JPH0656407A - Sulfur oxides reductor - Google Patents

Sulfur oxides reductor

Info

Publication number
JPH0656407A
JPH0656407A JP4214103A JP21410392A JPH0656407A JP H0656407 A JPH0656407 A JP H0656407A JP 4214103 A JP4214103 A JP 4214103A JP 21410392 A JP21410392 A JP 21410392A JP H0656407 A JPH0656407 A JP H0656407A
Authority
JP
Japan
Prior art keywords
temperature
moving bed
flow rate
tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4214103A
Other languages
Japanese (ja)
Other versions
JP3278915B2 (en
Inventor
Toru Ishii
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21410392A priority Critical patent/JP3278915B2/en
Publication of JPH0656407A publication Critical patent/JPH0656407A/en
Application granted granted Critical
Publication of JP3278915B2 publication Critical patent/JP3278915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0482Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with carbon or solid carbonaceous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To enable exact control of the temperature in the moving bed within the optimal temperature range. CONSTITUTION:In a sulfur dioxide reductor in which sulfur dioxide gas and air fed into the column 1 are brought into contact countercurrently with the moving bed 2 formed by the reductant in the column 1 to effect the reduction of the sulfur oxide, a plurality of temperature sensors 7 are arranged vertically in a prescribed interval and a regulator 8 which regulates the amount of the air fed into the reduction column 1 on the basis of values detected from individual sensors 7 weighted largely near the center of the bed 2 and smaller than the center as the values are apart from the center upward or is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜硫酸ガスを還元剤と
接触させて還元する硫黄酸化物還元装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfur oxide reducing apparatus for reducing sulfur dioxide by bringing it into contact with a reducing agent.

【0002】[0002]

【従来の技術】石炭ガス化ガス等の被処理ガス中に含ま
れている硫化水素等の硫黄分を除去する装置として乾式
脱硫装置がある。この脱硫装置は、被処理ガスと脱硫剤
を接触させてガス中の硫黄分を除去するものであり、そ
の脱硫処理後の脱硫剤を再生する際に発生した亜硫酸ガ
スを硫黄酸化物還元装置で還元して硫黄として回収して
いる。
2. Description of the Related Art There is a dry desulfurization device as a device for removing sulfur components such as hydrogen sulfide contained in a gas to be treated such as coal gasification gas. This desulfurization device is for removing the sulfur content in the gas by bringing the gas to be treated into contact with a desulfurization agent, and the sulfur dioxide gas generated when the desulfurization agent after the desulfurization treatment is regenerated is subjected to the sulfur oxide reduction device. Reduced and recovered as sulfur.

【0003】その硫黄酸化物還元装置は、還元塔内に形
成される炭素を主成分とする還元剤の移動層に亜硫酸ガ
スを含むガスを向流接触させて、高温(約 700〜900
℃)下で亜硫酸ガスを硫黄ガスに還元するものである。
その還元反応温度の最適値は、還元剤の種類によって異
なり、亜硫酸ガスの転化率が高く、元素硫黄以外の副生
成物が少ない条件を選ぶ必要がある。尚、還元剤と亜硫
酸ガスの反応を約 700〜900 ℃の温度範囲外で行うと、
還元反応が進み過ぎたり、亜硫酸ガスが十分に還元され
なかったりする。
In the sulfur oxide reducing apparatus, a gas containing sulfurous acid gas is brought into countercurrent contact with a moving bed of a reducing agent containing carbon as a main component, which is formed in a reducing tower, so as to reach a high temperature (about 700 to 900).
It reduces sulfurous acid gas to sulfur gas under (° C).
The optimum value of the reduction reaction temperature depends on the type of the reducing agent, and it is necessary to select a condition in which the conversion rate of sulfurous acid gas is high and the amount of by-products other than elemental sulfur is small. If the reaction between the reducing agent and sulfurous acid gas is performed outside the temperature range of about 700 to 900 ° C,
The reduction reaction proceeds too much, or sulfurous acid gas is not sufficiently reduced.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の硫黄
酸化物還元装置では、還元塔内に亜硫酸ガスを含むガス
と共に空気を供給して、その空気中の酸素と石炭の燃焼
により必要な発熱量を確保している。また、還元剤と亜
硫酸ガスの還元反応が移動層の中心部で起りやすい。従
って、移動層内温度を最適温度範囲内に制御するのに、
移動層の中心部の温度(計測値)に基づいてバルブ等を
調節して還元塔内に供給する空気流量を加減していた。
しかし、移動層の中心部の温度(計測値)に基づいて空
気流量を制御するだけでは、例えば中心部以外で温度の
急上昇があった場合には加味されずに空気流量の制御が
遅くなり、移動層内温度を最適温度範囲内に的確に制御
できないことがある。
By the way, in the above-mentioned sulfur oxide reducing apparatus, air is supplied together with the gas containing the sulfurous acid gas into the reducing tower, and the calorific value required by the combustion of oxygen and coal in the air. Has been secured. Further, the reducing reaction between the reducing agent and the sulfurous acid gas is likely to occur in the central portion of the moving layer. Therefore, in order to control the temperature in the moving bed within the optimum temperature range,
The flow rate of air supplied into the reduction tower was adjusted by adjusting the valve or the like based on the temperature (measured value) of the central portion of the moving bed.
However, if only the air flow rate is controlled based on the temperature (measured value) of the central portion of the moving layer, the control of the air flow rate will be delayed without taking into consideration, for example, when there is a sharp rise in temperature outside the central portion, In some cases, the temperature in the moving bed cannot be accurately controlled within the optimum temperature range.

【0005】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、移動層内温度を
最適温度範囲内に的確に制御することを可能にする硫黄
酸化物還元装置を提供することにある。
Therefore, the present invention has been made in consideration of such circumstances, and an object thereof is to reduce the sulfur oxides, which makes it possible to accurately control the temperature in the moving bed within the optimum temperature range. To provide a device.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、亜硫酸ガスと空気とを還元塔内に供給
し、これらを塔内に形成される還元剤の移動層と向流接
触させて亜硫酸ガスを還元する硫黄酸化物還元装置にお
いて、上記還元塔の移動層内に、その高さ方向に所定の
間隔を隔てて複数の温度センサを配設すると共に、これ
ら温度センサから得られる各検出値に、移動層の中心部
が大きくその中心部から上下に離れるに従って小さくな
る係数の重み付けをし、これらの値に基づいて上記還元
塔に供給される空気流量をPID制御する制御部を設け
たものである。
In order to achieve the above-mentioned object, the present invention supplies sulfur dioxide gas and air into a reducing tower, and countercurrently flows these with a moving bed of a reducing agent formed in the tower. In a sulfur oxide reduction apparatus that reduces sulfurous acid gas by bringing them into contact with each other, a plurality of temperature sensors are arranged in the moving bed of the reduction tower at predetermined intervals in the height direction thereof, and the temperature sensors are obtained from these temperature sensors. Each detected value is weighted with a coefficient that the central portion of the moving bed is large and becomes smaller as it goes up and down from the central portion, and a PID control unit for PID-controlling the air flow rate supplied to the reduction tower based on these values. Is provided.

【0007】[0007]

【作用】移動層内の高さ方向に設けられた複数の温度セ
ンサから得られる各検出値に、移動層の中心部が大きく
その中心部から上下に離れるに従って小さくなる係数の
重み付けをすることにより、制御部により測定される移
動層内温度値は、移動層全体を考慮して測定されるがそ
の中心部の測定に重みがおかれる。このため、還元塔に
供給される空気流量の制御は主に中心部の温度に基づい
て行われ、また、中心部以外で例えば部分的に温度上昇
があった場合でも測定値に影響が出てこれに基づいて行
われる。また、PID制御により空気流量が調節される
ために、移動層温度は変動が少なくすみやかに目標値に
収束する。従って、移動層温度を最適温度範囲内に的確
にしかもなめらかに制御することが可能となる。
By weighting each detected value obtained from a plurality of temperature sensors provided in the height direction in the moving bed with a coefficient that is large at the center of the moving bed and becomes smaller as it goes up and down from the center. The temperature value in the moving bed, which is measured by the control unit, is measured in consideration of the entire moving bed, but the measurement of the central portion is weighted. Therefore, the control of the flow rate of the air supplied to the reduction tower is mainly performed based on the temperature of the central portion, and even if there is a partial temperature increase outside the central portion, the measured value is affected. It is done based on this. Further, since the air flow rate is adjusted by the PID control, the moving bed temperature fluctuates little and quickly converges to the target value. Therefore, the moving bed temperature can be controlled accurately and smoothly within the optimum temperature range.

【0008】[0008]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0009】図1において、1は竪型の筒体状に形成さ
れる還元塔を示し、この還元塔1の上部に設けられたロ
ックホッパー(図示せず)等から無煙炭やコークス等の
炭素系還元剤が塔1内に連続的あるいは間欠的に供給さ
れて塔1内を上から下に移動する還元剤の移動層2が形
成される。また、還元塔1の下部から未燃分(チャー)
等が排出される。
In FIG. 1, reference numeral 1 denotes a reduction tower formed in a vertical cylindrical shape. From a lock hopper (not shown) provided at the upper part of the reduction tower 1, carbonaceous materials such as anthracite and coke are supplied. The reducing agent is continuously or intermittently supplied into the tower 1 to form a moving layer 2 of the reducing agent that moves in the tower 1 from top to bottom. In addition, unburned components (char) from the bottom of the reduction tower 1
Etc. are discharged.

【0010】還元塔1の内部下方には、ガス分散器3が
配設され、このガス分散器3に高温例えば 400℃の亜硫
酸ガスを含むガスのガス導管4が接続されている。ガス
導管4の還元塔1近傍には空気供給管5が接続され、こ
の空気供給管5からの空気と亜硫酸ガスを含むガスがガ
ス分散器3から移動層2下方に噴出され、移動層2内を
上昇して還元剤と高温(約 700〜900 ℃)高圧下で向流
接触し、亜硫酸ガスが硫黄ガスに還元されるようになっ
ている。その硫黄ガス等のガスは還元塔1の上方に設け
られたガス排出管6に流出する。
A gas disperser 3 is disposed below the inside of the reduction tower 1, and a gas conduit 4 for gas containing sulfurous acid gas having a high temperature, for example, 400 ° C., is connected to the gas disperser 3. An air supply pipe 5 is connected to the gas conduit 4 in the vicinity of the reduction tower 1, and a gas containing air and sulfurous acid gas from the air supply pipe 5 is ejected from the gas disperser 3 to the lower side of the moving bed 2 to move inside the moving bed 2. And is brought into countercurrent contact with the reducing agent at high temperature (about 700 to 900 ° C) under high pressure to reduce sulfurous acid gas to sulfur gas. The gas such as the sulfur gas flows out to the gas discharge pipe 6 provided above the reduction tower 1.

【0011】また、還元塔1の内部には、ガス分散器3
より上方の移動層2内にその高さ方向に所定の間隔を隔
てて複数(図示例では6つ)の温度センサ7が配設され
ている。尚、各温度センサは、水平方向の温度分布を計
測するために還元塔内径が1m以下の場合には少なくと
も3つその水平方向に設置する必要があり、塔内径が1
mを越えるものについては適宜センサを増設する。各温
度センサ7からは検出値信号が出力され、これら信号が
制御部8に入力される。
Inside the reduction tower 1, a gas disperser 3
A plurality of (six in the illustrated example) temperature sensors 7 are arranged in the upper moving layer 2 at predetermined intervals in the height direction thereof. In addition, in order to measure the temperature distribution in the horizontal direction, it is necessary to install at least three temperature sensors in the horizontal direction when the inner diameter of the reduction tower is 1 m or less.
For those exceeding m, add sensors appropriately. Detection value signals are output from each temperature sensor 7, and these signals are input to the control unit 8.

【0012】制御部8は、各温度センサ7からの信号
に、場所に応じた重み付けをした係数をそれぞれかけ、
これらを加算して移動層2内の代表温度(加重平均温
度)を求める第1演算制御器9と、その制御器9からの
代表温度信号と温度目標値の信号とを比較演算(PID
制御)する温度制御器10と、上記各温度センサ7から
の信号に基づいて、移動層2内の温度の急上昇を防止す
るために温度制御器10からの信号を調節する第2演算
制御器11と、上記空気供給管5に介設されている流量
検出器12が接続され、制御弁13に出力する制御信号
を作成する流量制御器14とから主になり、温度制御器
10から第2演算制御器11を介した信号に基づいて還
元塔1に供給される空気流量をカスケード制御するよう
に構成されている。
The control unit 8 multiplies the signal from each temperature sensor 7 by a coefficient weighted according to the location,
The first calculation controller 9 for adding these values to obtain the representative temperature (weighted average temperature) in the moving bed 2 and the representative temperature signal from the controller 9 and the signal of the temperature target value are compared and calculated (PID
Temperature controller 10 for controlling) and a second arithmetic controller 11 for adjusting the signal from the temperature controller 10 in order to prevent the temperature in the moving bed 2 from suddenly rising based on the signals from the temperature sensors 7. And a flow rate detector 12 connected to the air supply pipe 5 and connected to the flow rate controller 14 for generating a control signal to be output to the control valve 13, and the temperature controller 10 performs a second calculation. It is configured to cascade-control the flow rate of air supplied to the reduction tower 1 based on a signal from the controller 11.

【0013】第1演算制御器9は、各温度センサ7から
の信号を取り込み、反応が最も盛んに起こる移動層2の
中心部により重みを置くように、各計測値(信号)に係
数をかけ、これら全点を加算して移動層2内の代表温度
(加重平均温度)を求める。その係数は、移動層2の中
心部が大きくその中心部から上下に離れるに従って小さ
くする、例えば、センサ7が6つの場合(センサ設置場
所の上から順に係数がX1 〜X6 の場合)、移動層2の
中心部に近い2つの係数をX3 =X4 =4/14,次に
近い2つの係数をX2 =X5 =2/14,中心部から上
下に離れた係数をX1 =X6 =1/14とそれぞれす
る。ただし、X1 +X2 +X3 +X4 +X5 +X6 =1
とする。
The first arithmetic and control unit 9 takes in the signals from the respective temperature sensors 7 and multiplies each measured value (signal) by a coefficient so as to place more weight on the central portion of the moving bed 2 where the reaction occurs most actively. Then, all of these points are added to obtain a representative temperature (weighted average temperature) in the moving bed 2. The coefficient is large as the center of the moving layer 2 is large and becomes smaller as it goes up and down from the center, for example, when there are six sensors 7 (when the coefficients are X 1 to X 6 in order from the top of the sensor installation place), The two coefficients near the center of the moving bed 2 are X 3 = X 4 = 4/14, the two coefficients next closest are X 2 = X 5 = 2/14, and the coefficients farther from the center are X 1 = X 6 = 1/14. However, X 1 + X 2 + X 3 + X 4 + X 5 + X 6 = 1
And

【0014】温度制御器10は、第1演算制御器9から
の代表温度信号と温度目標値の信号とを比較演算(PI
D制御)して流量制御信号を発生させるものであり、そ
の信号は開始の時点で流量目標値に合わせられている。
その係数は、装置の大きさにより多少ことなるがおおむ
ね、温度設定値: 730℃(無煙炭),比例定数(P):
2〜2.5 (比例帯40〜50%),積分時間(I):10秒程
度である。
The temperature controller 10 compares the representative temperature signal from the first arithmetic controller 9 with the signal of the temperature target value (PI).
D control) to generate a flow rate control signal, and the signal is adjusted to the flow rate target value at the start point.
The coefficient varies depending on the size of the device, but the temperature setting value is 730 ℃ (anthracite), proportional constant (P):
2 to 2.5 (proportional band 40 to 50%), integration time (I): about 10 seconds.

【0015】第2演算制御器11は、温度制御器10か
らの信号(設定値)に係数xをかけて、これを流量制御
器14に出力するもので、具体的には、上記各温度セン
サ7からの複数の信号に基づいて、それぞれの温度変化
率(単位時間内の温度変化(ΔTs))を計算し、その
中の最大値が所定値を越えたときに、例えば図2に示す
ような特性で流量設定値を減少させるように係数xを設
定して、空気の流れを制限するものであり、例えば変化
率制御の開始点:6℃/秒,比例定数:−20〜−30(変
化率℃/秒に対して)である。
The second arithmetic controller 11 multiplies the signal (set value) from the temperature controller 10 by a coefficient x and outputs it to the flow rate controller 14. Specifically, each of the temperature sensors described above is used. Based on a plurality of signals from 7, the respective temperature change rates (temperature change (ΔTs) within unit time) are calculated, and when the maximum value among them exceeds a predetermined value, for example, as shown in FIG. The coefficient x is set so as to reduce the flow rate setting value with various characteristics to limit the air flow. For example, the change rate control start point: 6 ° C./sec, the proportional constant: −20 to −30 ( Rate of change (° C./second).

【0016】次に本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0017】亜硫酸ガスを含むガスは、図1に示すよう
に、空気供給管5からの空気と共にガス導管4を介して
ガス分散器3から還元塔1内に噴出されて、移動層2内
を上昇する。これにより、亜硫酸ガス等のガスと還元剤
とが向流接触して、高温(約700〜900 ℃)高圧下で亜
硫酸ガスが硫黄ガスに還元される(SO2 +C→1/2
2 +CO2 )。その硫黄ガスを含むガスは、ガス排
出管6に流出し、硫黄ガスは硫黄コンデンサー(図示せ
ず)等を経て液体硫黄として回収される。
As shown in FIG. 1, the gas containing the sulfurous acid gas is jetted from the gas disperser 3 into the reduction tower 1 through the gas conduit 4 together with the air from the air supply pipe 5 to flow in the moving bed 2. To rise. As a result, the reducing agent is countercurrently contacted with a gas such as sulfurous acid gas, and the sulfurous acid gas is reduced to sulfur gas under high temperature (about 700 to 900 ° C.) and high pressure (SO 2 + C → 1/2).
S 2 + CO 2 ). The gas containing the sulfur gas flows out to the gas discharge pipe 6, and the sulfur gas is recovered as liquid sulfur through a sulfur condenser (not shown) and the like.

【0018】亜硫酸ガスを還元する温度は、還元剤の種
類によって異なるが、亜硫酸ガスの転化率が高く、元素
硫黄以外の副生成物が少ない条件を選ぶ必要がある(例
えば約 750〜800 ℃の温度範囲にする)。その還元反応
だけでは、移動層2温度を最適レベルに保つことができ
ないので、供給した空気中の酸素と石炭の燃焼反応(C
+O2 →CO2 )により必要な発熱量を確保する。この
ため、空気供給管5の制御弁13を適宜調節して還元塔
1に供給される空気流量を制御することにより移動層2
温度を最適温度範囲内に制御することが可能となり、こ
の制御は制御部8によって行われる。
The temperature at which sulfurous acid gas is reduced varies depending on the type of reducing agent, but it is necessary to select conditions in which the conversion rate of sulfurous acid gas is high and by-products other than elemental sulfur are small (for example, at a temperature of about 750 to 800 ° C.). To the temperature range). Since the temperature of the moving bed 2 cannot be maintained at the optimum level only by the reduction reaction, the combustion reaction of oxygen in the supplied air and coal (C
Secure the required amount of heat generation by + O 2 → CO 2 ). Therefore, by appropriately adjusting the control valve 13 of the air supply pipe 5 to control the flow rate of the air supplied to the reduction tower 1, the moving bed 2
It is possible to control the temperature within the optimum temperature range, and this control is performed by the control unit 8.

【0019】制御部8は、移動層2内に配設された各温
度センサ7からの出力に、所定の係数(X1 〜X6 の係
数)をかけて重み付けをし、これらを加算して移動層2
内の代表温度(加重平均温度)を求め、これと温度目標
値を比較演算(PID制御)し、これに基づいて流量制
御器14が制御弁13に制御信号を出力する。
The control unit 8 weights the output from each temperature sensor 7 arranged in the moving layer 2 by a predetermined coefficient (coefficients of X 1 to X 6 ) and weights them, and adds them. Moving layer 2
The representative temperature (weighted average temperature) is calculated and the temperature target value is compared and calculated (PID control), and the flow rate controller 14 outputs a control signal to the control valve 13 based on this.

【0020】すなわち、代表温度が最適温度範囲を越え
る場合には、制御弁13が絞られ、逆に代表温度が最適
温度範囲未満の場合には、制御弁13が開かれて、代表
温度が最適温度範囲内に入るように制御される。ここ
で、代表温度に基づいて空気流量を制御するのは、亜硫
酸ガスと還元剤の還元反応が移動層2の中心部で起りや
すいため、その中心部だけの計測値の制御では、例えば
移動層2下方の温度が低い場合には移動層2内の温度が
下から上に上昇するために空気流量の加減に遅れが生ず
るからであり、また、移動層2全体の平均温度では、そ
の平均温度と還元反応が起りやすい移動層2の中心部と
の温度差が大きくなることがあるからである。よって、
移動層2内の高さ方向に設けられた複数の温度センサ7
から得られる各検出値に、移動層2の中心部が大きくそ
の中心部から上下に離れるに従って小さくなる係数の重
み付けをすることにより、制御部8では、移動層2全体
を考慮しつつ反応が最も盛んに起こる移動層2の中心部
に重みがおかれた代表温度が求められることになる。
That is, when the representative temperature exceeds the optimum temperature range, the control valve 13 is throttled. On the contrary, when the representative temperature is below the optimum temperature range, the control valve 13 is opened to optimize the representative temperature. It is controlled to be within the temperature range. Here, the air flow rate is controlled based on the representative temperature because the reduction reaction of the sulfurous acid gas and the reducing agent is likely to occur in the central portion of the moving layer 2. 2 When the temperature below is low, the temperature in the moving bed 2 rises from the bottom to the top, which causes a delay in the adjustment of the air flow rate. This is because the temperature difference with the central portion of the moving layer 2 where the reduction reaction easily occurs may become large. Therefore,
A plurality of temperature sensors 7 provided in the moving bed 2 in the height direction
By weighting each detected value obtained from the moving layer 2 with a coefficient that is large in the central part of the moving layer 2 and becomes smaller as it goes away from the central part in the vertical direction, the control section 8 considers the moving layer 2 as a whole and produces the most reaction. The representative temperature weighted in the central portion of the moving layer 2 that frequently occurs is required.

【0021】これにより、制御部8による空気流量の制
御は、還元反応が起りやすい中心部の温度値に基づいて
主に行われるため、移動層2内温度を還元反応が起りや
すい温度範囲に制御することができる。また、中心部以
外で例えば部分的に温度上昇があった場合でも測定値に
影響が出て、これに基づいて還元塔1への空気流量が適
宜減るので、極部的な温度上昇が防止されることにな
る。さらに、代表温度と温度目標値を比較して流量制御
信号を発生させる演算制御をPID制御により行うた
め、移動層2内の状況に応じて流量設定値が変わるの
で、制御信号が急激に変化することが防止されて、移動
層2温度は変動が少なくすみやかに目標値に収束する。
従って、移動層2温度を最適温度範囲内に的確にしかも
なめらかに制御することができる。
As a result, since the control of the air flow rate by the control unit 8 is mainly performed based on the temperature value of the central portion where the reduction reaction easily occurs, the temperature in the moving bed 2 is controlled within the temperature range where the reduction reaction easily occurs. can do. Further, even if there is a partial temperature rise outside the central portion, the measured value is affected, and the air flow rate to the reduction tower 1 is appropriately reduced based on this, so that a local temperature rise is prevented. Will be. Further, since the PID control performs the arithmetic control for comparing the representative temperature and the temperature target value to generate the flow rate control signal, the flow rate set value changes according to the situation in the moving bed 2, so that the control signal changes rapidly. This prevents the temperature of the moving bed 2 from fluctuating little and quickly converges to the target value.
Therefore, the temperature of the moving bed 2 can be controlled accurately and smoothly within the optimum temperature range.

【0022】また、制御部8には、第2演算制御器11
が備えられているため、温度制御器10からの信号(設
定値)に移動層2内の温度に応じた係数xがかけられ、
これが流量制御器14に出力される。その係数xは、上
記各温度センサ7からの複数の信号について、それぞれ
の変化率(単位時間内の温度変化(ΔTs))を計算
し、その中の最大値が所定値(例えば6℃/秒)以下の
場合には1、所定値を越える場合には1未満、例えば図
2に示すような特性で流量設定値が減少するように設定
される。このため、還元塔の入口ガス中のSO2 濃度の
急増や一時的なO2 の混入等により移動層2内の温度が
図3(a)に示すように急上昇した場合(ΔTsが6℃
/秒を越えた場合)には、たとえその温度の瞬時値(測
定値)が最適温度範囲内(目標値以下)でも、流量制御
器14への出力信号が図3(b)に示すように調節され
て還元塔1への空気流量が一時的に減少される。これに
より、急激な反応が短時間で沈静して温度上昇が止ま
り、移動層2温度が最適温度範囲を大幅に越えて上昇す
ることはなくなる。尚、移動層温度が最適温度範囲を越
えてから空気流量を調節する場合には、最適温度範囲を
越える際の温度上昇が急であると空気流量を調節する際
にはある程度温度が上昇してしまうので、移動層温度が
最適温度範囲を大幅に越えることがある。特に、比例制
御だけだと空気流量の減少のしかたが遅く還元剤がさか
んに反応(燃焼)しているときに必要以上に空気が供給
されるため、温度上昇はすぐには止まらず一定期間は温
度上昇し続けるので、最適温度範囲を大幅に越えて危険
になるおそれがある。
In addition, the control unit 8 includes a second arithmetic controller 11
Is provided, the signal (set value) from the temperature controller 10 is multiplied by a coefficient x according to the temperature in the moving bed 2,
This is output to the flow rate controller 14. For the coefficient x, the rate of change (temperature change (ΔTs) within a unit time) of each of the plurality of signals from the temperature sensors 7 is calculated, and the maximum value thereof is a predetermined value (for example, 6 ° C./second). ) In the following cases, it is set to 1, and when it exceeds the predetermined value, it is set to less than 1. Therefore, when the temperature in the moving bed 2 suddenly rises as shown in FIG. 3 (a) due to a rapid increase in the SO 2 concentration in the inlet gas of the reduction tower or a temporary mixture of O 2 (ΔTs is 6 ° C.
3 / b), even if the instantaneous value (measured value) of the temperature is within the optimum temperature range (below the target value), the output signal to the flow rate controller 14 is as shown in FIG. 3 (b). The air flow rate to the reduction tower 1 is adjusted to be temporarily reduced. As a result, the rapid reaction settles down in a short time, the temperature rise stops, and the temperature of the moving bed 2 does not rise significantly beyond the optimum temperature range. When adjusting the air flow rate after the moving bed temperature exceeds the optimum temperature range, if the temperature rises rapidly when the temperature exceeds the optimum temperature range, the temperature rises to some extent when adjusting the air flow rate. Therefore, the moving bed temperature may greatly exceed the optimum temperature range. In particular, if proportional control alone is used, the air flow rate decreases slowly, and more air is supplied than necessary when the reducing agent is reacting (combusting) rapidly, so the temperature rise does not stop immediately and remains constant for a certain period of time. Since the temperature continues to rise, there is a danger that it will greatly exceed the optimum temperature range and become dangerous.

【0023】そして、移動層2内の温度変化(ΔTs)
が所定値以下になると、係数xが1となり温度制御器1
0からの信号(設定値)はそのまま流量制御器14に出
力されることになる。
Then, the temperature change (ΔTs) in the moving layer 2
Becomes less than a predetermined value, the coefficient x becomes 1 and the temperature controller 1
The signal (setting value) from 0 is directly output to the flow rate controller 14.

【0024】よって、移動層2内の温度変化(ΔTs)
をみて急に温度が上昇する傾向にあるときには、空気流
量が一時的に低減されるため、移動層2内の温度が急に
上昇しても直ぐに対処されるので、移動層2温度が最適
温度範囲を大幅に越えて上昇することがない。
Therefore, the temperature change (ΔTs) in the moving bed 2
When the temperature tends to rise suddenly, the air flow rate is temporarily reduced, and even if the temperature in the moving bed 2 suddenly rises, it is immediately dealt with. It does not rise significantly beyond the range.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、移動層内
に配設された複数の温度センサから得られる各検出値
に、移動層の中心部が大きくその中心部から上下に離れ
るに従って小さくなる係数の重み付けをし、これらの値
に基づいて還元塔に供給される空気流量をPID制御す
るので、移動層内温度を最適温度範囲内に的確にしかも
なめらかに制御できるという優れた効果を発揮する。
In summary, according to the present invention, the detected value obtained from a plurality of temperature sensors arranged in the moving bed is large at the center of the moving bed and becomes smaller as it goes up and down from the center. Since the coefficients are weighted and the flow rate of the air supplied to the reduction tower is PID-controlled based on these values, the excellent effect that the temperature in the moving bed can be accurately and smoothly controlled within the optimum temperature range is exhibited. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】温度の変化率と係数の関係を示す図である。FIG. 2 is a diagram showing a relationship between a temperature change rate and a coefficient.

【図3】(a)は時間と温度の関係を示す図であり、
(b)は時間と制御信号の関係を示す図である。
FIG. 3A is a diagram showing a relationship between time and temperature,
(B) is a figure which shows the relationship between time and a control signal.

【符号の説明】[Explanation of symbols]

1 還元塔 2 移動層 7 温度センサ 8 制御部 1 reduction tower 2 moving bed 7 temperature sensor 8 controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 亜硫酸ガスと空気とを還元塔内に供給
し、これらを塔内に形成される還元剤の移動層と向流接
触させて亜硫酸ガスを還元する硫黄酸化物還元装置にお
いて、上記還元塔の移動層内に、その高さ方向に所定の
間隔を隔てて複数の温度センサを配設すると共に、これ
ら温度センサから得られる各検出値に、移動層の中心部
が大きくその中心部から上下に離れるに従って小さくな
る係数の重み付けをし、これらの値に基づいて上記還元
塔に供給される空気流量をPID制御する制御部を設け
たことを特徴とする硫黄酸化物還元装置。
1. A sulfur oxide reduction apparatus for reducing sulfurous acid gas by supplying sulfurous acid gas and air into a reducing tower and bringing them into countercurrent contact with a moving bed of a reducing agent formed in the tower. In the moving bed of the reduction tower, a plurality of temperature sensors are arranged at predetermined intervals in the height direction, and the detected value obtained from these temperature sensors has a large central portion of the moving bed. The sulfur oxide reduction apparatus is characterized in that a control unit is provided which weights a coefficient that becomes smaller as the distance from above and below increases, and PID-controls the flow rate of the air supplied to the reduction tower based on these values.
JP21410392A 1992-08-11 1992-08-11 Sulfur oxide reduction equipment Expired - Fee Related JP3278915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21410392A JP3278915B2 (en) 1992-08-11 1992-08-11 Sulfur oxide reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21410392A JP3278915B2 (en) 1992-08-11 1992-08-11 Sulfur oxide reduction equipment

Publications (2)

Publication Number Publication Date
JPH0656407A true JPH0656407A (en) 1994-03-01
JP3278915B2 JP3278915B2 (en) 2002-04-30

Family

ID=16650287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21410392A Expired - Fee Related JP3278915B2 (en) 1992-08-11 1992-08-11 Sulfur oxide reduction equipment

Country Status (1)

Country Link
JP (1) JP3278915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527904A (en) * 2011-09-05 2014-10-23 エミッション・ロジスティクス・ピーティーワイ・リミテッド Release control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527904A (en) * 2011-09-05 2014-10-23 エミッション・ロジスティクス・ピーティーワイ・リミテッド Release control system

Also Published As

Publication number Publication date
JP3278915B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
KR101827582B1 (en) Process and system for removing impurities from a gas
EP0815923B1 (en) Method for controlling oxidation in flue gas desulfurization
JPS586683B2 (en) Gusty Youseihouhou Oyobi Souchi
EP0191557A1 (en) Process and plant for cleaning hot waste gas occurring in varying amounts
US6896858B2 (en) Gas refining system
JPH0656407A (en) Sulfur oxides reductor
EP0768364B1 (en) Gas refining system
JPWO2006080054A1 (en) Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
JP2588704Y2 (en) Sulfur oxide reduction equipment
US3692480A (en) Method for controlling a sulfur recovery process
JPS6363016B2 (en)
US6237368B1 (en) Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately
KR20000048325A (en) Method for drying moist material
JPS60118221A (en) Apparatus for controlling ph of absorbing tower in waste gas desulfurizing plant
RU2091297C1 (en) Method of control of process for reducing oxygen-containing sulfur dioxides
JPH04223928A (en) Powder air current carrier device
SU611876A1 (en) Method of regulating process of hydrogen sulfide gas burning in furnace
JPH03288523A (en) Control apparatus of exhaust gas desulfurizer
JPS6014804B2 (en) Process control method in floating reduction process
JPS6012119A (en) Method for controlling flow amount of compressed air of oxidizing tower in wet type waste gas desulfurizing apparatus
SU1234356A1 (en) Method of controlling process of removing nitrogen oxides from tail gases in production of weak nitric acid
JPH0774342B2 (en) Method for detecting abnormal coal supply in coal gasifier
JPH10296047A (en) Method and apparatus for flue gas desulfurization
SU480642A1 (en) The method of automatic control of the process of cleaning tail gas from nitrogen oxides
JP3077691B1 (en) Blast furnace operation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees