JPS60136775A - Developer carrying body and its manufacture - Google Patents

Developer carrying body and its manufacture

Info

Publication number
JPS60136775A
JPS60136775A JP24434183A JP24434183A JPS60136775A JP S60136775 A JPS60136775 A JP S60136775A JP 24434183 A JP24434183 A JP 24434183A JP 24434183 A JP24434183 A JP 24434183A JP S60136775 A JPS60136775 A JP S60136775A
Authority
JP
Japan
Prior art keywords
layer
dielectric
adhesive
developer carrier
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24434183A
Other languages
Japanese (ja)
Inventor
Yasuo Kadomatsu
門松 康夫
Shoji Tajima
田島 彰治
Yoshio Miyazaki
宮崎 芳男
Kimio Yasuse
安瀬 君雄
Michikazu Sakurai
三千一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24434183A priority Critical patent/JPS60136775A/en
Priority to US06/654,257 priority patent/US4707382A/en
Priority to GB08424272A priority patent/GB2150045B/en
Priority to DE19843435731 priority patent/DE3435731A1/en
Publication of JPS60136775A publication Critical patent/JPS60136775A/en
Priority to US07/098,392 priority patent/US4860417A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To obtain stable performance for a long term by laminating on a conductive substrate an elastic magnet layer made of a mixture of an elastomer and a magnetic material, and an electrode layer contg. a large number of conductive particles as very small electrodes in a state of each particle electrically insulated from each other. CONSTITUTION:A developer carrying body is formed by laminating on a conductive substrate 4 an elastic magnet layer 5 of a composite magnetized material consisting of a magnetic material and an elastomer, such as a halogenated polymer having no double bond on the main chain, and an electrode layer 6 containing a large number of conductive particles 6a, such as copper particles, as extremely small electrodes, dispersed into a dielectric medium, such as a room-temp. hardenable adhesive, such as acrylic urethane, in a state of each particle electrically insulated from each other and one part of it exposed out of the layer 6 surface. The surface of the electrode layer 6 is polished smoothly, and each particle 6a is held with the surface of the magnet layer 5 in contact with the bottom face of each particle 6a, and so the thickness of the electrode is equal to that of the electrode layer 6. As a result, the step for adjusting magnetic power is saved, and assembling operation is made easy. The obtained developer carrying body has high quality and a desirable edge effect on a rigid latent image bearing body.

Description

【発明の詳細な説明】 技術分野 本発明は磁性現像剤担持体とその製造方法に関し、より
詳細には、−成分高抵抗磁性トナーを使用する現像装置
に好適な現像剤担持体とその製造方法に関するものであ
る。
Detailed Description of the Invention Technical Field The present invention relates to a magnetic developer carrier and a method for manufacturing the same, and more particularly, a developer carrier suitable for a developing device using -component high resistance magnetic toner and a method for manufacturing the same. It is related to.

従来技術 電子写真複写機やファクシミリ又はプリンタ等の静電記
録装置においては、原稿が線画像である場合とベタ画像
である場合とでは現偉装置に要求される現像特性が異な
る。第1図は、その好適な現像特性を示したグラフ図で
あり、横軸に原稿画像濃度をとり縦軸に複写画[1度を
とっである。
BACKGROUND OF THE INVENTION In electrostatic recording devices such as electrophotographic copying machines, facsimile machines, printers, etc., the development characteristics required of the developing device are different depending on whether the document is a line image or a solid image. FIG. 1 is a graph showing the preferable development characteristics, in which the horizontal axis represents the original image density and the vertical axis represents the copy image [1 degree].

図中、実線Aはへり画像に要求される現像特性、破線B
は線画像に要求されるJiil像特性全特性ている。こ
れによれば、線画像の場合(破線B)の方がベタ画像(
実線A)の場合に比べて立上がり勾配が急峻である。こ
の理由は、原稿が綜画倹である場合は原稿画像濃度が低
いと画像の鮮明度が劣るので複写画像濃度を高めてこれ
を補う必要があるが、原稿かへり画像の場合は原稿画像
濃度に応じた複写画像濃度が得られれば十分鮮明である
からである。
In the figure, the solid line A indicates the development characteristics required for the edge image, and the broken line B
represents all the Jiil image characteristics required for line images. According to this, in the case of a line image (dashed line B), the solid image (
The rising slope is steeper than in the case of solid line A). The reason for this is that if the original is a helix image density, the clarity of the image will be poor if the original image density is low, so it is necessary to compensate for this by increasing the copy image density. This is because if a copy image density corresponding to the image density is obtained, the image will be sufficiently clear.

ところで、この線画像の複写画t1i濃度を高める為に
、所謂エツジ効果が従来から利用されている。
By the way, in order to increase the density of the copy image t1i of this line image, a so-called edge effect has been used conventionally.

即ち、静電潜像の画仰縁部における電界の強度が画像中
央領域における電界の強度よりも強まる結果画1象縁部
により多量のトナーが付着してエツジ効果が起きる。従
って、画像面積の小さい線画像の場合は、潜像形成域の
大部分が縁部に該当してエツジ効果を受け、複写画*m
度が高値となる。
That is, the strength of the electric field at the edge of the electrostatic latent image is stronger than the strength of the electric field at the center of the image, and as a result, a larger amount of toner adheres to the edge of the image 1, causing an edge effect. Therefore, in the case of a line image with a small image area, most of the latent image forming area corresponds to the edge and is affected by the edge effect, resulting in the copy image*m
degree becomes high.

然るに、このエツジ効果は、現像剤として例えば、1−
す−とキャリアとを含む二成分系のものを使用する場合
には十分な効果が得られるのであるが、キャリアを含ま
ない一成分系1−す−を使用する場合には有効なエツジ
効果が得られないという難点があった。
However, this edge effect is caused by using, for example, 1-
A sufficient effect can be obtained when using a two-component system containing a step and a carrier, but an effective edge effect is obtained when using a one-component system that does not contain a carrier. The problem was that I couldn't get it.

そこで、本願出願人は、−成分系現像剤を用いた場合で
も上述した好適な現像特性を得ることが可能となる独特
な構成の現像剤担持体を具備する川伝装置を提案した(
特願昭55−185726号)。この提案に係る現像剤
担持体は、嬉2図に示される如く、円筒状の導電性支持
体1の外周面に導電性材料からなる半球状の多数の微小
な電極粒子2aをその周方向及び幅方向に一様に点在さ
せて形成した電極層2が形成されて構成されており、こ
れら個々の電極粒子2aは相互に絶縁状態にあり電気的
にフロート状態に保持されている。そして、磁性現録剤
を用いる場合は、支持体1の内部に磁性現像剤の担持力
となる磁力を供給するマグネットロール3がその軸3a
を回転自在に支承され配設されている。この様に構成さ
れた現像剤担持体は、電極層2表面で必要な磁力を得る
為にマグネットロール3が大型化するだけでなく、これ
と支持体内周面間のギャップGの適切な管理が困難であ
り、この為組立作業性が悪化して大幅なコストアップを
招来する。又、所望のエツジ効果を得る為の各電極粒子
2aの電極厚みt2Aの適正な管理が難しいという欠点
も有している。
Therefore, the applicant proposed a Kawaden device equipped with a developer carrier having a unique configuration that makes it possible to obtain the above-mentioned suitable development characteristics even when using a -component type developer (
(Japanese Patent Application No. 185726/1982). As shown in Figure 2, the developer carrier according to this proposal has a large number of hemispherical minute electrode particles 2a made of a conductive material on the outer peripheral surface of a cylindrical conductive support 1 in the circumferential direction and The electrode layer 2 is formed so as to be uniformly scattered in the width direction, and the individual electrode particles 2a are insulated from each other and held in an electrically floating state. When a magnetic developer is used, a magnet roll 3 that supplies magnetic force to support the magnetic developer inside the support 1 has its shaft 3a.
is rotatably supported and arranged. In the developer carrier configured in this way, not only is the magnet roll 3 enlarged in order to obtain the necessary magnetic force on the surface of the electrode layer 2, but also the gap G between this and the inner peripheral surface of the support must be properly managed. This is difficult, and as a result, assembly workability deteriorates, leading to a significant increase in costs. Another drawback is that it is difficult to properly control the electrode thickness t2A of each electrode particle 2a in order to obtain the desired edge effect.

目 的 本発明は、以上の点に鑑みてなされたものであって、軽
量化が促進されると共に製造作業性が向上されてコスト
ダウンに寄与し、且つ所望の機能を長期間に日って安定
して発揮可能な現像剤担持体とその製造方法を提供する
ことを目的とする。
Purpose The present invention has been made in view of the above points, and promotes weight reduction, improves manufacturing workability, contributes to cost reduction, and maintains desired functions for a long period of time. It is an object of the present invention to provide a developer carrier that can stably perform and a method for manufacturing the same.

構成 jズ下、本発明の構成について具体的な実施例に赫づき
詳細に説明する。まず、本発明の1実bIii例どして
の現像剤担持体の構成について、第3図の模式的断面図
に基づきill明する。第3図において、導電体材料の
例えばアルミニウム又はステンレス等からなる導電性支
持体としての円柱状の芯金4が回転軸4aに固着されて
いる。この芯金4の外周面には、例えば塩素化ポリエチ
レン等のエラストマーにフェライト等の磁性材料を混ぜ
た材料を波谷成形した後これに公知の方法で@磁を施し
てなる弾性マグネットM5が形成されている。この場合
、弾性マグネット廟5の周方向に沿って交互にN、S極
を着磁すれば良く、又、磁極の分布密度等の着磁条件は
、本現像剤担持体の回転速度やこの上に積層される層の
層厚と現像されるべき潜像を搬送する潜像担持体の移動
速度等との兼ね合い等を考慮して設定することが望まし
い。この様に弾性マグネット層5の弾性材料としてエラ
ストマー(常温付近で弾性の顕著な高分゛子物質)を用
いることにより、優れた弾性が得られると共に成形加工
性が向上され@造工数の低減に大きく寄与する。特に、
本例で用いた塩素化ポリエチレンは、主鎖に二重結合を
有しないハロゲン系ポリマーであり、耐候性、耐オゾン
性、耐薬品性、耐油性。
Configuration Below, the configuration of the present invention will be described in detail with reference to specific embodiments. First, the structure of a developer carrier as an example of the present invention will be explained based on the schematic cross-sectional view of FIG. In FIG. 3, a cylindrical core metal 4 as a conductive support made of a conductive material such as aluminum or stainless steel is fixed to a rotating shaft 4a. An elastic magnet M5 is formed on the outer circumferential surface of the core bar 4 by forming a material made of a mixture of an elastomer such as chlorinated polyethylene and a magnetic material such as ferrite, and then applying @magnetization to the material by a known method. ing. In this case, the N and S poles may be magnetized alternately along the circumferential direction of the elastic magnet 5, and the magnetization conditions such as the distribution density of the magnetic poles may be determined by the rotation speed of the developer carrier and the above. It is desirable to set this by taking into consideration the balance between the layer thickness of the layer stacked on the layer and the moving speed of the latent image carrier that conveys the latent image to be developed. In this way, by using an elastomer (a polymer material with remarkable elasticity near room temperature) as the elastic material of the elastic magnet layer 5, excellent elasticity can be obtained, and moldability is improved, @reducing manufacturing man-hours. Contribute greatly. especially,
The chlorinated polyethylene used in this example is a halogen-based polymer that does not have double bonds in its main chain, and has weather resistance, ozone resistance, chemical resistance, and oil resistance.

耐熱性及び難燃性等において優れた特性を有しており、
電子写真複写機に用いる部品材料として好適である。尚
、導電性支持体は、円柱状芯金4に限らず、無端ベルト
状に形成しても良い。
It has excellent properties such as heat resistance and flame retardancy.
It is suitable as a component material for use in electrophotographic copying machines. Note that the conductive support is not limited to the cylindrical core metal 4, and may be formed in the shape of an endless belt.

弾性マグネット層5上には、微小N極としての多数の半
球状の導電性粒子6aが、誘電性接酋剤6b中に相互に
電気的絶縁状態(フロート状態)に保持されてなる電極
層6が形成されている。本例の電極層6は、常温硬化型
接着剤としてのアクリルウレタン中に多数の銅粒子が微
小電極としてその一部を表面に露出させると共に互いに
絶縁状態で保持され形成されている。この場合、電極層
6の表面は凹凸なく滑かに仕上げられると共に各導電性
粒子6aは夫々の底面を弾性マグネット15表面に当接
させた状態に揃えて保持されており、従って電極厚みt
6Aと′R極層厚t6は等しい。
On the elastic magnet layer 5 is an electrode layer 6 in which a large number of hemispherical conductive particles 6a serving as minute N poles are held in a mutually electrically insulated state (floating state) in a dielectric coupling agent 6b. is formed. The electrode layer 6 of this example is formed of a large number of copper particles in acrylic urethane as a room temperature curing adhesive, with some of the copper particles exposed on the surface as microelectrodes, and held in an insulated state from each other. In this case, the surface of the electrode layer 6 is finished smoothly without any unevenness, and each conductive particle 6a is held aligned with its bottom surface in contact with the surface of the elastic magnet 15, so that the electrode thickness t
6A and 'R pole layer thickness t6 are equal.

而して、電極層厚t6は、例えば使用する粒子6aの粒
径が例えば74乃至104μの場合には52乃至62j
mの許容範囲内に収めることが要求される。その理由は
次の通りである。
Therefore, the electrode layer thickness t6 is, for example, 52 to 62j when the particle size of the particles 6a used is 74 to 104μ.
m is required to be within the permissible range. The reason is as follows.

第4図は、粒子6aの電極厚みt6Aとその表面に露出
した面積の全表面積に対する割合(面積率ARと表わす
)との関係を示したグラフ図である。M4図において、
曲線α2曲線β及び曲線γは、夫々、粒径が104メl
の最大粒子、平均的な粒径の粒子及び粒径が74. p
−の最小粒子における各関係を示している。これによれ
ば、所望のエツジ効果が発揮されM1図に示す如き好適
な現像特性を得る為に必要とされる45%以上の面積率
ARを確保する為には、最小粒子(曲線γ)で面(^率
ARが45%以上となる様に電極厚みt6Aの最大値を
62p−に設定すれば良い。又、粒子の脱隨を防止すべ
くアンカー効果を維持する為には、最大粒子(曲線α)
の半分である52μm以上のLNi厚みt6Aを確保す
る必要がある。従って電極厚みt6Aの許容範囲は52
乃至62p−となる。ところで、本発明の現像剤担持体
においては、前述した如く電極厚み[6Aと電4iIi
層厚t6とは等しいから、結局電極層厚t6が上記許容
範囲内に収まるべく工程管理すれば良い。
FIG. 4 is a graph showing the relationship between the electrode thickness t6A of the particle 6a and the ratio of the area exposed on the surface to the total surface area (expressed as area ratio AR). In figure M4,
Curve α2 curve β and curve γ each have a particle size of 104 mel.
The largest particle, average particle size, and particle size are 74. p
- shows each relationship for the smallest particle. According to this, in order to ensure an area ratio AR of 45% or more, which is necessary to exhibit the desired edge effect and obtain suitable development characteristics as shown in the M1 diagram, the minimum particle size (curve γ) is required. The maximum value of the electrode thickness t6A should be set to 62p- so that the ratio AR is 45% or more.Also, in order to maintain the anchor effect to prevent the particles from dropping, the maximum particle ( curve α)
It is necessary to ensure the LNi thickness t6A of 52 μm or more, which is half of the above. Therefore, the allowable range of electrode thickness t6A is 52
62p-. By the way, in the developer carrier of the present invention, as mentioned above, the electrode thickness [6A and 4iIi
Since the layer thickness t6 is equal, the process may be controlled so that the electrode layer thickness t6 falls within the above-mentioned allowable range.

上述の如く構成された現像剤1B持体においては、磁界
発生手段を同一支持体に一体的に71!2着形成するこ
とにより、前述したギャップ管理の手間が省かれ組立作
梨性が向上する。又、マグネットの媒体材料としてエラ
ストマーを用いることにより、そのSUa化が大幅に促
進される。
In the developer 1B holder configured as described above, by integrally forming the magnetic field generating means in 71!2 parts on the same support, the above-mentioned gap management effort is eliminated and ease of assembly is improved. . Further, by using an elastomer as the medium material of the magnet, its conversion to SUa is greatly promoted.

尚、弾性マグネット層5の工λ電率が高い場合は、第5
図に示す如く、別途M電体材料からなる銹電)、ij、
 7を弾性マグネット層5と電極層6との間に形成すれ
ば良い。この場合、その層厚t7は電極層6表面におけ
る磁力の低下を考慮して設定する必要がある。
Incidentally, when the electrical modulus of the elastic magnet layer 5 is high, the fifth
As shown in the figure, M electric conductor material is separately made of M electric material), ij,
7 may be formed between the elastic magnet layer 5 and the electrode layer 6. In this case, the layer thickness t7 needs to be set in consideration of the decrease in magnetic force on the surface of the electrode layer 6.

次に、上述の如く構成された規縁剤相持体を適正に電極
層厚を管理して製造可能な製造方法の1実施について説
明する。先ず、第6図に示す如き回転軸4aを備えた#
I誘電性材料らなるマグネットロールの芯金4を形成す
る。
Next, one implementation of a manufacturing method capable of manufacturing the edge defining agent carrier constructed as described above while appropriately controlling the electrode layer thickness will be described. First, # equipped with a rotating shaft 4a as shown in FIG.
A core bar 4 of a magnet roll made of I dielectric material is formed.

芯金4を形成したら、その外周面を清浄した後弾性マグ
ネット層を被着形成する。本工程の好適な1実施例を、
第7(a)図乃至第7(C)図に示しである。これによ
れば、まず、第7(a)図に示される如く、索練りを終
えた例えば塩素化ポリエチレン等のエラストマーにフェ
ライト等の磁性材料とともに目的に応じて加硫剤等の種
々の配合剤を加え、2本日−ル慣8等で混線すする。そ
して、混練りされ均一な組成となった複合弾性材5′を
シート状に形成して、第7〈b)図に示す如く芯金4の
局面に巻着する。次いで、加圧プレスの金型9における
キャピテイ9a中に芯金4に複合弾性材シート5′を巻
着した加工物(以下ワークWと称する)を収容し、圧力
をかけながら加熱し加硫する。これにより、第8〈b)
図に示づ如く、層厚t5−が略均−な複合弾性麓5′が
芯金4の周面に被着形成される。この後、通常の方法で
着磁を施せば、第8(a)図の如く、例えば周方向に沿
って交互にN、S極が設けられた弾性マグネット層5′
が形成される。
After the core metal 4 is formed, its outer circumferential surface is cleaned and then an elastic magnet layer is deposited thereon. A preferred embodiment of this process is
This is shown in FIGS. 7(a) to 7(C). According to this method, as shown in FIG. 7(a), first, a magnetic material such as ferrite is added to an elastomer such as chlorinated polyethylene which has been kneaded, and various compounding agents such as a vulcanizing agent are added depending on the purpose. , and crosstalk with 2nd day - 8th grade. Then, the composite elastic material 5', which has been kneaded and has a uniform composition, is formed into a sheet shape and wound around the curved surface of the core bar 4 as shown in FIG. 7(b). Next, a workpiece (hereinafter referred to as work W) in which a composite elastic material sheet 5' is wrapped around a core metal 4 is placed in a cavity 9a of a mold 9 of a pressure press, and heated and vulcanized while applying pressure. . As a result, Part 8 (b)
As shown in the figure, a composite elastic base 5' having a substantially uniform layer thickness t5 is formed on the circumferential surface of the core metal 4. After that, if magnetization is performed in the usual manner, an elastic magnet layer 5' in which, for example, N and S poles are provided alternately along the circumferential direction, as shown in FIG. 8(a).
is formed.

被着形成され、た弾性マグネッ1〜層5−の表面には、
通常多数の凹凸が形成されており、このままでは電極厚
みの管理の面で不都合となる。従って、円筒研削盤等に
より第1表面加工を施し、表面を滑かにすると共に層J
ji7.t s −を所望の例えば5〜3mmに整える
。本例においては、第9図に示づ゛如く、円筒研削加工
によりワークWの中心をHt4=とした第1外形加工を
施す。この場合、芯金4の回転軸4aを円筒研削盤の支
持具1Oで把持して研削加工を施すことにより、偏心づ
“ることなく正確に層厚t5が均一な弾性マグネッ1〜
層5が形成される。
On the surfaces of the elastic magnets 1 to 5- layered,
Usually, a large number of irregularities are formed, and if left as is, it will be inconvenient in terms of electrode thickness management. Therefore, first surface processing is performed using a cylindrical grinder or the like to make the surface smooth and to make the layer J.
ji7. Adjust ts- to a desired value, for example, 5 to 3 mm. In this example, as shown in FIG. 9, the first external shape processing is performed by cylindrical grinding with the center of the workpiece W set at Ht4=. In this case, by gripping the rotating shaft 4a of the core metal 4 with the support 1O of the cylindrical grinder and performing the grinding process, the elastic magnets 1 to 1 with a uniform layer thickness t5 can be produced without eccentricity.
Layer 5 is formed.

弾性マグネット層5を形成した後は、弾性マグネッl一
層5表面を清浄し、次いで、第10図に示ず如く、例え
ば圧送式エアスプレ11によって、弾性マグネット層5
の表面に誘電性で例えば常温硬化型のアクリルウレタン
等の第1接着剤6bを−保に吹き付は塗布する。これに
より、第11図に示ず如き第1接着剤MM 6 bが被
着されるが、その膜厚t6Bは、次順の工程(第12図
参照)で散布される粒径が例えば74乃至1104uの
導電性粒子6aが弾性マグネット層5表面に沿って当接
した状態で保持され易い3乃至15μm程度が好適であ
る。この場合、芯金4の回転軸4aを水平且つ回転自在
に支持し、適切な速度でワークWを回転させつつこれに
治ってエアスプレ11を所定の速度で往復移動させ上述
の接着剤の吹きつけを反復して行なえば、均一な膜厚の
第1接着剤膜6bを容易に被着することができる。
After forming the elastic magnet layer 5, the surface of the elastic magnet layer 5 is cleaned, and then, as shown in FIG.
A dielectric first adhesive 6b such as room temperature curing type acrylic urethane is applied to the surface of the substrate by spraying. As a result, the first adhesive MM 6 b as shown in FIG. 11 is deposited, and its film thickness t6B is such that the particle size to be sprayed in the next step (see FIG. 12) is, for example, 74 to 74. A suitable thickness is about 3 to 15 μm so that the conductive particles 6a of 1104u can be easily held in contact with the surface of the elastic magnet layer 5. In this case, the rotating shaft 4a of the core metal 4 is horizontally and rotatably supported, and the work W is rotated at an appropriate speed while the air spray 11 is reciprocated at a predetermined speed to spray the adhesive as described above. By repeating this process, it is possible to easily deposit the first adhesive film 6b with a uniform thickness.

第1接着剤膜6bを被着したら、これが硬化する前に多
数の導電性粒子を弾性マグネッ]・層5表面に略均−に
付着させる。この付着方法としては、例えば、第12図
に示す如く、散布口12aを備えたトレイ12内に導電
性粒子6aとして粒径が74乃至104μmの銅粒子を
多回に収容しておき、水平に支持され回転されるワーク
Wに治って1−レイ12を適正な速度で往復移動させつ
つ適度に傾け、散布口12aから粒子26aを生石ずつ
落下させて第1接着剤膜6b上に均一に振りHトければ
良い。この場合、ここで使用される各導電性粒子6aに
、予め例えばスチレンブチルアクリレ−1〜やメチルメ
タアクリレート(M M A )等の誘電性材料を被覆
しておけば、自然落下性により無作為に粒子6aを散布
しても個々の粒子6aをより確実に周囲に対して電気的
18縁状憇(フロート状態)で第1接着剤躾6b中に保
持することができる。
After the first adhesive film 6b is applied, a large number of conductive particles are deposited approximately evenly on the surface of the elastic magnet layer 5 before it is cured. As shown in FIG. 12, for example, as shown in FIG. 12, copper particles having a particle size of 74 to 104 μm are stored as conductive particles 6a many times in a tray 12 equipped with a dispersion port 12a, and then placed horizontally. The 1-ray 12 is moved back and forth at an appropriate speed while being tilted appropriately while being supported by the rotating workpiece W, and the particles 26a are dropped one by one from the spraying port 12a and uniformly sprinkled onto the first adhesive film 6b. It's fine as long as it's H. In this case, if each conductive particle 6a used here is coated with a dielectric material such as styrene butyl acrylate-1 or methyl methacrylate (MMA) in advance, it will be free from gravity due to its natural falling properties. Even if the particles 6a are scattered randomly, the individual particles 6a can be more reliably held in the first adhesive layer 6b in an electrically fringed state (floating state) with respect to the surroundings.

ところで、第1接着剤膜6b上に振り掛けられた各粒子
6aは、第1接着剤膜6bの膜厚が3乃至15犀と薄い
為に自然に弾性マグネット層5表面に沈下する。従って
、第13図に示す如く、個々の粒子6aを自然落下させ
るだけでその底面を弾イタマグネット層5表面に容易且
つ確実に揃えることができる。尚1本例では、導電性粒
子6aとして銅粒子を用いたが、これに限らず他の導電
性の例えば黄銅やリン青銅若しくはステンレス等の粒子
も適用できる。但し、この場合も、それら粒子が浮遊せ
ず確実に誘電層2表面上に沈下する様に、粒子の大きさ
や比重等に応じ適正に第1接着剤膜6bの膜厚を設定す
る必要がある。又、上述の如くワークWを水平に支持す
る代りに、第14図に示される如くワークWを適度に傾
斜させた状態で支持して回転させ、これに対して粒子6
aを同様に自然落下により均一に散布しても良い。これ
により、粒子6aの付着密度を更に向上させることが可
能となる。
By the way, each particle 6a sprinkled on the first adhesive film 6b naturally sinks to the surface of the elastic magnet layer 5 because the thickness of the first adhesive film 6b is as thin as 3 to 15 cm. Therefore, as shown in FIG. 13, the bottom surface of each particle 6a can be easily and reliably aligned with the surface of the repellent magnet layer 5 simply by allowing the individual particles 6a to fall naturally. In this example, copper particles are used as the conductive particles 6a, but the present invention is not limited to this, and particles of other conductive materials such as brass, phosphor bronze, or stainless steel can also be used. However, in this case as well, it is necessary to appropriately set the thickness of the first adhesive film 6b according to the size and specific gravity of the particles so that the particles do not float and settle onto the surface of the dielectric layer 2. . Also, instead of supporting the workpiece W horizontally as described above, the workpiece W is supported and rotated in a moderately inclined state as shown in FIG.
Similarly, a may be uniformly dispersed by gravity. This makes it possible to further improve the adhesion density of the particles 6a.

次に、第1接着剤6bを略完全に乾燥させる。Next, the first adhesive 6b is dried almost completely.

この場合、効率良く乾燥させるには、ワークWを水平に
支持して回転させつつ、遠赤外線ヒータで外部から照射
するか、又は熱風を吹き付ける方法、或いは電気炉内に
収容する方法等により加熱すれば良い。尚、本工程にお
いては必ずしも加熱する必要はなく、例えば速乾性の接
着剤を使用する場合は、送風するか若しくは適長時間放
置するだけでも良い。
In this case, in order to efficiently dry the workpiece W, it is necessary to support it horizontally and rotate it while heating it by irradiating it from the outside with a far-infrared heater, by blowing hot air, or by placing it in an electric furnace. Good. Note that heating is not necessarily required in this step; for example, if a quick-drying adhesive is used, it may be sufficient to blow air or leave it for an appropriate period of time.

第1接着剤I’ll 6 bを略完全に乾燥硬化させた
後は、第15図に示す如く再度誘電性の第2接曾剤6b
−を前回と同様な方法で導電性粒子6a及び第1接着剤
膜6b上に厚塗り(オーバーコート)する。この場合、
前回と同一物質の接着剤を用いれば、両者が確実に接着
し合って粒子6aをゴムマグネット層5表面に当接させ
た状態でより強固に固定でき耐久性の面等で有利である
。然るに、互いに接着し合い粒子6aを確実に固定でき
るならば、互いに異なる物質の誘電性接u剤の組合せも
十分可能である。この様に接着剤を乾燥工程を挾んで二
度に分けて被肴することにより、先に被着した第1接着
剤膜6bを再溶解させず、従って、各粒子6aを浮遊さ
せずに確実に弾性マグネット層5表面に沈下させた状態
で強固に固定でき、前述した如く各粒子の電極厚みの管
理を管IIが容易な電極層厚で代用可能となる。
After the first adhesive I'll 6b has almost completely dried and hardened, the dielectric second adhesive 6b is applied again as shown in FIG.
- is thickly coated (overcoated) on the conductive particles 6a and the first adhesive film 6b in the same manner as the previous time. in this case,
If the same adhesive material as the previous one is used, the two will surely adhere to each other and the particles 6a can be more firmly fixed in contact with the surface of the rubber magnet layer 5, which is advantageous in terms of durability. However, as long as the particles 6a can be reliably fixed by adhering to each other, a combination of dielectric adhesives made of different materials is also possible. By applying the adhesive in two parts with a drying process in between in this way, the first adhesive film 6b deposited earlier is not redissolved, and therefore each particle 6a is reliably treated without being suspended. The particles can be firmly fixed in a depressed state on the surface of the elastic magnet layer 5, and as described above, the electrode thickness of each particle can be controlled by replacing the tube II with an easy electrode layer thickness.

接着剤の厚塗りが終了したら、これを乾燥硬化させる。Once the adhesive has been applied thickly, let it dry and harden.

この場合も、前回の第1接着剤乾燥工程と同様にワーク
Wを回転させつつ水平に支持して乾燥させれば良い。こ
れにより、第16図に示される如く、厚塗りした第2接
着剤6b−が垂れることなく、弾性マグネット層5上に
積層される第1接着剤膜6b 、l電性粒子6a及び第
2接着剤61)′を合せた電極層6′(粒子6aの一部
が表面に露出される前の状態)の層厚t6−が均一とな
る。この様にして、例えば層厚【6−が150μm程度
の電I4i層6′を形成する。
In this case, as in the previous first adhesive drying process, the work W may be dried while being rotated and supported horizontally. As a result, as shown in FIG. 16, the first adhesive film 6b, the electrically conductive particles 6a, and the second adhesive layer 5 are laminated on the elastic magnet layer 5 without the thickly applied second adhesive layer 6b dripping. The layer thickness t6- of the electrode layer 6' (before part of the particles 6a is exposed on the surface) including the agent 61)' becomes uniform. In this way, an electric I4i layer 6' having a layer thickness of about 150 μm, for example, is formed.

電極層6′を形成した後は、第17図に示す如く、N極
層6′表面に第2表面加工を施し、その表面を円滑化す
ると共に各導電性粒子6aの一部を表面に露出させて電
極層6′を電極層6に仕上げる。ここで、電極層6の層
厚t6を52乃至62μmの許容範囲内に収めることが
要求されるが、本例では芯金4の回転軸4aを加工軸と
することにより常に加工軸は一定となるため、層厚t6
を上記許容範囲内に容易に収めることができる。即ち、
本第2表面加工を旋盤や円筒研削盤等で実施する場合、
図示される如く弾性マグネット層5′に対する第1表面
加工時(第9図参照)に加工軸とした回転軸4aを同様
に本工程においてもチャック等の支持具1O−で把持す
ることにより両工程における加工軸が一致し、従って層
厚t6が高精度で均一化される。尚、本例では、第2接
着剤6b−の厚塗り後の乾燥工程で硬化前の第2接着剤
6b′の垂れ下がりを前述した方法により防止して仕上
前の電極層厚ts−が略均−となる様に工程管理してい
るので、加工軸を整合させる必要のない外周面基準によ
る超仕上加工法や心なし研削加工法によっても所望の電
極層6を得ることができる。又、ワークWが円筒状では
なく無端ベルト状を成す場合は、ワークWを適数個のロ
ーラ間に張架して回動させこれに円筒研削と同様に回転
する砥石を押し当てて表面を研削加工すれば良い。
After forming the electrode layer 6', as shown in FIG. 17, a second surface treatment is applied to the surface of the N-pole layer 6' to smooth the surface and expose a portion of each conductive particle 6a on the surface. In this way, the electrode layer 6' is finished into the electrode layer 6. Here, it is required that the layer thickness t6 of the electrode layer 6 is within the allowable range of 52 to 62 μm, but in this example, the machining axis is always constant by using the rotation axis 4a of the core metal 4 as the machining axis. Therefore, the layer thickness t6
can be easily kept within the above tolerance range. That is,
When carrying out this second surface processing with a lathe, cylindrical grinder, etc.,
As shown in the figure, the rotary shaft 4a, which was used as the processing axis during the first surface processing of the elastic magnet layer 5' (see FIG. 9), is similarly gripped by a support 1O- such as a chuck in this step, so that both steps can be carried out. The machining axes in the two lines coincide with each other, so that the layer thickness t6 is made uniform with high accuracy. In this example, in the drying process after thick coating of the second adhesive 6b-, the hanging of the second adhesive 6b' before hardening is prevented by the method described above, so that the electrode layer thickness ts- before finishing is approximately uniform. Since the process is controlled so that -, the desired electrode layer 6 can be obtained even by a superfinishing method based on the outer peripheral surface or a centerless grinding method, which does not require aligning the machining axes. In addition, when the workpiece W is not cylindrical but has an endless belt shape, the workpiece W is stretched between an appropriate number of rollers and rotated, and the surface is polished by pressing a rotating grindstone against it in the same way as in cylindrical grinding. All you have to do is grind it.

以上の如くして電極層6′の全周面に亘って第2表面加
工を実流し、第3図に示される如く、層厚t6が52乃
至62μmの許容範囲内に収められた電極層6を形成す
る。この後は、切削油等の汚れを洗浄すれば、最終的な
製品としての現像剤担持体12が完成する。
As described above, the second surface treatment is actually carried out over the entire circumferential surface of the electrode layer 6', and as shown in FIG. form. After this, if stains such as cutting oil are washed away, the developer carrier 12 as a final product is completed.

尚、上記実施例においては複合弾性層に着磁を論ず工程
を複合弾性層5−形成後に実施したが、この着磁工程は
、他の例えば、複合弾性層5−に第1表面加工を施した
後や第2接着剤6b−乾燥後、或いは、電極層6′に第
2表面加工を施した後等に実施しても良い。但し、着磁
後の塵の付着及び@磁時の取り扱いによる外周面のキズ
の発生等を考慮すれば、第2接着剤6b−乾燥後に着磁
することが望ましい。又、接着剤の被着工程を2工程に
分割したが、これは必要に応じて1工程又は3工程以上
に分割しても良い。
In the above embodiments, the process was carried out after forming the composite elastic layer 5- without discussing magnetization of the composite elastic layer, but this magnetization process was carried out in other cases, for example, when the composite elastic layer 5- was subjected to the first surface treatment. It may be carried out after the second adhesive 6b has been dried, or after the electrode layer 6' has been subjected to the second surface treatment. However, considering the adhesion of dust after magnetization and the occurrence of scratches on the outer peripheral surface due to handling during magnetization, it is desirable to magnetize the second adhesive 6b after drying. Further, although the adhesive application step is divided into two steps, it may be divided into one step or three or more steps as necessary.

次に、第5図に示した誘電層7を介在させた現像剤担持
体の製造方法の1実施例について説明する。この場合は
、上述の実施例において誘N層7の形成工程が弾性マグ
ネット層5(或いは未着磁の複合弾1!IM5)に第1
表面加工を茄す工程の後に挿入されるだけであり、この
点を除いて他は上述の実施例と同様に構成されている。
Next, one embodiment of a method for manufacturing a developer carrier having a dielectric layer 7 interposed therebetween shown in FIG. 5 will be described. In this case, in the above-described embodiment, the formation process of the N-induced layer 7 may be performed by applying the first
It is simply inserted after the surface finishing step, and except for this point, the structure is the same as that of the above-described embodiment.

誘N層7を形成するには、まず、第18図に示される如
く、例えば弾性マグネット層5が被着されたワークWを
回転させつつ水平に支持すると共に遠赤外線ヒータ13
等によりこれを加熱する。そして、このワークWに静電
塗装法により、例えばエポキシ樹脂等の熱硬化性誘電体
パウダ7′を塗装ガン14で塗布する。この場合、ワー
クWの加熱温度は、M電体パウダ7′の溶融湿度、即ち
本例ではエポキシ樹脂の溶融温度の180℃近傍に設定
ずれば良い。又、塗装ガン14をワークWに平行に等速
度で往復移動させつつ繰返し塗装すれば、第19図に示
される如く、容易に均一な塗膜7−が得られる。塗装終
了後は、加熱したままワークWの回転を適長時間継続し
、誘電体塗膜7′を硬化させる。
To form the N-induced layer 7, first, as shown in FIG.
This is then heated. Then, a thermosetting dielectric powder 7' such as epoxy resin is applied to the workpiece W using a coating gun 14 using an electrostatic coating method. In this case, the heating temperature of the workpiece W may be set to around 180° C. of the melting humidity of the M electric powder 7', that is, the melting temperature of the epoxy resin in this example. Furthermore, by repeatedly painting while moving the coating gun 14 back and forth parallel to the workpiece W at a constant speed, a uniform coating film 7- can be easily obtained as shown in FIG. After the coating is completed, the workpiece W is continued to be rotated for a suitable period of time while being heated to harden the dielectric coating film 7'.

この様に硬化させることにより、誘電体塗11a7−の
膜厚t7−が長手軸方向だけでなく周方向に於いても絡
り−となる。誘電体塗膜7−を形成した後は、弾性マグ
ネット層5に対する第1表面加工時と同様に、回転軸4
aを支持してワークWを回転させつつ旋盤又は円筒研削
盤等により表面加工を施せば、第5図に示される如く、
層厚【7が均一な誘電層7が形成される。この後は、上
述の実施例と同様に適正にN極層厚を管理しつつ電極層
6を形成すれば、@1的な製品としての現像剤担持体1
5が得られる。尚、本実施例において、弾性マグネット
層5に対する第1表面加工は省略することも可能である
By curing in this manner, the film thickness t7- of the dielectric coating 11a7- becomes entangled not only in the longitudinal direction but also in the circumferential direction. After forming the dielectric coating film 7-, the rotating shaft 4
If surface processing is performed using a lathe, cylindrical grinder, etc. while supporting the workpiece W while supporting the workpiece W, as shown in FIG.
A dielectric layer 7 having a uniform layer thickness [7] is formed. After this, if the electrode layer 6 is formed while appropriately controlling the thickness of the N-pole layer as in the above-mentioned embodiment, the developer carrier 1 as an @1 product can be formed.
5 is obtained. Incidentally, in this embodiment, it is also possible to omit the first surface treatment on the elastic magnet layer 5.

JL 1ズ上詳述した如く、本発明によれば、導電性支持体に
一体的にエラストマーを媒体とする弾性マグネット層を
形成すると共に電極厚みと電極層厚が等しくなる様に電
極層を形成することにより、磁力調整の手間が省かれる
と共に電極厚みを電極層厚で代用して容易且つ確実に管
理することができる。従って、十分な磁力を確保して軽
量化が促進され且つ所望のエツジ効果を奏する高品質の
現像剤担持体を効率良く容易に低コストでII造可能と
なる。又、エラストマーを弾性材料として用いることに
より、弾性マグネット層の成形加工性が向上しコストダ
ウンが一層促進されると共に、耐オゾン性、耐薬品性及
び耐熱性等が向上し現像剤担持体の耐久性が大幅に上昇
する。尚、本発明は上記の特定の実施例に限定されるべ
ぎものではなく、本発明の技術的範囲において種々の変
形が可能であることは勿論である。例えば、接着剤を被
着させる場合に、他の浸漬成形法(ディップ成形法)等
によることも可能である。又、誘電層7を形成する場合
、その材料として、前回1!!性のポリイミド、ABS
樹脂等も使用でき、更に、これはM1接着剤6bと同−
若しくは同種類の誘電性物質でも良い。
As detailed above in JL 1, according to the present invention, an elastic magnet layer using an elastomer as a medium is integrally formed on a conductive support, and an electrode layer is formed so that the electrode thickness and the electrode layer thickness are equal. By doing so, the effort of adjusting the magnetic force can be saved, and the electrode thickness can be easily and reliably managed by substituting the electrode layer thickness. Therefore, it is possible to efficiently and easily manufacture a high-quality developer carrier that has a sufficient magnetic force, promotes weight reduction, and exhibits a desired edge effect at a low cost. In addition, by using an elastomer as an elastic material, the moldability of the elastic magnet layer is improved, further promoting cost reduction, and ozone resistance, chemical resistance, heat resistance, etc. are improved, and the durability of the developer carrier is improved. sex increases significantly. It should be noted that the present invention is not limited to the specific embodiments described above, and it goes without saying that various modifications can be made within the technical scope of the present invention. For example, when applying an adhesive, it is also possible to use other immersion molding methods (dip molding method) or the like. In addition, when forming the dielectric layer 7, the material used is 1! ! Polyimide, ABS
Resin etc. can also be used, and this is the same as M1 adhesive 6b.
Alternatively, the same type of dielectric substance may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は好適な現像特性を示したグラフ図、第2図は従
来の現像剤担持体を示した模式的断面図、第3図は本発
明の1実施例としての現像剤担持体12を示した模式的
断面図、第4図は電極厚みとその面積率との関係を示し
たグラフ図、第5図は本発明の他の実施例としての現像
剤担持体15を示した模式的断面図、第6図は本発明方
法の1実施例における芯金4を示した斜視図、第7(a
)図乃至M7 ((f )図は夫々同じく複合弾性層5
′の形成工程を示した各説明図、第8(a)図、第8(
b)図は夫々同じく弾性マグネット層5′を示した模式
的側面図と模式的正断面図、第9図は同じく第1表面加
工工程を示した模式的断面図、第10図、第11図は夫
々同じく第1接着剤被着工程とその形成量を示した各模
式的断面図、第12図、第13図は夫々同じく導電性粒
子の付着工程とその形成量を示した各模式的断面図、第
14図は同じく粒子付着工程の変形実施例を示した模式
的断面図、&T15図、第16図は夫々同じく第2接着
剤被着工程とその形成量を示した各模式的断面図、第1
7図は同じく第2表面加工工程を示した模式的断面図、
第18図、第19図は夫々他の本発明方法の1実施例に
おける誘電層形成工程とその形成量を示した各模式的断
面図である。 (符号の説明) 2.6: 電1!1l1 4: 芯金 5′: 複合弾性層。 弾性マグネット層(表面加工前) 5: 複合弾性層。 弾性マグネット層(表面加工後) 7: 誘電層 特許出願人 株式会社 リ コ 一 代 理 人 小 (n 正 開 鎖1図 第2図 第31−4 第41,1 電極厚み=士satμm1 第5u 第6 図 一\ 第11図 6b 第12図 61″I 第13図 第14図 第16図 第17図 第18図 3 第19図
FIG. 1 is a graph showing suitable development characteristics, FIG. 2 is a schematic cross-sectional view showing a conventional developer carrier, and FIG. 3 is a diagram showing a developer carrier 12 as an embodiment of the present invention. 4 is a graph showing the relationship between electrode thickness and its area ratio, and FIG. 5 is a schematic sectional view showing a developer carrier 15 as another embodiment of the present invention. Figure 6 is a perspective view showing the core metal 4 in one embodiment of the method of the present invention, and Figure 7 (a
) Figures to M7 ((f) Figures are the same composite elastic layer 5.
8(a), 8(a), 8(a) and 8(a).
b) The figures are a schematic side view and a schematic front sectional view respectively showing the elastic magnet layer 5', FIG. 9 is a schematic sectional view similarly showing the first surface processing step, FIGS. 10 and 11. 12 and 13 are schematic cross-sectional views showing the first adhesive adhesion step and the amount formed, respectively, and FIGS. 12 and 13 are schematic cross-sectional views showing the conductive particle adhesion step and the amount formed, respectively. Figures 14 and 14 are schematic cross-sectional views showing a modified example of the particle adhesion process, and Figures 15 and 16 are schematic cross-sectional views showing the second adhesive adhesion process and its formation amount, respectively. , 1st
Figure 7 is a schematic cross-sectional view showing the second surface processing step,
FIGS. 18 and 19 are schematic cross-sectional views showing the dielectric layer forming step and the amount of the dielectric layer formed in another embodiment of the method of the present invention. (Explanation of symbols) 2.6: Electron 1!1l1 4: Core bar 5': Composite elastic layer. Elastic magnet layer (before surface treatment) 5: Composite elastic layer. Elastic magnet layer (after surface processing) 7: Dielectric layer Patent applicant Riko Co., Ltd. Kazuyo Masato Small (n positive Open chain 1 Figure 2 Figure 2 31-4 41,1 Electrode thickness = 2 satμm1 5u Figure 6 Figure 11 Figure 6b Figure 12 61''I Figure 13 Figure 14 Figure 16 Figure 17 Figure 18 Figure 3 Figure 19

Claims (1)

【特許請求の範囲】 1、M4電性支持体上に、エラストマーと磁性材料との
複合体に着磁を施してなる弾性マグネット層と、微小電
極としての多数の導電性粒子が夫々相互に電気的絶縁状
態に保持されてなる電極層とが積層され構成されている
ことを特徴とする現像剤担持体。 2、上記第1項において、前記エラストマーは主鎖に二
重結合をもたないハロゲン系ポリマーであることを特徴
とする現像剤担持体。 3、上記第2項において、前記ハロゲン系ポリマーは塩
素化ポリエチレンであることを特徴とする現像剤担持体
。 4、導電性材料からなる支持体を形成する工程と、前記
支持体上にエラストマーと磁性材料からなる複合弾性層
を被着する工程と、前記複合弾性層に表面加工を施す工
程と、前記複合弾性層に着磁を施す工程と、前記複合弾
性層の表面に誘電性接着剤を被着すると共に前記複合弾
性層上に微小電極としての多数のw4雷性粒子を付着さ
せN極層を形成する工程と、前記電極層に表面加工を施
し前記各導電性粒子の一部を表面に露出させる工程とを
有することを特徴とする現像剤担持体の製造方法。 5、上記第4項において、前記エラストマーは主鎖に二
重結合をもたないハロゲン系ポリマーであることを特徴
とする現像剤担持体の製造方法。 6、上記第5項において、前記ハロゲン系ポリマーは塩
素化ポリエチレンであることを特徴とする現像剤担持体
の製造方法。 1、上記第4項において、前記導N性粒子は1−i着さ
せる前に予め表面に誘電体膜が被覆されていることを特
徴とする現像剤担持体の製造方法。 8、上記笛4項において、前記電極層を形成する工程は
、前記複合弾性層表面に誘電性の第1接着剤を被着する
工程と、前記第1接着剤が被着された前記複合弾性層上
に前記導電性粒子を付着させる工程と、前記第1接着剤
を乾燥する工程と、前記第1接着剤及び前記導電性粒子
上に誘電性の第2接着剤をオーバーコートする工程とか
らなることを特徴とする現像剤担持体の製造方法。 9、導電性材料からなる支持体を形成する工程と、前記
支持体上にエラストマーと磁性材料からなる複合弾性層
を被着する工程と、前記複合弾性層に着磁を施す工程と
、前記複合弾性層の表面に誘電体からなる誘電層を形成
する工程と、前記誘電層に表面加工を施す工程と、前記
誘電層表面に4電性接着剤を被着すると共に前記誘電層
上に微小電極としての多数の導電性粒子を付着させ電極
層を形成する工程と、前記電極層に表面加工を施し前記
各導電性粒子の一部を表面に露出させる工程とを有する
ことを特徴とする現像剤担持体の製造方法。 10、上記第9項において、前記エラストマーは主鎖に
二重結合をもたないハロゲン系ポリマーであることを特
徴とする現像剤担持体の製造方法。 11、上記第10項において、前記ハロゲン系ポリマー
は塩素化ポリエチレンであることを特徴とする現像剤担
持体の製造方法。
[Claims] 1. An elastic magnet layer formed by magnetizing a composite of an elastomer and a magnetic material and a large number of conductive particles as microelectrodes are arranged on an M4 conductive support to mutually generate electricity. 1. A developer carrier comprising a layered electrode layer which is maintained in a physically insulated state. 2. The developer carrier according to item 1 above, wherein the elastomer is a halogen-based polymer having no double bond in its main chain. 3. The developer carrier according to item 2 above, wherein the halogen-based polymer is chlorinated polyethylene. 4. forming a support made of a conductive material; depositing a composite elastic layer made of an elastomer and a magnetic material on the support; surface-treating the composite elastic layer; A step of magnetizing the elastic layer, applying a dielectric adhesive to the surface of the composite elastic layer, and attaching a large number of W4 lightning particles as microelectrodes on the composite elastic layer to form an N-pole layer. and a step of subjecting the electrode layer to a surface treatment to expose a portion of each of the conductive particles on the surface. 5. The method for producing a developer carrier according to item 4 above, wherein the elastomer is a halogen-based polymer having no double bond in its main chain. 6. The method for producing a developer carrier according to item 5 above, wherein the halogen-based polymer is chlorinated polyethylene. 1. The method for manufacturing a developer carrier according to item 4 above, characterized in that the surface of the N-conducting particles is coated with a dielectric film in advance before being deposited in 1-i. 8. In the above whistle item 4, the step of forming the electrode layer includes the step of applying a dielectric first adhesive to the surface of the composite elastic layer, and the step of applying a dielectric first adhesive to the surface of the composite elastic layer, and depositing the conductive particles on the layer; drying the first adhesive; and overcoating the first adhesive and the conductive particles with a second dielectric adhesive. A method for manufacturing a developer carrier, characterized in that: 9. forming a support made of a conductive material; depositing a composite elastic layer made of an elastomer and a magnetic material on the support; magnetizing the composite elastic layer; A step of forming a dielectric layer made of a dielectric material on the surface of the elastic layer, a step of surface-processing the dielectric layer, and applying a 4-electrical adhesive to the surface of the dielectric layer and forming a microelectrode on the dielectric layer. A developer characterized by comprising the steps of: adhering a large number of conductive particles to form an electrode layer; and applying a surface treatment to the electrode layer to expose a portion of each conductive particle to the surface. Method for manufacturing a carrier. 10. The method for producing a developer carrier according to item 9 above, wherein the elastomer is a halogen-based polymer having no double bond in its main chain. 11. The method for producing a developer carrier according to item 10 above, wherein the halogen-based polymer is chlorinated polyethylene.
JP24434183A 1983-09-28 1983-12-26 Developer carrying body and its manufacture Pending JPS60136775A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24434183A JPS60136775A (en) 1983-12-26 1983-12-26 Developer carrying body and its manufacture
US06/654,257 US4707382A (en) 1983-09-28 1984-09-25 Developer carrier and a method for manufacturing the same
GB08424272A GB2150045B (en) 1983-09-28 1984-09-26 Developer carrier and a method for manufacturing the same
DE19843435731 DE3435731A1 (en) 1983-09-28 1984-09-28 DEVELOPER CARRIER AND METHOD FOR PRODUCING A DEVELOPER CARRIER
US07/098,392 US4860417A (en) 1983-09-28 1987-09-18 Developer carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24434183A JPS60136775A (en) 1983-12-26 1983-12-26 Developer carrying body and its manufacture

Publications (1)

Publication Number Publication Date
JPS60136775A true JPS60136775A (en) 1985-07-20

Family

ID=17117262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24434183A Pending JPS60136775A (en) 1983-09-28 1983-12-26 Developer carrying body and its manufacture

Country Status (1)

Country Link
JP (1) JPS60136775A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220083A (en) * 1989-02-22 1990-09-03 Hitachi Metals Ltd Magnet roll
US5196890A (en) * 1990-11-29 1993-03-23 Casio Computer Co., Ltd. Electrostatic recording having swingable recording electrodes to prevent deposit of magnetic toner on opposite electrode
US5374981A (en) * 1991-12-11 1994-12-20 Casio Computer Co., Ltd. Electrostatic recording apparatus capable of maintaining constant gap between flexible recording electrodes and opposite electrode by flexible recording electrodes
US5482806A (en) * 1990-09-17 1996-01-09 Fuji Xerox Co., Ltd. Developer composition for electrostatic latent image comprising toner and carrier coated with inorganic oxide particles
US6929893B2 (en) 2002-09-19 2005-08-16 Fuji Xerox Co., Ltd. Electrostatic image dry toner composition, developer for developing electrostatic latent image and image forming method
JP2016538722A (en) * 2013-11-12 2016-12-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Photovoltaic system and spray coating method for producing photovoltaic system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220083A (en) * 1989-02-22 1990-09-03 Hitachi Metals Ltd Magnet roll
US5482806A (en) * 1990-09-17 1996-01-09 Fuji Xerox Co., Ltd. Developer composition for electrostatic latent image comprising toner and carrier coated with inorganic oxide particles
US5196890A (en) * 1990-11-29 1993-03-23 Casio Computer Co., Ltd. Electrostatic recording having swingable recording electrodes to prevent deposit of magnetic toner on opposite electrode
US5374981A (en) * 1991-12-11 1994-12-20 Casio Computer Co., Ltd. Electrostatic recording apparatus capable of maintaining constant gap between flexible recording electrodes and opposite electrode by flexible recording electrodes
US6929893B2 (en) 2002-09-19 2005-08-16 Fuji Xerox Co., Ltd. Electrostatic image dry toner composition, developer for developing electrostatic latent image and image forming method
JP2016538722A (en) * 2013-11-12 2016-12-08 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Photovoltaic system and spray coating method for producing photovoltaic system

Similar Documents

Publication Publication Date Title
JPS5872968A (en) Production for developer carrier used in developing device
CN104067179B (en) Electrophotography roller and production method thereof
JPH0250182A (en) Developing device
JPS60136775A (en) Developer carrying body and its manufacture
US4587699A (en) Elastic developer carrier
JP7114409B2 (en) Developing roller, electrophotographic process cartridge and electrophotographic image forming apparatus
US6341420B1 (en) Method of manufacturing a developer roller
JPS58208769A (en) Developing device
JP3966578B2 (en) Semiconductive roll and developing device
JP2000056558A (en) Manufacture of developing sleeve
JPS60136774A (en) Developer carrying body and its manufacture
JPS6080859A (en) Developer carrying body and its production
WO2022163128A1 (en) Charge roller
JPS6079367A (en) Developer carrier and its manufacture
JP2003043805A (en) Conductive roller and its manufacturing method
JP3485675B2 (en) Elastic roll for electrophotographic equipment
JPS6070457A (en) Production of developer carrying body
JPS60125853A (en) Production of developer carrying body
EP1439923A1 (en) Method of manufacturing a developer roller
JP2000221773A (en) Developing roller and its production
JPH04156570A (en) Developing device
JPS6078460A (en) Manufacture of developer carrier
JPH0466976A (en) Developer carrier
JPH0437879A (en) Developer carrier
JPH11344864A (en) Developing sleeve and developing equipment