JPS6078460A - Manufacture of developer carrier - Google Patents

Manufacture of developer carrier

Info

Publication number
JPS6078460A
JPS6078460A JP58185122A JP18512283A JPS6078460A JP S6078460 A JPS6078460 A JP S6078460A JP 58185122 A JP58185122 A JP 58185122A JP 18512283 A JP18512283 A JP 18512283A JP S6078460 A JPS6078460 A JP S6078460A
Authority
JP
Japan
Prior art keywords
layer
electrode
particles
dielectric
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58185122A
Other languages
Japanese (ja)
Inventor
Yasuo Kadomatsu
門松 康夫
Shoji Tajima
田島 彰治
Yoshio Miyazaki
宮崎 芳男
Kimio Yasuse
安瀬 君雄
Michikazu Sakurai
三千一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58185122A priority Critical patent/JPS6078460A/en
Priority to US06/654,257 priority patent/US4707382A/en
Priority to GB08424272A priority patent/GB2150045B/en
Priority to FR8415010A priority patent/FR2552564B1/en
Priority to DE19843435731 priority patent/DE3435731A1/en
Publication of JPS6078460A publication Critical patent/JPS6078460A/en
Priority to US07/098,392 priority patent/US4860417A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an image of high quality by forming a dielectric layer on an electrically conductive support, coating the layer with a dielectric adhesive layer, sticking many electrode particles to the dielectric layer to form an electrode layer, and carrying out surface working on the basis of the surface of the electrode layer to expose partially the electrode particles. CONSTITUTION:A dielectric film is formed on an electrically conductive cylindrical support 1, and the surface of the film is smoothened to form a dielectric layer 4 of a thickness t4. The layer 4 is coated uniformly and thinly with a dielectric adhesive layer 2b, and many electrode particles 2a are sprinkled and stuck to the layer 4. After drying the layer 2b, the particles 2a are coated with a dielectric adhesive 2b, and the adhesive 2b is dried and cured. Surface working is then carried out by means of a super-finishing unit 10 on the basis of the peripheral surface S so that the thickness of the resulting electrode layer is regulated to t2. More than the halves of the particles 2a are embedded in the electrode layer so as to prevent the falling of the particles, the total area of the exposed particles 2a is regulated to >=45% of the surface area of the electrode layer, and the thickness t2 is made equal to the thickness t2A of the particles 2a. Thus, an electrode layer 2 of a uniform thickness is formed, and a developer carrier giving stably an image of high quality is manufactured.

Description

【発明の詳細な説明】 1L1 本発明は現像剤担持体の製造方法に関し、より詳細には
、−成分高抵抗磁性1〜ナーを使用する現像装置に好適
な現像剤担持体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1L1 The present invention relates to a method for producing a developer carrier, and more particularly, to a method for producing a developer carrier suitable for a developing device using -component high-resistance magnetic 1 to 1-component. It is.

従来技術 電子写真複写機やファクシミリ又はプリンタ等の静電記
録装置に於いては、原稿が線画像である場合とベタ画像
である場合とでは現像装置に要求される現像特性が異な
る。第1図は、その好適な現像特性を示したグラフ図r
あり、横軸に原稿画像濃度をとり縦軸に複写画像濃度を
とっである。
BACKGROUND ART In electrostatic recording devices such as electrophotographic copying machines, facsimile machines, and printers, the development characteristics required of the development device are different depending on whether the document is a line image or a solid image. Figure 1 is a graph showing the suitable development characteristics.
The horizontal axis represents original image density, and the vertical axis represents copy image density.

図中、実線Aはへり画像に要求される現像特性、破IB
は線画像に要求される現像特性を示している。これによ
れば、線画像の場合(破線B)の方がベタ画像(実線A
)の場合に比へて立上がり勾配が急峻である。この理由
は、原稿が線画像である場合は原稿画像濃度が低いと画
像の鮮明度が劣るので複写画像濃度を高めてこれを補う
必要があるが、原稿かへり画像の場合は原稿画像濃度に
応じた複写画像濃度が得られれば十分鮮明であるからで
ある。
In the figure, solid line A indicates the development characteristics required for edge images, broken IB.
indicates the development characteristics required for line images. According to this, in the case of a line image (broken line B), a solid image (solid line A) is better than a solid image (solid line A).
) The rising slope is steeper than in the case of ). The reason for this is that if the original is a line image, the clarity of the image will be poor if the original image density is low, so it is necessary to increase the copy image density to compensate for this. This is because if a corresponding copy image density is obtained, the image will be sufficiently clear.

ところで、この線画像の複写画像濃度を高める為に、所
謂エツジ効果が従来から利用されている。
By the way, the so-called edge effect has been conventionally used to increase the density of the copied image of this line image.

即ら、静電潜像の画像縁部に於ける電界の強度が画像中
央領域に於ける電界の強度よりも強まる結果画像縁部に
より多量のトナーが付着してエツジ効果が起きる。従っ
て、画像面積の小さい線画像の場合は、潜像形成域の大
部分が縁部に該当してエツジ効果を受け、複写画像濃度
が高値となる。
That is, the electric field strength at the image edges of the electrostatic latent image is stronger than the electric field strength at the image center area, resulting in a larger amount of toner adhering to the image edges, resulting in an edge effect. Therefore, in the case of a line image with a small image area, most of the latent image forming area corresponds to the edge and is subject to the edge effect, resulting in a high value of the density of the copied image.

然るに、このエツジ効果は、現像剤として1〜ナーとキ
ャリアとを含む二成分系のものを使用する場合には十分
な効果が得られるのであるが、キャリアを含まない一成
分系現像剤を使用する場合には有効なエツジ効果が得ら
れないという難点があった。
However, this edge effect is sufficiently effective when using a two-component developer containing 1 to 4 toner and a carrier, but when using a one-component developer that does not contain a carrier. In this case, there was a problem that an effective edge effect could not be obtained.

そこで、本願出願人は、−成分系現像剤を用いた場合で
も上述した好適な現像物性を得ることが可能となる独特
な構成の現像剤担持体を具備する現像装置を提案しt〔
<特願昭55−185726号)。この提案に係る現像
剤担持体は、第2図に示される如く、円筒状の導電性支
持体1の外周囲に導電性物質からなる半球状の多数の微
小な電極粒子2aをその周方向及び幅方向に一様に点在
させてなる電極層2が形成されて構成されており、これ
ら個々の電極粒子2aは相互に絶縁状態にあって電気的
にフロート状態に保持されている。尚、磁性現像剤を使
用する場合には、支持体1の内部3に磁石ローラ(不図
示)が配設される。
Therefore, the applicant of the present application has proposed a developing device equipped with a developer carrier having a unique configuration that makes it possible to obtain the above-mentioned suitable development properties even when a -component type developer is used.
<Patent Application No. 185726/1983). As shown in FIG. 2, the developer carrier according to this proposal has a large number of hemispherical minute electrode particles 2a made of a conductive material arranged around the outer periphery of a cylindrical conductive support 1 in the circumferential direction and The electrode layer 2 is formed so as to be uniformly scattered in the width direction, and the individual electrode particles 2a are insulated from each other and held in an electrically floating state. Note that when a magnetic developer is used, a magnetic roller (not shown) is provided inside the support 1 3.

この様な現像剤担持体を製造するのに好適な方法とし−
C,導電性支持休′1上に接着剤2bを塗布してその上
から導電性粒子2aを散布し、この後外径加工を旋盤等
によって施し電極層2表面を円滑化すると共に電極粒子
を半球状に削ってその一部を表面に露出させる方法が提
案されている。この場合、所望のエツジ効果を得る為に
は、N極粒子2aの表面に露出した面積の電極層2全表
面積に対する割合(面積率)を、所定値以上の例えば4
5%以上確保することが要求される。又、電極粒子2a
の脱離を防止する為に各粒子の体積の半分以上を切除す
ることを回避する必要もある。以上の条件を満Iうす為
には、例えば個々の電極粒子の粒径が74乃至104戸
程度の場合はその電極厚みが52乃至62戸となる様に
、電極層2を形成すれば良い。尚、電極厚みとは、第2
図に示す如く、切除された粒子2A(1)電極層厚t2
方向の厚みt2Aを指ず。その理由は、次の通りである
A suitable method for manufacturing such a developer carrier is -
C. Apply the adhesive 2b on the conductive support layer 1, sprinkle the conductive particles 2a on top of it, and then process the outer diameter using a lathe or the like to smooth the surface of the electrode layer 2 and remove the electrode particles. A method has been proposed in which a hemispherical shape is shaved and a part of it is exposed on the surface. In this case, in order to obtain the desired edge effect, the ratio (area ratio) of the area exposed on the surface of the N-pole particle 2a to the total surface area of the electrode layer 2 must be set to a predetermined value or more, for example 4.
It is required to secure 5% or more. Moreover, the electrode particles 2a
It is also necessary to avoid removing more than half of the volume of each particle to prevent detachment. In order to satisfy the above conditions, for example, when the particle size of each electrode particle is about 74 to 104, the electrode layer 2 may be formed so that the electrode thickness is 52 to 62. In addition, the electrode thickness is the second
As shown in the figure, the excised particle 2A (1) electrode layer thickness t2
Pointing to the thickness t2A in the direction. The reason is as follows.

第3図は、電極粒子2aの厚みt2Aとその面積率AR
との関係を示したグラフ図である。第3図に於いて、曲
線α9曲線β及び曲線γは、夫々、粒径が1104pの
最大電極粒子、平均的な粒径の電極粒子及び粒径が74
 pmの最小電極粒子に於ける各関係を示している。こ
れによれば、好適な現像特性を得る為に必要とされる4
5%以上の面積率ARを確保する為には、最小粒子(曲
線γ)で面積率ARが45%以上となる様に電極厚みt
2Aの最大値を62戸に設定すれば良い。又、アンカー
効果により粒子の11121!IIIを防止する為、最
大粒子(曲線α)の半分である52p−以上の厚みt2
Aを確保する必要がある。従って、電極粒子2aの厚み
t2Aの許容範囲は52乃至62JIff+となる。
Figure 3 shows the thickness t2A of the electrode particle 2a and its area ratio AR.
It is a graph diagram showing the relationship between. In FIG. 3, the curve α9 curve β and the curve γ correspond to the maximum electrode particle with a particle size of 1104p, the electrode particle with an average particle size, and the particle size of 74p, respectively.
Each relationship in the minimum electrode particle of pm is shown. According to this, 4
In order to secure an area ratio AR of 5% or more, the electrode thickness t must be adjusted so that the area ratio AR is 45% or more with the smallest particle (curve γ).
The maximum value of 2A should be set to 62 units. Also, due to the anchor effect, the particle size of 11121! In order to prevent III, the thickness t2 is 52p- or more, which is half of the maximum particle (curve α).
It is necessary to secure A. Therefore, the allowable range of the thickness t2A of the electrode particles 2a is 52 to 62JIff+.

然るに、旋盤等の加工物を支持する@(加工@)を基準
とする旋削加工法により電極層の外径加工を施す場合、
電極層2の層厚【2の変動幅を電極厚みt2Aの許容範
囲幅の10pffI以下に抑えることが難しく、従って
電極厚みt’2Aも上記許容範囲内に収めることが困n
になるという不都合が生じる(第2図参照)。即ち、第
4図に示されている如く、導電性支持体1は薄肉に形成
される必要がある為その両端のインロ一部1aを高精度
で加工することが難しく、従って旋盤の支持具Tとの間
にクリアランスPが生じ易い。クリアランスPが発生す
ると、支持体1の中心軸Coと支持具Tの中心軸C+ 
(加工軸)を一致させることが難しくなる。その結果、
中心軸COと加工軸C1との間にΔdの偏心が生じた場
合、これにより発生する電極層厚t2の変動幅VRは、
層厚t2の最大。
However, when machining the outer diameter of the electrode layer using a turning method based on @ (machining @) that supports a workpiece such as a lathe,
It is difficult to suppress the fluctuation width of the layer thickness of the electrode layer 2 to less than 10 pffI, which is the allowable range width of the electrode thickness t2A, and therefore it is difficult to keep the electrode thickness t'2A within the above-mentioned allowable range.
(See Figure 2). That is, as shown in FIG. 4, since the conductive support 1 needs to be formed with a thin wall, it is difficult to process the spigot parts 1a at both ends with high precision. A clearance P is likely to occur between the two. When the clearance P occurs, the central axis Co of the support 1 and the central axis C+ of the support T
It becomes difficult to match the machining axes. the result,
When an eccentricity of Δd occurs between the central axis CO and the processing axis C1, the fluctuation range VR of the electrode layer thickness t2 that occurs due to this is:
Maximum layer thickness t2.

最小値を夫々txAx、tM+Nとすれば、VR= t
MAx−t+q+N = 2・Δdとなる。従って、電
極厚みt2Aを幅10Jl111の許容範囲内に収める
為には、各電極粒子2aがその底面を同一レベル1」(
第2図参照)に揃えて位置されるという前提条件の下で
、加工1!h C+の偏心口△dをその半分の5戸以下
に抑えることが要求される。この様な厳しい加工条件を
渦足させることは極め°C難しく、これは工数増加や延
いてはロストアツプの原因となる。
If the minimum values are txAx and tM+N, respectively, VR= t
MAX-t+q+N=2・Δd. Therefore, in order to keep the electrode thickness t2A within the allowable range of width 10Jl111, each electrode particle 2a must have its bottom surface at the same level 1'' (
Processing 1! under the precondition that it is aligned with (see Figure 2). h It is required to keep the eccentric opening △d of C+ to less than half of that, 5 units. It is extremely difficult to adjust to such severe processing conditions, which increases the number of man-hours and causes loss of production.

目 的 本発明は以上の点に当みてなされたものであって、所望
のエツジ効果を発揮させ一成分現象剤によっても高度な
画像品質を安定して得ることかり能な現像剤担持体を容
易に製造rきる製造方法を提供することを目的とする。
Purpose The present invention has been made in view of the above points, and it is possible to easily create a developer carrier capable of exhibiting a desired edge effect and stably obtaining high image quality even with a one-component developing agent. The purpose is to provide a manufacturing method that can be used to manufacture products.

JL 以下、本発明の構成について具体的な実施例に基づき詳
細に説明する。本例の製造方法により製造される現像剤
担持体は、第16(a)図、第16(b)図に示される
如く、導電性支持体1上に誘電層4を被着形成した後電
極層2が積層され構成された現像剤担持体11である。
JL Hereinafter, the structure of the present invention will be explained in detail based on specific examples. As shown in FIGS. 16(a) and 16(b), the developer carrier manufactured by the manufacturing method of this example is produced by forming a dielectric layer 4 on a conductive support 1, and then forming an electrode. This is a developer carrier 11 configured by laminating layers 2.

尚、誘電層4は、エツ゛ジ効果対策から導電性支持体1
上に必要な誘電体領域を(M霜厚み)を確保する為に設
(ブられている。
Note that the dielectric layer 4 is formed on the conductive support 1 in order to prevent the edge effect.
The necessary dielectric area is provided on the top to ensure (M frost thickness).

先ず、第5図に示される如く、導電性支持体1を円筒状
に形成する。この場合、現像剤として磁性現像剤を用い
磁力でこれを担持する形式の現像装置に適用される場合
は、導電性支持体1を非磁性の例えばステンレス等で薄
肉に形成する。尚、支持体1は円筒状に限らず他の形態
の例えば無端ベルト状に形成しても良い。
First, as shown in FIG. 5, the conductive support 1 is formed into a cylindrical shape. In this case, if the present invention is applied to a developing device in which a magnetic developer is used and the developer is supported by magnetic force, the conductive support 1 is formed of a thin non-magnetic material such as stainless steel. Note that the support body 1 is not limited to a cylindrical shape, and may be formed in other shapes, such as an endless belt shape.

次に、支持体1の外周面を脱脂処理した後、この外周面
全体に亘って均一に誘電性材料からなる誘電体塗膜を被
着づる。具体的には、例えば第5図に示す如く、内部に
ヒータ5が装着された円柱状のシーズヒータ6を水平に
回転可能に設け、これに上述の如く形成した支持体1を
外挿し、支持体1を180℃近傍に加熱すると共に所定
の速度で両者を略一体に回転させつつ、静電塗装ガン7
で誘電性パウダー4−を静電塗装法により支持体1外周
面上に均一に吹き付ける。この場合、誘電性パウダー4
−としては熱硬化性樹脂粉末の例えばエポキシ樹脂粉末
等が好適である。そして、塗装ガン7をシーズヒータ6
に平行に等速度で往復移動可能な保持台(不図示)等に
セットして目的とする例えば約500 pmの層厚に達
するまで吹き付は作業を繰り返し実施すれば良い。吹き
付は塗装終了後はシーズヒータ6で加熱したまま支持体
1の回転を適長時間継続し、第6図に示される如く誘電
体塗膜4を硬化させる。これにより、誘電体塗114−
の膜厚t4−が、幅方向だけでなく周方向に於いても大
略均一となる。尚、支持体1の加熱方法とし′Cは、遠
赤外線ヒータ等により外部から加熱する方法でも良い。
Next, after degreasing the outer peripheral surface of the support 1, a dielectric coating made of a dielectric material is uniformly applied over the entire outer peripheral surface. Specifically, as shown in FIG. 5, for example, a cylindrical sheathed heater 6 with a heater 5 mounted therein is horizontally rotatably provided, and the support 1 formed as described above is fitted onto the sheathed heater 6 for support. While heating the body 1 to around 180°C and rotating both substantially integrally at a predetermined speed, the electrostatic coating gun 7
Then, the dielectric powder 4- is uniformly sprayed onto the outer peripheral surface of the support 1 by an electrostatic coating method. In this case, dielectric powder 4
- is preferably a thermosetting resin powder such as an epoxy resin powder. Then, connect the paint gun 7 to the sheathed heater 6.
The coating may be set on a holding table (not shown) that can be moved back and forth at a constant speed in parallel to the surface of the substrate, and the spraying operation may be repeated until the desired layer thickness of, for example, about 500 pm is reached. After spraying is completed, the support 1 is continued to be rotated for an appropriate period of time while being heated by the sheathed heater 6, and the dielectric coating film 4 is cured as shown in FIG. As a result, the dielectric coating 114-
The film thickness t4- is approximately uniform not only in the width direction but also in the circumferential direction. Note that the heating method 'C of the support 1 may be a method of heating from the outside using a far-infrared heater or the like.

被着形成された誘電体塗Il!4−の表面には通常多数
の凹凸が形成されているが、前述した許容範囲内に電極
粒子の厚みを収める為にはこの表面がある程度円滑であ
ることが要求される。従って、被着された誘電体塗膜4
−表面に例えば旋盤等により外径加工を施して表面を円
滑化し、第7図に示される如く層厚t4が400戸程度
の誘電R4を形成する。尚、本外径加工を他の例えば円
筒研削盤等により実施することも可能である。
Deposited dielectric coating Il! Although many irregularities are usually formed on the surface of 4-, this surface is required to be smooth to some extent in order to keep the thickness of the electrode particles within the above-mentioned tolerance range. Therefore, the applied dielectric coating 4
- The surface is smoothed by processing the outer diameter using a lathe or the like, and a dielectric R4 having a layer thickness t4 of about 400 layers is formed as shown in FIG. Incidentally, it is also possible to carry out the main outer diameter machining using other tools such as a cylindrical grinder.

外径加工により誘Ti層4を形成した後は、誘電層4表
面を清浄し、次いで、第8図に示す如く、例えば圧送式
エアスプレィ8によって、誘電層4の表面に誘電性で例
えば富潟硬化型のアクリルウレタン等の接着剤を一様に
吹き付【プ塗布する。これにより第9図に示ず如ぎ接着
剤膜2bが被着されるが、その膜厚t2Bは、次順の工
程(第10図参照)で散布される電極粒子2aが例えば
粒径が74乃至104μmの銅粒子である場合には、散
布した粒子を誘電層4表面に確実に付着させ得る3乃至
15pm程度が好適である。尚、本工程に於いても、被
加工物(以下ワークWと表わす)である支持体1上に誘
電層4が被着形成された中間製品を、誘電体@膜形成時
と同様に適切な速度で回転させつつ水平に支持し、これ
に沿って上述の接着剤の塗布を反復して行なえば、略均
−な膜厚を有する接着剤膜2bを容易に被着形成するこ
とができる。
After forming the dielectric Ti layer 4 by outer diameter processing, the surface of the dielectric layer 4 is cleaned, and then, as shown in FIG. Evenly spray adhesive such as hardening type acrylic urethane. As a result, the adhesive film 2b as shown in FIG. 9 is deposited, and the thickness t2B of the adhesive film 2b is such that the electrode particles 2a dispersed in the next step (see FIG. 10) have a particle size of, for example, 74 mm. In the case of copper particles having a diameter of 104 μm to 104 μm, the preferred thickness is about 3 to 15 pm, which allows the dispersed particles to reliably adhere to the surface of the dielectric layer 4. In this step as well, the intermediate product in which the dielectric layer 4 is deposited on the support 1, which is the workpiece (hereinafter referred to as work W), is treated with an appropriate material as in the case of forming the dielectric film. If the adhesive film 2b is supported horizontally while being rotated at a high speed, and the above-described adhesive is repeatedly applied along this direction, the adhesive film 2b having a substantially uniform thickness can be easily formed.

接着剤を被着したら、これが硬化する前に多数の電極粒
子を誘電層表面に略均−に付着させる。
Once the adhesive has been applied, and before it hardens, a large number of electrode particles are deposited substantially evenly on the surface of the dielectric layer.

この付着方法としては、例えば、第10図に示す如く散
布口9aを備えたトレイ9内に電極粒子2aとして粒径
が74乃至104μmの銅粒子を多量に収容しておき、
水平に支持され回転されるワークWに沿ってトレイ9を
適正な速度で往復移動させつつ適度に傾け、散布口9a
から電極粒子2aを少量ずつ落下させて接着剤膜2b上
にふりかけ均一に分布させれば良い。これにより、第1
1図に示す如く各電極粒子2aが誘電層4表面に当接し
た状態で略均−に付着する。本例に於いては、付着させ
る各電極粒子2aが予め例えばアクリルラッカ等の誘電
性物質で被覆されているので、自然落下により無作為に
散布しても個々の電極粒子2aを確実に周囲に対して絶
縁状態(フロート状態)で付着させることができる。又
、接着剤H2bのl!厚が3乃至15fimと薄い為に
、散布された粒径が74乃至104μmの銅粒子2aを
浮遊させ得る浮力が生じず、自然に各粒子2aは誘電層
4表面に沈下した状態となる。従っで、第11図に示す
如く、個々の電極粒子2aを自然落下させるだけでその
底面を誘電層4表面に容易且つ確実に揃えることができ
る。尚、本例では、電極粒子2aとして銅粒子を用いた
が、これに限らず他の導電性の例えば黄銅やリン青銅若
しくはステンレス等の粒子も使用できる。
For this attachment method, for example, as shown in FIG. 10, a large amount of copper particles having a particle size of 74 to 104 μm are stored as electrode particles 2a in a tray 9 equipped with a dispersion port 9a.
The tray 9 is moved back and forth at an appropriate speed along the horizontally supported and rotated workpiece W and is tilted appropriately, and the spraying port 9a is
The electrode particles 2a may be dropped little by little from the adhesive film 2b and sprinkled onto the adhesive film 2b to uniformly distribute the electrode particles 2a. This allows the first
As shown in FIG. 1, each electrode particle 2a is attached substantially uniformly to the surface of the dielectric layer 4 while being in contact with the surface. In this example, each electrode particle 2a to be attached is coated with a dielectric material such as acrylic lacquer in advance, so even if it is scattered randomly by natural fall, the individual electrode particles 2a can be reliably spread around the surrounding area. It can be attached in an insulating state (floating state) on the other hand. Also, l of adhesive H2b! Since the thickness is as thin as 3 to 15 fim, no buoyancy is generated to float the dispersed copper particles 2a having a diameter of 74 to 104 μm, and each particle 2a naturally sinks to the surface of the dielectric layer 4. Therefore, as shown in FIG. 11, the bottom surface of each electrode particle 2a can be easily and reliably aligned with the surface of the dielectric layer 4 simply by allowing the individual electrode particles 2a to fall naturally. In this example, copper particles are used as the electrode particles 2a, but the electrode particles 2a are not limited to this, and particles of other conductive materials such as brass, phosphor bronze, or stainless steel can also be used.

次に、接着剤2bを略完全に乾燥硬化させた後、第12
図に示す如く再度誘電性接着剤2b−を前回と同様な方
法で電極粒子2a及び接着剤2b上に厚塗り(オーバー
コート)する。この場合、前回と同一物質の接着剤を用
いれば、両者が確実に接着しあって電極粒子2aを誘電
層4表面に当接させた状態でより強固に固定でき耐久性
の面等で有利である。然るに、互いに接着し合い粒子2
aを確実に固定できるならば、互いに異なる物質の誘電
性接着剤の組合せも十分可能である。この様に接着剤を
乾燥工程を挾んで2度に分けて被着することにより、先
に被着した接着剤2bの再溶解が回避される為、各電極
粒子2aを浮遊させず誘電層4表面に沈下させた状態で
強固に固定でき、前述した各粒子2aの底面を同一レベ
ルに揃えて位置させるという電極厚みを所定の許容範囲
内に収める為の前提条件を容易に達成する事ができる。
Next, after drying and curing the adhesive 2b almost completely,
As shown in the figure, the dielectric adhesive 2b- is again thickly coated (overcoated) on the electrode particles 2a and adhesive 2b in the same manner as the previous time. In this case, if the same adhesive as the previous one is used, the two will surely adhere to each other and the electrode particles 2a will be more firmly fixed in contact with the surface of the dielectric layer 4, which is advantageous in terms of durability. be. However, particles 2 adhere to each other
As long as a can be reliably fixed, combinations of dielectric adhesives made of different materials are also possible. In this way, by applying the adhesive in two steps with a drying process in between, re-melting of the previously applied adhesive 2b is avoided, so each electrode particle 2a is not suspended and the dielectric layer 4 It can be firmly fixed in a state where it is sunk to the surface, and the prerequisite for keeping the electrode thickness within a predetermined tolerance range of locating the bottom surfaces of each particle 2a on the same level as described above can be easily achieved. .

接着剤の厚塗りが終了したらこれを乾燥硬化させる。こ
の場合、第13図に示す如く、誘電層形成時と同様にワ
ークWをシーズヒータ6に外挿し水平に支持して回転さ
せると共に加熱しつつ乾燥させれば、厚塗りした接着剤
2b”が垂れる事なく誘電層4上に積層される接着剤2
b、電極粒子2a及び厚塗り接着剤2b=を合せた電極
層2′(各粒子2aの一部が表面に露出される前の状態
)の層厚12−が均一となる。この様にして、例えば層
厚12−が150戸程度の電極層2′が形成される。
After applying a thick coat of adhesive, let it dry and harden. In this case, as shown in FIG. 13, if the workpiece W is inserted into the sheathed heater 6 and horizontally supported and rotated as well as heated and dried in the same way as when forming the dielectric layer, the thickly applied adhesive 2b'' Adhesive 2 laminated on dielectric layer 4 without dripping
b. The layer thickness 12- of the electrode layer 2' (a state before a part of each particle 2a is exposed to the surface), which is a combination of the electrode particles 2a and the thickly coated adhesive 2b=, becomes uniform. In this way, an electrode layer 2' having a layer thickness 12- of about 150 layers is formed, for example.

而して、この後、第14図に示される如く、電極層2′
の表面に外径加工を施して表面を円滑化すると共に各電
極粒子2aの一部を表面に露出させ、電極層2に仕上げ
る。ところで、本発明方法に於いCは、誘電層4表面に
各電極粒子2aを当接させた状態で固定しである為仕上
げた後の電極層2の層厚t2と電極厚みt2Aが等しい
。従って、電極層2の層厚t2を電極厚みt2Aの許容
範囲である52乃至62μm内に収めれば、電極粒子2
aの露出面積率ARが45%以上を確保8れ且つ粒子2
aが脱離し難い所望の電極層2を得ることができる。こ
の為、本発明方法に於いては、本外径加工工程を、ワー
クWの外周面S(電極層2′表面)を基準とする表面加
工法により実施する。本工程に好適な方法の1つとして
例えば超仕上法があり、以下、その具体的な実施例につ
い°C説明する。
Then, as shown in FIG. 14, the electrode layer 2'
The surface of the electrode layer 2 is finished by processing the outer diameter of the electrode layer 2 to make the surface smooth and to expose a portion of each electrode particle 2a to the surface. By the way, in the method of the present invention, since each electrode particle 2a is fixed in a state in which each electrode particle 2a is in contact with the surface of the dielectric layer 4, the layer thickness t2 of the finished electrode layer 2 is equal to the electrode thickness t2A. Therefore, if the layer thickness t2 of the electrode layer 2 is kept within the allowable range of the electrode thickness t2A of 52 to 62 μm, the electrode particles 2
Ensure that the exposed area ratio AR of a is 45% or more, and the particles 2
A desired electrode layer 2 in which a is difficult to detach can be obtained. Therefore, in the method of the present invention, the main outer diameter machining step is carried out by a surface machining method using the outer circumferential surface S of the workpiece W (the surface of the electrode layer 2') as a reference. One of the methods suitable for this step is, for example, a superfinishing method, and specific examples thereof will be described below.

本例に於いては、第゛15図に示す如く、超仕上ユニッ
ト10を旋盤の刃物台已に取付けた製造装置を使用し、
ワークWを旋盤の主軸Aにセットして長手軸を中心とし
て回転させると共にこの外周面に砥石10aを長手軸方
向に撮動させつつ押し当てその周面を研削する。超仕上
げユニット10に於いて、工具としての砥石10aは、
ストーンガイド10bの先端に装着されている。ストー
ンガイド10bはエアシリンダ10Cを備え、これによ
り砥石10aを上下に移動させる。又、このエアーシリ
ンダ10cは、加工作業中は加工面の変動を吸収するク
ッションとしての効果を奏する。
In this example, as shown in FIG.
A workpiece W is set on the main axis A of the lathe and rotated about the longitudinal axis, and the grindstone 10a is pressed against the outer circumferential surface of the work W while being moved in the longitudinal axis direction to grind the circumferential surface. In the super finishing unit 10, the grindstone 10a as a tool is
It is attached to the tip of the stone guide 10b. The stone guide 10b includes an air cylinder 10C, which moves the grindstone 10a up and down. Moreover, this air cylinder 10c has the effect of acting as a cushion to absorb fluctuations in the machining surface during machining work.

ストーンガイド10bは超仕上ヘッド10dに連結され
ている。この超仕上ヘッド10dには、前述した砥石1
0aの長手軸方向に対する振動を発生させる起振手段(
不図示)が内蔵されており、例えば振幅が1乃至6+1
1111、振動数が1,900乃至3.200CPMの
振動をストーンガイド10b等を介して砥石10aに発
生させる。そして、超仕上ヘッド10dは、旋盤のバイ
ト等を主軸Aに沿っ−で往復移動させる刃物台Bに取付
けられている。従って、超仕上げヘッド10d、ストー
ンガイド10b及び砥石10aが往復台Bと共に一体的
に主軸Aに沿って所定の速度で往復移動され、工具であ
る砥石10aのワークWの長手軸方向に沿った送り動作
が実施される。尚、本例で使用する砥石10aは黒色炭
化珪素、緑色炭化珪素、褐色酸化アルミナ及び白色酸化
アルミナ等の粒子をポリビニルアルコール及び熱硬化性
樹脂よりなる結合剤で固めて作られている。
The stone guide 10b is connected to the superfinishing head 10d. This super finishing head 10d has the above-mentioned grindstone 1.
Vibration means for generating vibration in the longitudinal axis direction of 0a (
(not shown) is built-in, for example, the amplitude is 1 to 6+1.
1111, vibrations having a frequency of 1,900 to 3.200 CPM are generated in the grindstone 10a via the stone guide 10b and the like. The superfinishing head 10d is attached to a tool post B that reciprocates a tool such as a cutting tool of the lathe along the main axis A. Therefore, the superfinishing head 10d, the stone guide 10b, and the grindstone 10a are integrally moved together with the carriage B at a predetermined speed along the main axis A, and the grindstone 10a, which is a tool, is fed along the longitudinal axis direction of the workpiece W. Action is performed. The grindstone 10a used in this example is made by hardening particles of black silicon carbide, green silicon carbide, brown alumina oxide, white alumina oxide, etc. with a binder made of polyvinyl alcohol and a thermosetting resin.

この様な製造装置にJ:り電極層2′表面を外径加工す
る際は、先ずワークWの両端を支持冶具Tを介しく旋盤
の主軸へで支持する。次に、エアシリンダ10bを作動
さ上支持されたワークWの周面に砥石10aを例えばI
 K (J / Cm’程度の比較的軽い圧力で押付け
る。ワークWと砥石10aのセットが終ったら、主軸へ
の回転、超仕上l\ラッド0dの振動及び往復台Bの送
り動作を夫々開始させ、研削加工を実施する。この様に
して超仕上法により電極層2−の外径加工を実施すれば
、主軸Aの支持具合で決まるワークWの加工軸の位置に
拘わらず、安定し′C第16(a)図、第16(b)図
に示す如き所望の52乃至621Iffl(7)@厚t
2を有した電極層2が形成される。
When processing the outer diameter of the surface of the electrode layer 2' using such a manufacturing apparatus, first, both ends of the work W are supported via the support jig T to the main shaft of the lathe. Next, the air cylinder 10b is activated and the grindstone 10a is placed on the circumferential surface of the supported workpiece W, for example, by I.
K (Press with a relatively light pressure of about J / Cm'. After setting the workpiece W and the grindstone 10a, start rotation to the main shaft, vibration of the super finishing l\rad 0d, and feeding operation of the carriage B, respectively. In this way, if the outer diameter of the electrode layer 2- is machined by the super finishing method, it will be stable regardless of the position of the machining axis of the workpiece W, which is determined by the support of the main axis A. C Desired 52 to 621 Iffl(7) @thickness t as shown in FIG. 16(a) and FIG. 16(b)
2 is formed.

即ち、第17 (a )図、第17(b)図に示す如く
、旋盤の主軸がワークWを支持する支持軸CAがワーク
Wの中心軸Cw (本例の場合は厳密には誘電H4の外
径加工時の加工軸)から△dだけ偏心していると、支持
軸OAを中心として回転されるワークWの砥石10aと
接する外周面レベルHの変動幅は2倍の2・Δdとなる
。然るに、この変動は前述したエアシリンダ10bのク
ッション効果により吸収され、第7(a)図に示した砥
石10aに対する外周面レベル日が最低の場合も、第1
7(+1)図に示した外周面レベル1」が最高の場合も
、砥石10aのワークWの外周面に接する圧力は略一定
となる。従って、第14図に於いて、ワークWの初期の
電極層2−表面S(研削する前の表面)を基準としてこ
れから研削される分の厚みt2Rが全周面に亘って均一
化される。
That is, as shown in Fig. 17(a) and Fig. 17(b), the support shaft CA on which the main shaft of the lathe supports the work W is the central axis Cw of the work W (in this example, strictly speaking, the dielectric H4 If the workpiece W is eccentric by Δd from the machining axis (during outer diameter machining), the fluctuation width of the outer circumferential surface level H in contact with the grindstone 10a of the workpiece W rotated around the support axis OA will be twice as large as 2·Δd. However, this fluctuation is absorbed by the cushioning effect of the air cylinder 10b mentioned above, and even when the outer circumferential surface level with respect to the grindstone 10a shown in FIG. 7(a) is the lowest, the first
7(+1) Even when the outer circumferential surface level 1 shown in FIG. Therefore, in FIG. 14, the thickness t2R of the workpiece W to be ground is made uniform over the entire circumferential surface with reference to the initial electrode layer 2-surface S (the surface before grinding) of the workpiece W.

本例では、N極N2−を層厚t2”が150μ…C略均
−となる様に形成しであるので、全周面に亘って研削厚
みt2Rが88乃至98μmとなる様に超仕上加工づ“
れば良い。超仕上加工によれば、通當粒度5.ooo番
程度の111(石を用いれば表面粗さが最小で0.05
戸R7程度の仕上面が得られるので、電極層2′の層厚
t2−の変動幅を10JIff1以下に抑えておけば、
最終的に層厚t2が52乃至62μmの範囲内に収めら
れた所望の電極層2を容易に形成することができる。又
、この場合、第17図に示す如く誘電層4形成時に於け
る外径加工の加工@C4が支持体1の中心軸Coからず
れた為誘電層4の層厚が不均〜となっても、本超仕上加
工の精度は影響されず層厚t2が均一な電極層2を安定
的に高精度で形成Jることができる。
In this example, since the N-pole N2- is formed so that the layer thickness t2'' is approximately equal to 150μ...C, super-finishing is performed so that the grinding thickness t2R is 88 to 98μm over the entire circumference. zu“
That's fine. According to super finishing processing, the total grain size is 5. ooo number 111 (if stone is used, the surface roughness is at least 0.05
Since a finished surface of approximately R7 can be obtained, if the variation range of the layer thickness t2- of the electrode layer 2' is suppressed to 10JIff1 or less,
Finally, a desired electrode layer 2 having a layer thickness t2 within the range of 52 to 62 μm can be easily formed. In addition, in this case, as shown in FIG. 17, the outer diameter machining @C4 at the time of forming the dielectric layer 4 was shifted from the central axis Co of the support 1, so the layer thickness of the dielectric layer 4 became uneven. However, the accuracy of this superfinishing process is not affected, and the electrode layer 2 having a uniform layer thickness t2 can be formed stably and with high precision.

尚、外周面基準による本型極層仕上げ工程の加工方法と
しては、超仕上法に限らず第19図に示づ如き心なし円
筒研削方法も採用可能である。この方法による場合は、
ωI削砥石12と加工物を送る調整砥石13の間にワー
クWを挿入し、受は板14でこれを支持しながら外周面
から均一に研削加工を行なえばよく、比較的小径の加工
物の外周面基準の外径加工も容易に実施できる。
Note that the processing method for this type of extreme layer finishing step based on the outer circumferential surface is not limited to the super finishing method, and a centerless cylindrical grinding method as shown in FIG. 19 can also be adopted. If you use this method,
The workpiece W is inserted between the ωI grinding wheel 12 and the adjustment grindstone 13 that feeds the workpiece, and while the support is supported by the plate 14, it is sufficient to uniformly grind the workpiece from the outer peripheral surface. Outer diameter machining based on the outer peripheral surface can also be easily performed.

上述の如く外周面を基準として電極層表面の外径加工を
施すことにより、第16(a)図、第16(b)図に示
す如く層厚t2、即ち電極厚みt2Aが52乃至62−
の許容範囲内に確実に収められた電極層2が全周面に亘
って均一に形成される。この後、表面の研摩材等の汚れ
を洗浄すれば、最終的な製品としての現像剤担持体11
が完成する。
By processing the outer diameter of the electrode layer surface using the outer peripheral surface as a reference as described above, the layer thickness t2, that is, the electrode thickness t2A, is 52 to 62 - as shown in FIGS. 16(a) and 16(b).
The electrode layer 2 is formed uniformly over the entire circumferential surface, and the electrode layer 2 is reliably within the permissible range of . After that, if the dirt from the abrasive material etc. on the surface is cleaned, the developer carrier 11 as a final product is obtained.
is completed.

尚、上記実施例に於いては、接着剤の被着工程を2工程
に分割したが、これは必要に応じて1工程又は3工程以
上に分割しても良い。又、誘電層4の材料と接着剤2b
とを同−又は同種類の誘電性材料とすることも可能であ
る。更に、誘電層4の材料としては、熱硬化性樹脂に限
らず熱可塑性の例えばポリイミドやABS等の樹脂も使
用可能である。
In the above embodiment, the process of applying the adhesive is divided into two processes, but it may be divided into one process or three or more processes as necessary. In addition, the material of the dielectric layer 4 and the adhesive 2b
It is also possible to use the same or the same type of dielectric material. Furthermore, the material for the dielectric layer 4 is not limited to thermosetting resins, but also thermoplastic resins such as polyimide and ABS can be used.

効 果 以上詳述した如く、本発明によれば、電極厚みを決定す
る電極層を仕上げる表面加工を外表面基準で実施するこ
とにより、緻密さが要求される電極層形成時に於ける加
工軸の設定が不要となる。
Effects As detailed above, according to the present invention, the surface processing for finishing the electrode layer, which determines the electrode thickness, is carried out based on the outer surface, so that the machining axis can be adjusted when forming the electrode layer, which requires precision. No settings required.

従って、所望の電極厚みを有し、第1図に示される如く
好適な現像特性を安定的に発揮可能な現像剤担持体をよ
り短い工数で安価に製造できる。尚、本発明は上記の特
定の実施例に限定されるべきものではなく、本発明の技
術的範囲に於いて神々の変形が可能であることは勿論で
ある。例えば、接着剤を被着させる場合に他の浸漬成形
法(ディップ成形法)等によることも可能であり、又、
電極粒子を付着させる工程は接着剤が被着されたワーク
を電極粒子が敷き詰められた粒子床上をローリングさせ
ることによっても実施可能である。更に、誘電層4を形
成する表面加工も外表面基準の例えば超仕上法により実
施しても良い。
Therefore, a developer carrier having a desired electrode thickness and capable of stably exhibiting suitable development characteristics as shown in FIG. 1 can be manufactured with a shorter number of man-hours and at a lower cost. It should be noted that the present invention is not limited to the above-described specific embodiments, and it goes without saying that numerous modifications can be made within the technical scope of the present invention. For example, when applying adhesive, it is also possible to use other immersion molding methods (dip molding method), etc.
The step of attaching the electrode particles can also be carried out by rolling the workpiece coated with the adhesive over a particle bed covered with electrode particles. Furthermore, the surface processing for forming the dielectric layer 4 may also be performed based on the outer surface, for example, by a superfinishing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は好適な現像特性を示したグラフ図、第2図は従
来の現像剤担持体を示した模式的断面図、第3図は電極
厚みt2Aと露出面W4帯ARとの関係を示したグラフ
図、ffi/1図は従来の製造方法を示した説明図、第
5図は本発明の1実施例に於ける誘電層吹付は工程を示
した斜視図、第6図、第7図は夫々同じく誘電体塗B4
′と誘電層4の形成態様を示した各模式的断面図、第8
図、第9図は夫々同じく接着剤2b被着工程とその形成
量を示した各模式的断面図、第10図、第11図は夫々
同じく電極粒子付着工程とその形成量を示した各模式的
断面図、第12図は同じく接着剤厚塗工程を示した模式
的断面図、第13図は同じく接着剤乾燥工程を示した模
式的断面図、第14図は同じく電極層形成工程を示した
模式的断面図、第15図は同じく超仕上法による電1r
is形成工程を示した斜視図、第16(a)図、第16
(b’)Iii[夫々同じく完成した現像剤担持体11
を示した模式的側断面図と正断面図、!’117 (a
 )図、第17(b)図は夫々同じく超仕上法による動
作を示した各説明図、第18図は同じく完成した現像剤
担持体の変形例を示した模式的側断面図、第19図は同
じく電極層形成工程の変形例を示した説明図である。 (符号の説明) 1: 導電性支持体 2′: 電極層(仕上前) 2: 電極層(仕上後) 2a: 電極粒子 4: 誘電層 10: 超仕上ユニツi〜 特許出願人 株式会社 リ コ 一 代 理 人 小 橋 正 明 第6図 第8図 第111ヌ1 乙0 第121−!、1 第13 171 第141′:!1 9
Fig. 1 is a graph showing suitable development characteristics, Fig. 2 is a schematic cross-sectional view showing a conventional developer carrier, and Fig. 3 shows the relationship between electrode thickness t2A and exposed surface W4 zone AR. Fig. 5 is a perspective view showing the dielectric layer spraying process in one embodiment of the present invention, Fig. 6 and Fig. 7 are graph diagrams showing the conventional manufacturing method. are also dielectric coated B4
' and each schematic cross-sectional view showing the formation mode of the dielectric layer 4, No. 8
9 and 9 are schematic cross-sectional views showing the adhesive 2b adhesion process and the amount formed, and FIGS. 10 and 11 are schematic cross-sectional views showing the electrode particle adhesion process and the amount formed, respectively. FIG. 12 is a schematic cross-sectional view showing the thick adhesive coating process, FIG. 13 is a schematic cross-sectional view showing the adhesive drying process, and FIG. 14 is a schematic cross-sectional view showing the electrode layer forming process. The schematic cross-sectional view shown in FIG.
A perspective view showing the is forming process, FIG. 16(a), FIG.
(b') Iiii [Developer carrier 11 similarly completed
Schematic side sectional view and front sectional view showing! '117 (a
) and FIG. 17(b) are respective explanatory diagrams showing the operation by the super finishing method, FIG. 18 is a schematic side sectional view showing a modified example of the completed developer carrier, and FIG. 19 FIG. 6 is an explanatory diagram showing a modification of the electrode layer forming process. (Explanation of symbols) 1: Conductive support 2': Electrode layer (before finishing) 2: Electrode layer (after finishing) 2a: Electrode particles 4: Dielectric layer 10: Super Finishing Units i~ Patent applicant Rico Co., Ltd. Masaaki Ichidai Masaaki Kohashi Figure 6 Figure 8 Figure 111 No. 1 Otsu 0 No. 121-! , 1 13th 171 141':! 1 9

Claims (1)

【特許請求の範囲】 1、導電性支持体上に多数の電極粒子を夫々の一部を表
面に露出させると共に相互に電気的絶縁状態に保持して
なる現像剤担持体の製造方法に於いて、前記導電性支持
体上に誘電体からなる誘電層を形成する工程と、前記誘
電層上に誘電性接着剤を被着させると共に前記電極粒子
を前記誘電層表面に付着させて電極層を被着形成する電
極層形成工程と、前記電極層表面を基準として表面加工
を施し各前記電極粒子の一部を表面に露出させる表面加
工工程とを有することを特徴とする現像剤担持体の製造
方法。 2、上記第1項に於いて、前記表面加工■稈は超仕上法
により実施されることを特徴とする現像剤担持体の製造
方法。 3、上記第1項に於いて、前記電極層形成工程に於ける
前記接着剤の被着は乾燥工程を挾み複数の接着剤付与工
程に分割して実施されることを特徴とする現像剤担持体
の製造方法。
[Scope of Claims] 1. A method for producing a developer carrier comprising a large number of electrode particles on a conductive support, with a portion of each electrode particle exposed on the surface and kept electrically insulated from each other. , forming a dielectric layer made of a dielectric material on the conductive support; depositing a dielectric adhesive on the dielectric layer and depositing the electrode particles on the surface of the dielectric layer to cover the electrode layer; A method for manufacturing a developer carrier, comprising: a step of forming an electrode layer; and a surface processing step of applying a surface treatment to the surface of the electrode layer to expose a portion of each of the electrode particles to the surface. . 2. The method for producing a developer carrier according to item 1 above, wherein the surface treatment (1) is carried out by a super finishing method. 3. The developer according to the above item 1, wherein the application of the adhesive in the electrode layer forming step is carried out by dividing into a plurality of adhesive application steps with a drying step in between. Method for manufacturing a carrier.
JP58185122A 1983-09-28 1983-10-05 Manufacture of developer carrier Pending JPS6078460A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58185122A JPS6078460A (en) 1983-10-05 1983-10-05 Manufacture of developer carrier
US06/654,257 US4707382A (en) 1983-09-28 1984-09-25 Developer carrier and a method for manufacturing the same
GB08424272A GB2150045B (en) 1983-09-28 1984-09-26 Developer carrier and a method for manufacturing the same
FR8415010A FR2552564B1 (en) 1983-09-28 1984-09-28 DEVELOPER SUPPORT FOR ELECTROPHOTOGRAPHIC MACHINE AND MANUFACTURING METHOD THEREOF
DE19843435731 DE3435731A1 (en) 1983-09-28 1984-09-28 DEVELOPER CARRIER AND METHOD FOR PRODUCING A DEVELOPER CARRIER
US07/098,392 US4860417A (en) 1983-09-28 1987-09-18 Developer carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185122A JPS6078460A (en) 1983-10-05 1983-10-05 Manufacture of developer carrier

Publications (1)

Publication Number Publication Date
JPS6078460A true JPS6078460A (en) 1985-05-04

Family

ID=16165249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185122A Pending JPS6078460A (en) 1983-09-28 1983-10-05 Manufacture of developer carrier

Country Status (1)

Country Link
JP (1) JPS6078460A (en)

Similar Documents

Publication Publication Date Title
US4860417A (en) Developer carrier
JPH06773A (en) Manufacture of abrasive tape
WO1998028108A1 (en) Manufacture of porous polishing pad
JP2009125864A (en) Polishing sheet and method for producing polishing sheet
JPS6078460A (en) Manufacture of developer carrier
JPS59189374A (en) Developing method
JPS60136775A (en) Developer carrying body and its manufacture
JPS60125853A (en) Production of developer carrying body
JPH06258855A (en) Preparation of photosensitive image formation member
JPS60125852A (en) Production of developer carrying body
JP2000141225A (en) Working method for surface of work piece
US5243811A (en) Grinder and method of manufacturing the same
JPS6070457A (en) Production of developer carrying body
JPS6080858A (en) Production of developer carrying body
JP2004205991A (en) Elastic fixing roll and image forming apparatus
JPS6080859A (en) Developer carrying body and its production
JPH0568696B2 (en)
JP2666395B2 (en) Electrophotographic photoreceptor
JPH08118214A (en) Method for polishing elastic roll
JPS6070455A (en) Production of developer carrying body
JPS59198461A (en) Manufacture of cylindrical electrophotographic sensitive body
JPS5958436A (en) Photoreceptor for electrophotography
JPS6079367A (en) Developer carrier and its manufacture
JPS6035579Y2 (en) spiral polishing plate
JPS6070456A (en) Production of developer carrying body