in the next step (see FIG. 10) is, for example, 74 to 74. In the case of 104 μm copper particles, the dispersed particles can be surely adhered to the surface of the dielectric layer 3 to 15
About μm is preferable. In this step as well, the intermediate product in which the dielectric layer 4 is adhered and formed on the support 1 which is the workpiece (hereinafter referred to as the work W) is suitable as in the case of forming the dielectric coating film. If the adhesive film 2b having a substantially uniform film thickness can be easily adhered and formed by supporting the film horizontally while rotating it at a speed and repeating the above-mentioned application of the adhesive along the film.

接着剤を被着したら、これが硬化する前に多数の電極粒
子を誘電層表面に略均一に付着させる。この付着方法と
しては、例えば、第10図に示す如く散布口9aを備え
たトレイ9内に電極粒子2aとして粒径が74乃至 104
μmの銅粒子を多量に収容しておき、水平に支持され回
転されるワークWに沿ってトレイ9を適正な速度で往復
移動させつつ適度に傾け、散布口9aから電極粒子2a
を少量ずつ落下させて接着剤膜2b上にふりかけ均一に
分布させれば良い。これにより、第11図に示す如く各
電極粒子2aが誘電層4表面に当接した状態で略均一に
付着する。本例に於いては、付着させる各電極粒子2a
が予め例えばスチレンブチルアクリレート等の誘電性物
質で被覆されているので、自然落下により無作為に散布
しても個々の電極粒子2aを確実に周囲に対して絶縁状
態(フロート状態)で付着させることができる。又、接
着剤膜2bの膜厚が3乃至15μmと薄い為に、散布さ
れた粒径が74乃至 104μmの銅粒子2aを浮遊させ得
る浮力が生じず、自然に各粒子2aは誘電層4表面に沈
下した状態となる。従って、第11図に示す如く、個々
の電極粒子2aを自然落下させるだけでその底面を誘電
層4表面に容易且つ確実に揃えることができる。尚、本
例では、電極粒子2aとして銅粒子を用いたが、これに
限らず他の導電性の例えば黄銅やリン青銅若しくはスチ
レン等の粒子も使用できる。
Once the adhesive is applied, a number of electrode particles are applied to the surface of the dielectric layer in a substantially uniform manner before it is cured. As an example of this attachment method, for example, as shown in FIG.
A large amount of copper particles having a diameter of μm are accommodated, the tray 9 is reciprocally moved at an appropriate speed along the work W supported and rotated horizontally, and the tray 9 is appropriately inclined, and the electrode particles 2 a are discharged from the spray port 9 a.
May be dropped little by little and sprinkled on the adhesive film 2b to be evenly distributed. As a result, as shown in FIG. 11, the electrode particles 2a are substantially evenly attached in contact with the surface of the dielectric layer 4. In this example, each electrode particle 2a to be attached is
Is previously coated with a dielectric substance such as styrene butyl acrylate, so that individual electrode particles 2a can be securely attached to the surroundings in an insulated state (float state) even if they are randomly scattered by natural fall. You can Further, since the thickness of the adhesive film 2b is as thin as 3 to 15 μm, buoyancy that can float the dispersed copper particles 2a having a particle size of 74 to 104 μm does not occur, and each particle 2a is naturally formed on the surface of the dielectric layer 4. It will be in a state of subsidence. Therefore, as shown in FIG. 11, the bottom surface of each electrode particle 2a can be easily and surely aligned with the surface of the dielectric layer 4 only by allowing the individual electrode particles 2a to fall naturally. In this example, copper particles are used as the electrode particles 2a, but the present invention is not limited to this, and other conductive particles such as brass, phosphor bronze, or styrene can also be used.

次に、接着剤2bを略完全に乾燥硬化させた後、第12
図に示す如く再度誘電性接着剤2b′を前回と同様な方
法で電極粒子2a及び接着剤2b上に厚塗り(オーバー
コート)する。この場合、前回と同一物質の接着剤を用
いれば、両者が確実に接着しあって電極粒子2aを誘電
層4表面に当接させた状態でより強固に固定でき耐久性
の面等で有利である。然るに、互いに接着し合い粒子2
aを確実に固定できるならば、互いに異なる物質の誘電
性接着剤の組合せも十分可能である。この様に接着剤を
乾燥工程を挾んで2度に分けて被着することにより、先
に被着した接着剤2bの再溶解が回避される為、各電極
粒子2aを浮遊させず誘電層4表面に沈下させた状態で
強固に固定でき、前述した各粒子2aの底面を同一レベ
ルに揃えて位置させるという電極厚みを所定の許容範囲
内に収める為の前提条件を容易に達成する事ができる。
Next, after the adhesive 2b is almost completely dried and cured, the twelfth
As shown in the figure, the dielectric adhesive 2b 'is again thickly coated (overcoated) on the electrode particles 2a and the adhesive 2b in the same manner as the previous time. In this case, if an adhesive agent of the same material as the previous time is used, both are surely adhered to each other and can be more firmly fixed in a state where the electrode particles 2a are in contact with the surface of the dielectric layer 4, which is advantageous in terms of durability and the like. is there. Therefore, particles 2 adhere to each other
If a can be securely fixed, a combination of dielectric adhesives made of different materials is sufficiently possible. In this way, by applying the adhesive twice through the drying process, re-dissolution of the previously applied adhesive 2b is avoided, so that each electrode particle 2a does not float and the dielectric layer 4 does not float. It can be firmly fixed in a state of being submerged on the surface, and it is possible to easily achieve the above-mentioned precondition for keeping the electrode thickness within the predetermined allowable range such that the bottom surfaces of the respective particles 2a are aligned and positioned at the same level. .

接着剤の厚塗りが終了したらこれを乾燥硬化させる。こ
の場合、第13図に示す如く、誘電層形成時と同様にワ
ークWをシーズヒータ6に外挿し水平に支持して回転さ
せると共に加熱しつつ乾燥させれば、厚塗りした接着剤
2b′が垂れる異なく誘電層4上に積層される接着剤2
b,電極粒子2a及び厚塗り接着剤2b′を合せた電極
層2′(各粒子2aの一部が表面に露出される前の状
態)の層厚t′が均一となる。この様にして、例えば
層厚t′が 150μm程度の電極層2′が形成される。
After the thick coating of the adhesive is completed, it is dried and cured. In this case, as shown in FIG. 13, when the work W is externally mounted on the sheath heater 6 and horizontally supported and rotated as well as when the dielectric layer is formed, and the work W is dried while being heated, the thickly coated adhesive 2b 'is obtained. Adhesive 2 laminated on the dielectric layer 4 without sagging
b, a uniform layer thickness t 2 'of (a state before the part of each particle 2a is exposed to the surface) electrode particles 2a and thick coating adhesive 2b' electrode layer 2 combined '. In this way, for example, a layer thickness t 2 is 'an electrode layer 2 of about 150 [mu] m' is formed.

而して、この後、第14図に示される如く、電極層2′
の表面に外径加工を施して表面を円滑化すると共に各電
極粒子2aの一部を表面に露出させ、電極層2に仕上げ
る。ところで、本発明方法に於いては、誘電層4表面に
各電極粒子2aを当接させた状態で固定してある為仕上
げた後の電極層2の層厚tと電極厚みt2Aが等し
い。従って、電極層2の層厚tを電極厚みt2Aの許
容範囲である52乃至62μm内に収めれば、電極粒子
2aの露出面積率Aが45%以上を確保され且つ粒子
2aが脱離し難い所望の電極層2を得ることができる。
この為、本発明方法に於いては、本外径加工工程を、ワ
ークWの外周面S(電極層2′表面)を基準とする表面
加工法により実施する。
Then, thereafter, as shown in FIG. 14, the electrode layer 2 '
The surface of is subjected to outer diameter processing to smooth the surface, and at the same time, a part of each electrode particle 2a is exposed on the surface to finish the electrode layer 2. By the way, in the method of the present invention, since the electrode particles 2a are fixed in contact with the surface of the dielectric layer 4, the layer thickness t 2 of the electrode layer 2 after finishing is equal to the electrode thickness t 2A. . Therefore, Osamere the thickness t 2 of the electrode layer 2 is acceptable for the electrode thickness t 2A 52 to within 62 .mu.m, and particle 2a exposed area rate A R of the electrode particles 2a can be ensured more than 45% removal It is possible to obtain a desired electrode layer 2 that is difficult to separate.
Therefore, in the method of the present invention, the outer diameter processing step is performed by the surface processing method using the outer peripheral surface S (surface of the electrode layer 2 ') of the work W as a reference.

本例に於いては、第15(a)図に示す如く、支持対1
0aに軸10bを介してこの回りに回転自在に支承され
たバー10cの先端に表面加工工具としての砥石10d
が設けられた研削装置10を使用する。砥石10dは、
第15(b)図に示される如く、椀状に形成され、これ
を逆転させた状態でワークWの回転軸Cに垂直な軸C
を中心として回転させ、その側部端面10dを所定
の速度で回転軸Cを中心として回転されるワークWの
周表面に当接させて研削する。砥石10dの回転軸C
の他端はベルト10eを介して駆動モータ10fに連続
されている。又、バー10cの他端には重錘10gが付
設されると共にバー10cの長手方向に沿って移動自在
に調整用重錘10hが設けられており、調整用重錘10
hを適宜移動することにより、砥石10dをワークW表
面に当接させる圧力を調整することができる。更に、砥
石10dをワークWの軸方向に沿って移動させる為に、
研削装置10全体がワークWの軸方向に平行に移動可能
に構成されている。そして、第15(c)図に示される
如く、支持対10aを旋盤の刃物台(不図示)に取付
け、ワークWを旋盤の主軸Aにセットして長手軸を中心
として回転させると共にこの周表面に砥石10dを回転
軸Cを中心として回転させて押す当てつつ刃物台と一
体に矢印の長手軸方向に移動させ、全周面を均一に研削
する。
In this example, as shown in FIG. 15 (a), the support pair 1
A grindstone 10d as a surface processing tool is attached to the tip of a bar 10c which is rotatably supported on the shaft 0b via a shaft 10b.
The grinding device 10 provided with is used. The grindstone 10d is
As shown in FIG. 15 (b), a bowl C is formed, and in an inverted state thereof, an axis C perpendicular to the rotation axis C W of the work W is shown.
It is rotated about B , and its side end face 10d 1 is brought into contact with the peripheral surface of the work W rotated about the rotation axis C W at a predetermined speed to perform grinding. Rotation axis C B of grindstone 10d
The other end is connected to the drive motor 10f via the belt 10e. A weight 10g is attached to the other end of the bar 10c, and an adjustment weight 10h is provided so as to be movable along the longitudinal direction of the bar 10c.
By appropriately moving h, the pressure with which the grindstone 10d is brought into contact with the surface of the work W can be adjusted. Furthermore, in order to move the grindstone 10d along the axial direction of the work W,
The entire grinding device 10 is configured to be movable parallel to the axial direction of the work W. Then, as shown in FIG. 15 (c), the supporting pair 10a is attached to a tool rest (not shown) of the lathe, the work W is set on the main axis A of the lathe and rotated about the longitudinal axis, and the peripheral surface Then, the grindstone 10d is rotated around the rotation axis C B and pressed, and is moved integrally with the tool rest in the direction of the longitudinal axis of the arrow to uniformly grind the entire peripheral surface.

かくの如くして研削加工を実施すれば、主軸Aの支持具
合で決まるワークWの加工軸の位置に拘わらず、安定し
て第16(a)図,第16(b)図に示す如き所望の5
2乃至62μmの層厚tを有した電極層2が形成され
る。即ち、第17(a)図,第17(b)図に示す如
く、旋盤の主軸がワークWを支持する支持軸Cがワー
クWの中心軸C(本例の場合は厳密には誘電層4の外
径加工時の加工軸)からΔdだけ偏心していると、支持
軸Cを中心として回転されるワークWの砥石10dと
接する外周面レベルHの変動幅は2倍の2・Δdとな
る。然るに、回転可能に支承されたバー10cがこの変
動に応じて回転し、第17(a)図に示した砥石10d
に対する外周面レベルHが最低の場合も、第17(b)
図に示した外周面レベルHが最高の場合も、砥石10d
のワークWの外周面に接する圧力は略一定となる。従っ
て、第14図に於いて、ワークWの初期の電極層2′表
面S(研削する前の表面)を基準としてこれから研削さ
れる分の厚みt2Rが全周面に亘って均一化される。本
例では、電極層2′を層厚t′が 150μmで略均一と
なる様に形成してあるので、全周面に亘って研削厚みt
2Rが88乃至98μmとなる様に研削加工すれば良
い。この場合、第18図に示す如く誘電層4形成時に於
ける外径加工の加工軸Cが支持体1の中心軸Cから
ずれた為誘電層4の層厚が不均一となっても、本研削加
工の精度は影響されず層厚tが均一な電極層2を安定
的に高精度で形成することができる。又、砥石10dの
加工面(端面10d)とワークW周面とが当接する部
分の面積が小さく研削に供した加工面が短時間でワーク
周面から離隔する為、研削クズが速やかに加工部から排
出され砥石10dの加工面の目詰りが防止される。従っ
て、加工面の目詰りによるワークW周面のキズの発生が
解消される。
By carrying out the grinding process in this way, the desired state as shown in FIGS. 16 (a) and 16 (b) can be stably obtained regardless of the position of the machining axis of the work W determined by the support condition of the spindle A. Of 5
The electrode layer 2 having a layer thickness t 2 of 2 to 62 μm is formed. That is, as shown in FIGS. 17 (a) and 17 (b), the support shaft C A for supporting the work W by the main shaft of the lathe is the central axis C W of the work W (strictly speaking, in the case of this example, When the outer diameter of the layer 4 is decentered from the machining axis (during outer diameter machining) by Δd, the fluctuation range of the outer peripheral surface level H in contact with the grindstone 10d of the workpiece W rotated about the support axis C A is twice as large as 2 · Δd. Becomes However, the rotatably supported bar 10c rotates in response to this fluctuation, and the grindstone 10d shown in FIG.
Even if the outer peripheral surface level H with respect to
Even if the outer peripheral surface level H shown in the figure is the highest, the grindstone 10d
The pressure contacting the outer peripheral surface of the work W is substantially constant. Therefore, in FIG. 14, the thickness t 2R to be ground from the initial electrode layer 2 ′ surface S (surface before grinding) of the work W is made uniform over the entire peripheral surface. . In this example, since 'the thickness t 2' electrode layer 2 is formed so as to be substantially uniform in 150 [mu] m, the grinding thickness over the entire circumference t
Grinding may be performed so that 2R becomes 88 to 98 μm. In this case, as shown in FIG. 18, even when the outer diameter machining axis C 4 when forming the dielectric layer 4 is deviated from the central axis C 0 of the support 1, even if the layer thickness of the dielectric layer 4 becomes uneven. The accuracy of the main grinding process is not affected, and the electrode layer 2 having a uniform layer thickness t 2 can be stably formed with high accuracy. Further, since the area of the portion where the machined surface (end surface 10d 1 ) of the grindstone 10d and the work W peripheral surface is in contact is small, the machined surface used for grinding is separated from the work peripheral surface in a short time, so that grinding scraps are machined quickly. Of the grindstone 10d is prevented from being clogged. Therefore, the occurrence of scratches on the peripheral surface of the work W due to clogging of the processed surface is eliminated.

上述の如く外周面を基準として電極層表面の外径加工を
施すこすことにより、第16(a)図,第16(b)図
に示す如く層厚t、即ち電極厚みt2Aが52乃至6
2μmの許容範囲内に確実に収められた電極層2が全周
面に亘って均一に形成される。この後、表面の研摩材等
の汚れを洗浄すれば、最終的な製品としての現像剤担持
体11が完成する。
As described above, the outer diameter of the electrode layer surface is applied to the outer peripheral surface as a reference, so that the layer thickness t 2 , that is, the electrode thickness t 2A is from 52 to 52 as shown in FIGS. 16 (a) and 16 (b). 6
The electrode layer 2 reliably contained within the allowable range of 2 μm is uniformly formed over the entire peripheral surface. After that, if the surface is cleaned of dirt such as abrasives, the developer carrier 11 as a final product is completed.

尚、上記実施例に於いては、接着剤の被着工程を2公定
に分割したが、これは必要に応じて1工程又は3工程以
上に分割しても良い。又、誘電層4の材料と接着材2b
とを同一又は同種類の誘電性材料とすることも可能であ
る。更に、誘電層4の材料としては、熱硬化性樹脂に限
らず熱可塑性の例えばポリイミドやABS等の樹脂も使
用可能である。
Incidentally, in the above-mentioned embodiment, the step of applying the adhesive is divided into two officially, but this may be divided into one step or three or more steps as required. Further, the material of the dielectric layer 4 and the adhesive 2b
It is also possible that and are the same or the same type of dielectric material. Further, the material of the dielectric layer 4 is not limited to the thermosetting resin, but a thermoplastic resin such as polyimide or ABS can be used.

効 果 以上詳述した如く、本発明によれば、電極厚みを決定す
る電極層を仕上げる表面加工を電極層表面基準で実施す
ることにより、緻密さが要求される電極層形成時に於け
る加工軸の設定が不要となる。従って、所望の電極厚み
を有し、第1図に示される如く好適な現像特性を安定的
に発揮可能な現像剤担持体をより短い工数で安価に製造
できる。又、表面加工工具を加工対象物の回転軸に垂直
な軸を中心として回転させつつ加工対象物周面に当接さ
せて加工することにより、加工クズを円滑に排出しつつ
加工することができる。従って、加工工具として砥石を
用いる場合は、その加工面の目詰りが防止され、キズの
ない滑かな周面の現像剤担持体を安定して製造すること
ができる。尚、本発明は上記の特定の実施例に限定され
るべきものではなく、本発明の技術的範囲に於いて種々
の変形が可能であることは勿論である。例えば、接着剤
を被着させる場合に他の浸漬成形法(ディップ成形法)
等によることも可能であり、又、電極粒子を付着させる
工程は接着剤が被着されたワークを電極粒子が敷き詰め
られた粒子床上をローリングさせることによっても実施
可能である。更に、誘電層4を形成する表面加工も電極
層2の表面加工と同様の外表面基準の研削加工法により
実施しても良い。
Effect As described above in detail, according to the present invention, by performing the surface processing for finishing the electrode layer that determines the electrode thickness on the basis of the electrode layer surface, the processing axis at the time of forming the electrode layer which is required to be dense. The setting of is unnecessary. Therefore, a developer carrying member having a desired electrode thickness and capable of stably exhibiting suitable developing characteristics as shown in FIG. 1 can be manufactured inexpensively in a shorter number of steps. Further, by rotating the surface processing tool about an axis perpendicular to the rotation axis of the object to be processed and bringing it into contact with the peripheral surface of the object to be processed, it is possible to smoothly discharge and process the processing waste. . Therefore, when a grindstone is used as the processing tool, the processing surface is prevented from being clogged, and a developer bearing member having a smooth peripheral surface without scratches can be stably manufactured. It should be noted that the present invention should not be limited to the above specific embodiments, and various modifications can be made within the technical scope of the present invention. For example, when applying an adhesive, another dip molding method (dip molding method)
Etc., and the step of adhering the electrode particles can also be carried out by rolling a work piece coated with an adhesive on a particle bed on which the electrode particles are spread. Further, the surface processing for forming the dielectric layer 4 may be carried out by the same grinding method based on the outer surface as the surface processing of the electrode layer 2.

【図面の簡単な説明】[Brief description of drawings]

第1図は好適な現像特性を示したグラフ図、第2図は従
来の現像剤担持体を示した模式的断面図、第3図は電極
厚みt2Aと露出面積率Aとの関係を示したグラフ
図、第4図は従来の製造方法を示した説明図、第5図は
本発明の1実施例に於ける誘電層吹付け工程を示した斜
視図、第6図,第7図は夫々同じく誘電体塗膜4′と誘
電層4の形成態様を示した各模式的断面図、第8図,第
9図は夫々同じく接着剤2b被着工程とその形成品を示
した各模式的断面図、第10図,第11図は夫々同じく
電極粒子付着工程とその形成品を示した各模式的断面
図、第12図は同じく接着剤厚塗工程を示した模式的断
面図、第13図は同じく接着剤乾燥工程を示した模式的
断面図、第14図は同じく電極層形成工程を示した模式
的断面図、第15(a)図乃至第15(c)図は夫々研
削加工による電極層表面加工工程を示した各説明図、第
16(a)図,第16(b)図は夫々同じく完成した現
像剤担持体11を示した模式的側断面図と正断面図、第
17(a)図,第17(b)図は夫々同じく研削加工法
による動作を示した各説明図、第18図は同じく完成し
た現像剤担持体の変形例を示した模式的側断面図であ
る。 (符号の説明) 1:導電性支持体 2′:電極層(仕上前) 2:電極層(仕上後) 2a:電極粒子 4:誘電層 10:研削装置
Figure 1 is a graph view showing a preferred development characteristics, Figure 2 is a schematic cross-sectional view illustrating a conventional developer carrying member, a third diagram the relationship between the electrode thickness t 2A and exposed area ratio A R FIG. 4 is an explanatory view showing a conventional manufacturing method, FIG. 5 is a perspective view showing a dielectric layer spraying step in one embodiment of the present invention, FIG. 6, FIG. Are schematic cross-sectional views showing the manner of forming the dielectric coating film 4'and the dielectric layer 4, respectively, and FIGS. 8 and 9 are schematic diagrams showing the adhesive 2b applying step and the formed product, respectively. Sectional views, FIGS. 10 and 11 are schematic sectional views respectively showing the electrode particle adhering step and its formed product, and FIG. 12 is a schematic sectional view showing the adhesive thick coating step, respectively. FIG. 13 is a schematic sectional view showing the adhesive drying step, FIG. 14 is a schematic sectional view showing the electrode layer forming step, and FIG. ) To 15 (c) are explanatory views each showing an electrode layer surface processing step by grinding, and Figs. 16 (a) and 16 (b) show the completed developer carrier 11 respectively. The schematic side sectional view and the front sectional view, FIG. 17 (a) and FIG. 17 (b), respectively, are explanatory views showing the operation by the grinding method, and FIG. 18 is the same completed developer carrier. It is a typical side sectional view showing a modification of a body. (Explanation of symbols) 1: Conductive support 2 ': Electrode layer (before finishing) 2: Electrode layer (after finishing) 2a: Electrode particles 4: Dielectric layer 10: Grinding device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 芳男 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 桜井 三千一 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (56)参考文献 特開 昭60−125852(JP,A) 特開 昭60−125854(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Miyazaki 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Inventor San-ichi Sakurai 1-3-6 Nakamagome, Ota-ku, Tokyo No. Ricoh Co., Ltd. (56) Reference JP-A-60-125852 (JP, A) JP-A-60-125854 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状の導電性支持体上に電極としての多
数の導電性粒子を夫々の一部を表面に露出させると共に
相互に電気的絶縁状態に保持してなる現像剤担持体の製
造方法に於いて、前記導電性支持体上に誘電体からなる
誘電層を形成する工程と、前記誘電層上に誘電性接着剤
を被着させると共に前記誘導性粒子を前記誘電層表面に
付着させて電極層を被着形成する電極層形成工程と、前
記導電性支持体の回転軸に垂直な軸を中心として回転さ
れる表面加工工具の端面の一部を前記電極層表面に当接
させて前記電極層表面を基準として該表面に表面加工を
施し各前記導電性粒子の一部を表面に露出させる表面加
工工程とを有することを特徴とする現像剤担持体の製造
方法。
1. A method for producing a developer carrier, comprising a cylindrical conductive support, a plurality of conductive particles as electrodes, each part of which is exposed on the surface and kept electrically insulated from each other. In the method, a step of forming a dielectric layer made of a dielectric material on the conductive support, depositing a dielectric adhesive on the dielectric layer, and attaching the inductive particles to the surface of the dielectric layer. An electrode layer forming step of depositing and forming an electrode layer by contacting the electrode layer surface with a part of the end face of a surface processing tool rotated about an axis perpendicular to the rotation axis of the conductive support. A surface treatment step of subjecting the surface of the electrode layer as a reference to exposing a part of the conductive particles to the surface, and a method of manufacturing a developer carrier.
【請求項2】上記第1項に於いて、前記表面加工工具は
磁石であり、該砥石を回転させつつ前記導電性支持体の
回転軸方向に沿って移動させることを特徴とする現像剤
担持体の製造方法。
2. The developer carrying member according to claim 1, wherein the surface processing tool is a magnet, and the grinding stone is rotated and moved along the rotational axis direction of the conductive support. Body manufacturing method.
JP58233488A 1983-09-28 1983-12-13 Method for manufacturing developer carrier Expired - Lifetime JPH0656521B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58233488A JPH0656521B2 (en) 1983-12-13 1983-12-13 Method for manufacturing developer carrier
US06/654,257 US4707382A (en) 1983-09-28 1984-09-25 Developer carrier and a method for manufacturing the same
GB08424272A GB2150045B (en) 1983-09-28 1984-09-26 Developer carrier and a method for manufacturing the same
FR8415010A FR2552564B1 (en) 1983-09-28 1984-09-28 DEVELOPER SUPPORT FOR ELECTROPHOTOGRAPHIC MACHINE AND MANUFACTURING METHOD THEREOF
DE19843435731 DE3435731A1 (en) 1983-09-28 1984-09-28 DEVELOPER CARRIER AND METHOD FOR PRODUCING A DEVELOPER CARRIER
US07/098,392 US4860417A (en) 1983-09-28 1987-09-18 Developer carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233488A JPH0656521B2 (en) 1983-12-13 1983-12-13 Method for manufacturing developer carrier

Publications (2)

Publication Number Publication Date
JPS60125853A JPS60125853A (en) 1985-07-05
JPH0656521B2 true JPH0656521B2 (en) 1994-07-27

Family

ID=16955791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233488A Expired - Lifetime JPH0656521B2 (en) 1983-09-28 1983-12-13 Method for manufacturing developer carrier

Country Status (1)

Country Link
JP (1) JPH0656521B2 (en)

Also Published As

Publication number Publication date
JPS60125853A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
US4425382A (en) Developer carrier
US4860417A (en) Developer carrier
US4587699A (en) Elastic developer carrier
US4537849A (en) Photosensitive element having roughened selenium-arsenic alloy surface
JPH0656521B2 (en) Method for manufacturing developer carrier
US5302485A (en) Method to suppress plywood in a photosensitive member
JP2000141225A (en) Working method for surface of work piece
JPS6078460A (en) Manufacture of developer carrier
JPS60136775A (en) Developer carrying body and its manufacture
JPH10156841A (en) Elastic roller and manufacture thereof
JPH08314159A (en) Electrophotographic organic photoreceptor and its production
JP3294338B2 (en) Super finishing machine
JPS6070457A (en) Production of developer carrying body
JPH09239649A (en) Cylindrical member grinding device for electrophotography
JPS61209457A (en) Method for processing conductive substrate surface of electrophotographic sensitizing material
JPH08118214A (en) Method for polishing elastic roll
JPH03181981A (en) Photosensitive body grinding device
JPH0568695B2 (en)
JPS6070456A (en) Production of developer carrying body
JPS6080859A (en) Developer carrying body and its production
JPH0568696B2 (en)
JP2000293030A (en) Developer carrier and developing device
JPS6079367A (en) Developer carrier and its manufacture
JPH09311518A (en) Method for recycling conductive member
JPH063947A (en) Developing sleeve