US6237368B1 - Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately - Google Patents

Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately Download PDF

Info

Publication number
US6237368B1
US6237368B1 US09/202,523 US20252399A US6237368B1 US 6237368 B1 US6237368 B1 US 6237368B1 US 20252399 A US20252399 A US 20252399A US 6237368 B1 US6237368 B1 US 6237368B1
Authority
US
United States
Prior art keywords
supplied
content
fixed value
regulator
exhaust gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/202,523
Inventor
Hans Beisswenger
Klaus Hasselwander
Hansjörg Herden
Gernot Mayer-Schwinning
Gurudas Samant
Peter Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Assigned to METALLGESELLSCHAFT AKTIENGESELLSCHAFT reassignment METALLGESELLSCHAFT AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUDWIG, PETER, HASSELWANDER, KLAUS, HERDEN, HANSJORG, SAMANT, GURUDAS, MAYER-SCHWINNING, GERNOT, BEISSWENGER, HANS
Application granted granted Critical
Publication of US6237368B1 publication Critical patent/US6237368B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • G05D11/138Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture by sensing the concentration of the mixture, e.g. measuring pH value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S422/00Chemical apparatus and process disinfecting, deodorizing, preserving, or sterilizing
    • Y10S422/90Decreasing pollution or environmental impact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S65/00Glass manufacturing
    • Y10S65/13Computer control

Definitions

  • This invention relates to a method of regulating or controlling the content of NO x in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation.
  • the DE-OS-3615021 describes a method for the selective catalytic reduction of nitrogen oxides from exhaust gases of internal combustion engines by adding ammonia in a reactor.
  • the addition of ammonia is effected in dependence on the NO x -concentration in the exhaust gas, and the NO x -concentration is determined indirectly by measuring operating parameters of the internal combustion engine and subsequently calculating the concentration of nitrogen monoxide and nitrogen dioxide in dependence on at least one selected operating parameter on the internal combustion engine in consideration of families of characteristics.
  • Glass-melting furnaces mostly are tank furnaces having a plurality of laterally disposed burners which are operated in alternation.
  • the actual heating of the glass-melting furnaces is mostly effected by means of long-distance gas, heating oil or natural gas.
  • the exhaust gases produced contain nitrogen oxides, due to fuels, high temperatures or additives.
  • NO x ⁇ ⁇ set ⁇ ⁇ n NO x ⁇ ⁇ set ⁇ ( 21 - O 2 ⁇ ⁇ act ) ( 21 - 8 )
  • the exhaust gas requires some time to flow from the glass-melting furnace to the pure-gas port of the denitrating plant, in which port the pure gas values are measured in general.
  • a NO x -content is measured in the denitrating plant which requires a higher amount of NH 3 than this is actually necessary with the real values in the glass-melting furnace.
  • a certain time must elapse before a regulation by means of a simple regulator circuit can be performed to react on the individual combustion breaks of the burners in the glass-melting furnaces.
  • the object underlying the invention is to provide a method of regulating or controlling the content of NO x in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation, where the known standardization of the setpoint NO x set need not be omitted.
  • the deviation xd resulting from such comparison is supplied to a regulator, which adapts the amount of NH 3 to be supplied to the denitrating plant as a correcting variable y for regulating the NO x -content as a regulating variable, and where both the beginning of a combustion break FP + and the end of a combustion break FP ⁇ are each supplied as a signal to a binary signal generator, which supplies the signals with a time delay as time-delayed beginning of a combustion break FP z + or as time-delayed end of a combustion break FP z ⁇ to the regulator, which interrupts the regulation upon receipt of the signal FP z + and adjusts the amount of NH 3 to a lower constant fixed value F 1 by means of a control, the content of NO x in the pure gas, NO x ′, detected by the
  • combustion break refers to the interruption of the operation of at least one burner.
  • the signal for the beginning of a combustion break FP + is immediately generated whenever the burner is switched off.
  • the signal for the end of a combustion break FP ⁇ is immediately generated whenever the burner is switched on again.
  • the signal for the time-delayed beginning of a combustion break FP z + is generated by the binary signal generator a certain period after the burner has been switched off.
  • the signal for the time-delayed end of a combustion break FP z ⁇ is generated by the binary signal generator a certain period after the burner has been switched on again.
  • this time delay ⁇ t which in both cases is the same, two definitions are required for technical reasons.
  • ⁇ t is the time required by the exhaust gas to flow from the glass-melting furnace to the point where NH 3 is introduced into the denitrating plant.
  • the denitrification not only requires a contacting with NH 3 , but also a contacting with an appropriate catalyst, for instance titanium dioxide.
  • ⁇ t is the time required by the exhaust gas to flow from the glass-melting furnace to that point in the denitrating plant, where it is for the first time both contacted with NH 3 and with the used catalyst.
  • the lower constant fixed value F 1 represents 5 to 20% of the amount of NH 3 introduced directly before the interruption of the regulation.
  • values of the content of NO x in the pure gas, NO x ′ are used as starting values, where the memory element can operate in different ways.
  • the fixed value F 2 can for instance represent that amount of NH 3 which was necessary for adjusting the last-measured content of NO x in the pure gas. From the last-measured contents of NO x in the pure gas average values can, however, be formed advantageously, from which then the fixed value F 2 can be calculated. It has surprisingly turned out that by means of the inventive method the disadvantages of the known standardization can be eliminated, where it is possible at the same time to relatively quickly react to fluctuating NO x -contents in the glass-melting furnaces, due to the combustion breaks of the individual burners. In the method in accordance with the invention, the admissible limit values of NH 3 in the pure gas are thus not exceeded.
  • the constant fixed value F 1 is 6 to 15% of the amount of NH 3 introduced directly before the interruption of the regulation. This is generally not enough for sufficiently converting the still existing content of NO x in the exhaust gases, where at the same time it can advantageously and easily be avoided that the admissible limit values of NH 3 in the pure gas are exceeded.
  • the transformation is effected in a memory element through formation of an average, formed from the contents of NO x in the pure gas, NO x ′, which were measured over a period of 5 to 40 min.
  • the regulation can be continued with a fixed value F 2 , which is relatively close to the optimum amount of NH 3 to be supplied, when the signal FP z ⁇ is generated by the binary signal generator, i.e. at the time tFP z ⁇ .
  • the period is 12 to 18 min. In general, this period is sufficient to mostly obtain a transformed fixed value F 2 , by means of which the regulation can be continued quickly and easily. To a particular advantage, the period is 15 min.
  • the exhaust gases are liberated from SO x , HCl, HF and dust prior to the removal of NO x upon leaving the glass-melting furnaces.
  • This has a particularly advantageous effect on the execution of the method in accordance with the invention, as disadvantageous influences, due to the noxious substances SO x , HCl, HF and dust, are eliminated.
  • the removal of SO x , HCl and HF at 300 to 500° C. can advantageously be effected in a classical or circulating fluidized bed or in an entrained-bed reactor.
  • the exhaust gases are for instance contacted with Ca(OH) 2 .
  • the exhaust gases are first of all liberated from SO x , HCl and HF and then passed through an electrostatic dust separator.
  • the electrostatic dust separators used are electrostatic filters operating dry.
  • the electrostatic separator is not contacted with SO x , HCl and HF, which provides for a relatively small maintenance effort.
  • the removal of SO x , HCl and HF is effected in a fluidized bed through addition of Ca(OH) 2 .
  • This provides for a relatively complete removal of the noxious substances SO x , HCl and HF with a high efficiency.
  • FIG. 1 shows the signal flow diagram in accordance with DIN 19226 of the inventive process for regulating or controlling the NO x -content.
  • FIG. 2 shows the signal flow diagram in accordance with DIN 19226 of the known regulation of the content of NO x in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation.
  • FIG. 3 shows by way of example the flow rate of the amount of NH 3 , ⁇ dot over (V) ⁇ NH 3 , to be supplied to the denitrating plant, as a function of the time t in accordance with the inventive method.
  • FIG. 1 represents the inventive method of regulating or controlling the content of NO x in exhaust gases.
  • the setpoint NO x set predetermined by the setpoint transmitter 1 is supplied to the multiplier 2 .
  • the content of O 2 in the pure gas, O 2 act is measured, and the content of O 2 detected in the first transducer 3 , O 2 act′, is likewise supplied to the multiplier 2 .
  • the setpoint NO x set is standardized to obtain the standardized setpoint NO x set n in consideration of the content O 2 act′ detected in the first transducer 3 .
  • the standardized setpoint NO x set n is compared with the content of NO x in the pure gas, NO x ′, which was detected in the second transducer 6 .
  • the resulting deviation xd is supplied to a regulator 4 , which adapts the amount of NH 3 to be supplied to the denitrating plant 5 as a correcting variable y for regulating the NO x -content as a regulating variable.
  • the regulator 4 is understood to be the combination of regulator, actuator and controller.
  • the signal of the beginning of a combustion break FP + and the signal of the end of a combustion break FP ⁇ is each supplied to a binary signal generator 8 . With a time delay, the binary signal generator 8 supplies the signals FP z + or FP z ⁇ to the regulator 4 .
  • the regulation is interrupted by the regulator 4 , and the amount of NH 3 is adjusted to a lower constant fixed value F 1 via a control.
  • the content of NO x in the pure gas, NO x ′, which was detected by the second transducer 6 is supplied to a memory element 7 , where it is transformed to a higher constant fixed value F 2 as amount of NH 3 .
  • the memory element 7 is advantageously used for the formation of the average, formed from the content of NO x in the pure gas, NO x ′, measured over a period of 5 to 30 min, from which then the associated fixed value F 2 is calculated as amount of NH 3 and supplied to the regulator 4 .
  • the regulator 4 As soon as the regulator 4 has received the signal FP z ⁇ , the fixed value F 1 is switched over to the fixed value F 2 via a control. Directly thereafter, the regulation is continued.
  • the exhaust gases Prior to the removal of NO x , the exhaust gases can advantageously be liberated from SO x , HCl, HF and dust (not represented), as soon as they have left the glass-melting furnaces.
  • FIG. 2 represents the generally known regulation of the content of NO x in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation, by means of a simple regulator circuit.
  • the known standardization and the slow regulation due to the relatively long distance to be covered by the exhaust gases from the point of introduction of NH 3 to the point where the pure gas is measured in the denitrating plant 5 have a disadvantageous effect in this known regulation.
  • FIG. 3 represents by way of example the function of the amount of NH 3 to be supplied to the denitrating plant, ⁇ dot over (V) ⁇ NH 3 , as a function of the time t. 15 min before the time at which the signal FP + is generated, i.e. 15 min before tFP + , the individual measured contents of NO x in the pure gas, NO x ′, are stored in the memory element 7 , the average is formed, and subsequently a fixed value F 2 is defined as amount of NH 3 .
  • the advantage is that there is a relatively fast change-over from the fixed value F 1 to the fixed value F 2 at the point tFP z ⁇ , and this change-over is not connected with any regulation-related delay.
  • the fixed value F 2 is reached, and proceeding from this fixed value F 2 , which is very close to the optimum value of the amount of NH 3 to be supplied at this time, the regulation may be continued in an advantageous manner.
  • the time delay ⁇ t either is the time required by the exhaust gas to flow from the glass-melting furnace to the point of introduction of NH 3 or the time required by the exhaust gas to flow from the glass-melting furnace to that point where the exhaust gas is contacted for the first time with NH 3 and a catalyst, for instance titanium dioxide. This depends on the temperatures of the exhaust gas.
  • a catalyst for instance titanium dioxide. This depends on the temperatures of the exhaust gas.
  • the 15-minute period is illustrated only by way of example. It may comprise a period of 5 to 40 min, advantageously 12 to 18 min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Treating Waste Gases (AREA)

Abstract

A method for regulating or controlling the content of NOx in the exhaust gases of a glass-melting furnace having several burners operated in alternation, wherein both the beginning and the end of a combustion break (FP+, FP) are supplied to a binary signal generator (8) which passes a signal to a regulator (4) with a time delay and upon receipt of the time-regulator (4), and the amount of NH3 supplied to the denitrating plant is adjusted to a lower constant fixed value F1 via a control, and by means of a memory element (7) a higher constant fixed value F2 is calculated as amount of NH3 and supplied to the regulator (4), whereupon as soon as the regulator (4) has received the signal of the time-delayed end of a combustion break, the fixed value F1 is adjusted to the fixed value F2 via a control, and subsequently the regulation is directly continued.

Description

This invention relates to a method of regulating or controlling the content of NOx in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation.
BACKGROUND OF THE INVENTION
Methods of reducing nitrogen oxides in exhaust gases are known. The DE-OS-3615021 describes a method for the selective catalytic reduction of nitrogen oxides from exhaust gases of internal combustion engines by adding ammonia in a reactor. In accordance with this method the addition of ammonia is effected in dependence on the NOx-concentration in the exhaust gas, and the NOx-concentration is determined indirectly by measuring operating parameters of the internal combustion engine and subsequently calculating the concentration of nitrogen monoxide and nitrogen dioxide in dependence on at least one selected operating parameter on the internal combustion engine in consideration of families of characteristics.
In Römpps Chemie-Lexikon, 8th edition, pp. 1484 to 1490 the operation of glass-melting furnaces is described in detail. Glass-melting furnaces mostly are tank furnaces having a plurality of laterally disposed burners which are operated in alternation. The actual heating of the glass-melting furnaces is mostly effected by means of long-distance gas, heating oil or natural gas. The exhaust gases produced contain nitrogen oxides, due to fuels, high temperatures or additives. During the denitrification of exhaust gases, the NOx-content of the pure gas must, for legal reasons, always be monitored in connection with the O2-content of the pure gas, which leads to the fact that in practice the setpoint of the NOx-content, NOxset, is transformed into a standardized setpoint NOxset n. In general, the following relation is used for the standardization: NO x set n = NO x set · ( 21 - O 2 act ) ( 21 - 8 )
Figure US06237368-20010529-M00001
However, this standardization is disadvantageous when the glass-melting furnaces comprise several burners which are operated in alternation. If one burner is switched off during a combustion break, the NOx-content of the exhaust gas drops to a relatively large extent. When regulating the content of NOx in the exhaust gases by means of a simple regulator circuit, the introduced amount of NH3, which reacts with the nitrogen oxides in a known manner, is dependent on the deviation xd, wherein:
xd=NOxsetn−NOx
With decreasing NOx-content of the exhaust gases both the value NOxset n and the value NOx′ are decreased, which leads to the fact that the deviation xd does not or only insignificantly change. Since with a reduction of the content of NOx in the exhaust gases the deviation xd changes only insignificantly, the amount of NH3 to be supplied likewise remains almost constant in the denitrating plant, which leads to the fact that more NH3 is introduced than can be reacted with the nitrogen oxides. This in turn leads to the fact that the content of NH3 in the pure gas generally exceeds the admissible limit values. A further disadvantage of this conventional known regulation lies in the fact that the denitrating plant is generally not arranged in direct vicinity of the glass-melting furnaces. Thus, the exhaust gas requires some time to flow from the glass-melting furnace to the pure-gas port of the denitrating plant, in which port the pure gas values are measured in general. When the operation of a burner is interrupted, a NOx-content is measured in the denitrating plant which requires a higher amount of NH3 than this is actually necessary with the real values in the glass-melting furnace. Thus, a certain time must elapse before a regulation by means of a simple regulator circuit can be performed to react on the individual combustion breaks of the burners in the glass-melting furnaces.
SUMMARY OF THE INVENTION
The object underlying the invention is to provide a method of regulating or controlling the content of NOx in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation, where the known standardization of the setpoint NOxset need not be omitted. By means of this method a relatively quick reaction to fluctuating NOx-contents during combustion breaks of individual burners in the glass-melting furnace should furthermore be possible.
DETAILED DESCRIPTION
The object underlying the invention is solved by a method of regulating or controlling the content of NOx in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation, where the setpoint of the NOx-content, NOxset, is supplied to a multiplier, at the same time the content of O2 in the pure gas, O2act, is measured continuously, and the content of O2 detected in a first transducer, O2act′, is likewise supplied to the multiplier, and in the multiplier a standardization of the setpoint NOxset into a standardized setpoint NOxset n is effected, where the following applies for the standardization: NO x set n = NO x set · ( 21 - O 2 act ) ( 21 - 8 )
Figure US06237368-20010529-M00002
and where the standardized setpoint NOxset n is compared with the content of NOx in the pure gas, NOx′, which has been detected by a second transducer, the deviation xd resulting from such comparison is supplied to a regulator, which adapts the amount of NH3 to be supplied to the denitrating plant as a correcting variable y for regulating the NOx-content as a regulating variable, and where both the beginning of a combustion break FP+ and the end of a combustion break FP are each supplied as a signal to a binary signal generator, which supplies the signals with a time delay as time-delayed beginning of a combustion break FPz + or as time-delayed end of a combustion break FPz to the regulator, which interrupts the regulation upon receipt of the signal FPz + and adjusts the amount of NH3 to a lower constant fixed value F1 by means of a control, the content of NOx in the pure gas, NOx′, detected by the second transducer is supplied to a memory element, where it is transformed into a higher constant fixed value F2 as amount of NH3, which is likewise supplied to the regulator, and where, as soon as the regulator has received the signal FPz , the fixed value F1 is adjusted to the fixed value F2 via a control, and directly subsequent thereto the regulation is continued. As glass-melting furnaces there are generally used pot furnaces or tank furnaces, which operate continuously or discontinuously and comprise several burners. The term“burner” not only includes the heatings with long-distance gas, heating oil or natural gas, but also heating electrodes. The term “combustion break” refers to the interruption of the operation of at least one burner. The signal for the beginning of a combustion break FP+ is immediately generated whenever the burner is switched off. The signal for the end of a combustion break FP is immediately generated whenever the burner is switched on again. The signal for the time-delayed beginning of a combustion break FPz + is generated by the binary signal generator a certain period after the burner has been switched off. The signal for the time-delayed end of a combustion break FPz is generated by the binary signal generator a certain period after the burner has been switched on again. In the definition of this time delay Δt, which in both cases is the same, two definitions are required for technical reasons. When the temperature of the exhaust gases lies between 750 and 1100° C., the denitrification can be effected by addition of NH3 without a catalyst being present. In this case, Δt is the time required by the exhaust gas to flow from the glass-melting furnace to the point where NH3 is introduced into the denitrating plant. When the temperatures of the exhaust gases lie in the range between 300 and 450° C., the denitrification not only requires a contacting with NH3, but also a contacting with an appropriate catalyst, for instance titanium dioxide. In this case Δt is the time required by the exhaust gas to flow from the glass-melting furnace to that point in the denitrating plant, where it is for the first time both contacted with NH3 and with the used catalyst. The lower constant fixed value F1 represents 5 to 20% of the amount of NH3 introduced directly before the interruption of the regulation. During the transformation of the fixed value F2, values of the content of NOx in the pure gas, NOx′, are used as starting values, where the memory element can operate in different ways. The fixed value F2 can for instance represent that amount of NH3 which was necessary for adjusting the last-measured content of NOx in the pure gas. From the last-measured contents of NOx in the pure gas average values can, however, be formed advantageously, from which then the fixed value F2 can be calculated. It has surprisingly turned out that by means of the inventive method the disadvantages of the known standardization can be eliminated, where it is possible at the same time to relatively quickly react to fluctuating NOx-contents in the glass-melting furnaces, due to the combustion breaks of the individual burners. In the method in accordance with the invention, the admissible limit values of NH3 in the pure gas are thus not exceeded.
In accordance with a preferred aspect of the invention the constant fixed value F1 is 6 to 15% of the amount of NH3 introduced directly before the interruption of the regulation. This is generally not enough for sufficiently converting the still existing content of NOx in the exhaust gases, where at the same time it can advantageously and easily be avoided that the admissible limit values of NH3 in the pure gas are exceeded.
In accordance with a further preferred aspect of the invention the transformation is effected in a memory element through formation of an average, formed from the contents of NOx in the pure gas, NOx′, which were measured over a period of 5 to 40 min. Advantageously, the regulation can be continued with a fixed value F2, which is relatively close to the optimum amount of NH3 to be supplied, when the signal FPz is generated by the binary signal generator, i.e. at the time tFPz .
In accordance with a further aspect of the invention the period is 12 to 18 min. In general, this period is sufficient to mostly obtain a transformed fixed value F2, by means of which the regulation can be continued quickly and easily. To a particular advantage, the period is 15 min.
In accordance with a further preferred aspect of the invention, the exhaust gases are liberated from SOx, HCl, HF and dust prior to the removal of NOx upon leaving the glass-melting furnaces. This has a particularly advantageous effect on the execution of the method in accordance with the invention, as disadvantageous influences, due to the noxious substances SOx, HCl, HF and dust, are eliminated. The removal of SOx, HCl and HF at 300 to 500° C. can advantageously be effected in a classical or circulating fluidized bed or in an entrained-bed reactor. For removing SOx, HCl and HF, the exhaust gases are for instance contacted with Ca(OH)2.
In accordance with a further aspect of the invention, the exhaust gases are first of all liberated from SOx, HCl and HF and then passed through an electrostatic dust separator. The electrostatic dust separators used are electrostatic filters operating dry. Advantageously, the electrostatic separator is not contacted with SOx, HCl and HF, which provides for a relatively small maintenance effort.
In accordance with a further aspect of the invention, the removal of SOx, HCl and HF is effected in a fluidized bed through addition of Ca(OH)2. This provides for a relatively complete removal of the noxious substances SOx, HCl and HF with a high efficiency.
The invention will now be explained in detail and by way of example with reference to the drawing (FIGS. 1 to 3).
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the signal flow diagram in accordance with DIN 19226 of the inventive process for regulating or controlling the NOx-content.
FIG. 2 shows the signal flow diagram in accordance with DIN 19226 of the known regulation of the content of NOx in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation.
FIG. 3 shows by way of example the flow rate of the amount of NH3, {dot over (V)}NH 3 , to be supplied to the denitrating plant, as a function of the time t in accordance with the inventive method.
FIG. 1 represents the inventive method of regulating or controlling the content of NOx in exhaust gases. The setpoint NOxset predetermined by the setpoint transmitter 1 is supplied to the multiplier 2. At the same time, the content of O2 in the pure gas, O2act, is measured, and the content of O2 detected in the first transducer 3, O2act′, is likewise supplied to the multiplier 2. In the multiplier 2 the setpoint NOxset is standardized to obtain the standardized setpoint NOxset n in consideration of the content O2act′ detected in the first transducer 3. The standardized setpoint NOxset n is compared with the content of NOx in the pure gas, NOx′, which was detected in the second transducer 6. The resulting deviation xd is supplied to a regulator 4, which adapts the amount of NH3 to be supplied to the denitrating plant 5 as a correcting variable y for regulating the NOx-content as a regulating variable. The regulator 4 is understood to be the combination of regulator, actuator and controller. The signal of the beginning of a combustion break FP+ and the signal of the end of a combustion break FP is each supplied to a binary signal generator 8. With a time delay, the binary signal generator 8 supplies the signals FPz + or FPz to the regulator 4. Upon receipt of the signal FPz + the regulation is interrupted by the regulator 4, and the amount of NH3 is adjusted to a lower constant fixed value F1 via a control. The content of NOx in the pure gas, NOx′, which was detected by the second transducer 6, is supplied to a memory element 7, where it is transformed to a higher constant fixed value F2 as amount of NH3. The memory element 7 is advantageously used for the formation of the average, formed from the content of NOx in the pure gas, NOx′, measured over a period of 5 to 30 min, from which then the associated fixed value F2 is calculated as amount of NH3 and supplied to the regulator 4. As soon as the regulator 4 has received the signal FPz , the fixed value F1 is switched over to the fixed value F2 via a control. Directly thereafter, the regulation is continued. Prior to the removal of NOx, the exhaust gases can advantageously be liberated from SOx, HCl, HF and dust (not represented), as soon as they have left the glass-melting furnaces.
FIG. 2 represents the generally known regulation of the content of NOx in exhaust gases produced during the operation of glass-melting furnaces with several burners which are operated in alternation, by means of a simple regulator circuit. The known standardization and the slow regulation due to the relatively long distance to be covered by the exhaust gases from the point of introduction of NH3 to the point where the pure gas is measured in the denitrating plant 5 have a disadvantageous effect in this known regulation.
FIG. 3 represents by way of example the function of the amount of NH3 to be supplied to the denitrating plant, {dot over (V)}NH 3 , as a function of the time t. 15 min before the time at which the signal FP+ is generated, i.e. 15 min before tFP+, the individual measured contents of NOx in the pure gas, NOx′, are stored in the memory element 7, the average is formed, and subsequently a fixed value F2 is defined as amount of NH3. After the time delay Δt, at the point tFPz +, at which the signal FPz + is passed on from the binary signal generator 8 to the regulator 4, the regulation is interrupted and the graph of the function abruptly drops to a fixed value F1 and is kept constant. When the signal of the end of a combustion break FP is generated at the point tFP, the graph will only rise again from the fixed value F1 to the fixed value F2 upon expiration of the time delay Δt precisely at the point tFPz , at which the signal FPz is supplied from the binary signal generator to the regulator 4. The advantage is that there is a relatively fast change-over from the fixed value F1 to the fixed value F2 at the point tFPz , and this change-over is not connected with any regulation-related delay. Directly at the point tFPz the fixed value F2 is reached, and proceeding from this fixed value F2, which is very close to the optimum value of the amount of NH3 to be supplied at this time, the regulation may be continued in an advantageous manner. The time delay Δt either is the time required by the exhaust gas to flow from the glass-melting furnace to the point of introduction of NH3 or the time required by the exhaust gas to flow from the glass-melting furnace to that point where the exhaust gas is contacted for the first time with NH3 and a catalyst, for instance titanium dioxide. This depends on the temperatures of the exhaust gas. In FIG. 3 the 15-minute period is illustrated only by way of example. It may comprise a period of 5 to 40 min, advantageously 12 to 18 min.

Claims (7)

What is claimed is:
1. A method of regulating or controlling the content of NOx in exhaust gases released from a denitrating plant associated with the operation of glass-melting furnaces with several burners which are operated in alternation, wherein the setpoint of the content of NOx, NOxset, is supplied to a multiplier (2), at the same time the content of O2 in the released gas, O2act, is measured continuously, and the content of O2 detected in a first transducer (3), O2act′, is likewise supplied to the multiplier (2), and in the multiplier (2) a standardization of the setpoint NOxset into a standardized setpoint NOxset n is effected, where the following applies for the standardization: NO x set n = NO x set · ( 21 - O 2 act ) ( 21 - 8 )
Figure US06237368-20010529-M00003
and where the standardized setpoint NOxset n is compared with the content of NOx in the released gas detected by a second transducer (6), NOx′, the deviation xd resulting from this comparison is supplied to a regulator (4), which adapts an amount of NH3 to be supplied to the denitrating plant (5) as a correcting variable y for reacting with and regulating the content of NOx as regulating variable, and where both the beginning of a combustion break FP+ and the end of a combustion break FP are each supplied as a signal to a binary signal generator (8), which with a time delay supplies the signals as time-delayed beginning of a combustion break FPz + or as time-delayed end of a combustion break FPz to the regulator (4), which interrupts the regulation upon receipt of the signal FPz + and adjusts the amount of NH3 to a lower constant fixed value F1 via a control, the amount of NOx in the released gas detected by the second transducer (6), NOx′, is supplied to a memory element (7), transformed there into a higher constant fixed value F2 as amount of NH3, and is likewise supplied to the regulator (4), and where, as soon as the regulator (4) has received the signal FPz , the fixed value F1 is adjusted to the fixed value F2 via a control, whereafter the regulation is continued immediately.
2. The method according to claim 1, wherein the constant fixed value F1 is 6 to 15% of the amount of NH3 introduced immediately before the interruption of the regulation.
3. The method according to claim 1, wherein where the transformation in the memory element (7) is effected through formation of an average, formed from the contents of NOx in the released gas, NOx′, measured over a period of 5 to 40 min.
4. The method according to claim 3, wherein the period comprises 12 to 18 min.
5. The method according to claim 1, wherein the exhaust gases are liberated from SOx, HCl, HF and dust prior to the removal of NOx upon leaving the glass-melting furnaces.
6. The method according to claim 5, wherein the exhaust gases are first liberated from SOx, HCl and HF and are then passed through an electrostatic dust separator.
7. The method according to claim 6, wherein the removal of SOx, HCl and HF is effected in a fluidized bed through addition of Ca(OH)2.
US09/202,523 1996-06-20 1997-06-05 Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately Expired - Fee Related US6237368B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19624619 1996-06-20
DE19624619A DE19624619C1 (en) 1996-06-20 1996-06-20 Off-gas NOx content regulation method
PCT/EP1997/002919 WO1997048481A1 (en) 1996-06-20 1997-06-05 PROCESS FOR REGULATING OR CONTROLLING THE NOx CONTENT OF EXHAUST GASES GIVEN OFF DURING THE OPERATING OF GLASS MELTING FURNACES WITH SEVERAL BURNERS RUN ALTERNATELY

Publications (1)

Publication Number Publication Date
US6237368B1 true US6237368B1 (en) 2001-05-29

Family

ID=7797484

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/202,523 Expired - Fee Related US6237368B1 (en) 1996-06-20 1997-06-05 Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately

Country Status (7)

Country Link
US (1) US6237368B1 (en)
EP (1) EP0906148B1 (en)
BR (1) BR9709863A (en)
DE (2) DE19624619C1 (en)
IN (1) IN191439B (en)
TW (1) TW448134B (en)
WO (1) WO1997048481A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241069A1 (en) * 2002-05-31 2004-12-02 Ri Kokun Perfluoride processing apparatus
EP1537904A1 (en) * 2003-12-04 2005-06-08 Lurgi Energie und Entsorgung GmbH Process for controlling the dosing of a sorbent
US20050172677A1 (en) * 2001-06-27 2005-08-11 Jensen Leif M. Process and apparatus for making mineral fibres
US20060113658A1 (en) * 2004-11-29 2006-06-01 Tzyy-Jang Tseng Substrate core and method for fabricating the same
CN108786401A (en) * 2018-06-07 2018-11-13 光大环保技术研究院(南京)有限公司 A kind of PNCR denitrfying agents spray gun control system and PNCR denitrfying agent spray gun control methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803876A1 (en) 1977-01-31 1978-08-03 Kurashiki Boseki Kk PROCESS AND EQUIPMENT FOR DETERMINING THE COMPOSITION OF A GAS FLOW DUCTED TO A NITROGEN OXIDE SEPARATION UNIT
US4186109A (en) * 1976-09-30 1980-01-29 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for selectively reducing nitrogen oxides from oxygen-containing exhaust gases
US4312280A (en) * 1980-03-13 1982-01-26 The United States Of America As Represented By The United States Department Of Energy Method of increasing the sulfation capacity of alkaline earth sorbents
US4314345A (en) * 1978-01-23 1982-02-02 Mitsubishi Jukogyo Kabushiki Kaishi Controlling the injection of ammonia in a dry type exhaust gas denitration process
US4328020A (en) 1980-11-24 1982-05-04 Ppg Industries, Inc. Melting glass with reduced NOx emissions
GB2132112A (en) 1982-12-27 1984-07-04 Gen Electric Catalytic pollution control system for gas turbine exhaust
DE3337793A1 (en) 1983-10-18 1985-05-02 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD FOR REGULATING THE ADDED AMOUNT OF REDUCING AGENTS IN THE CATALYTIC REDUCTION OF NO (ARROW DOWN) X (ARROW DOWN)
DE3631729A1 (en) 1986-09-18 1988-03-24 Gea Luftkuehler Happel Gmbh Process for the catalytic conversion of nitrogen oxides in the flue gases arising in glass manufacture
DE4139862A1 (en) 1991-12-03 1993-06-09 Martin Gmbh Fuer Umwelt- Und Energietechnik, 8000 Muenchen, De METHOD FOR REGULATING THE INPUT QUANTITY OF A TREATMENT MEDIUM FOR REDUCING THE NITROGEN OXIDE CONTENT IN THE EXHAUST GASES OF COMBUSTION PROCESSES
DE4237705A1 (en) 1992-11-07 1994-05-11 Mtu Friedrichshafen Gmbh Diesel engine exhaust catalytic converter reduction agent inflow control - by sensors positioned down flow from reduction catalytic convertersimplifying registration of operating parameters end economising use of reduction agent
DE4434943A1 (en) 1994-09-30 1996-04-04 Noell Abfall & Energietech Reducing nitrogen oxide content of flue gas from waste incineration
US5587136A (en) * 1994-05-10 1996-12-24 Mitsui Mining Co., Ltd. Dry process desulfurization and denitrifcation process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3615021A1 (en) * 1986-05-02 1987-11-05 Ruhrgas Ag Process and device for the selective catalytic reduction of the nitrogen oxides from exhaust gases of an internal combustion engine

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186109A (en) * 1976-09-30 1980-01-29 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for selectively reducing nitrogen oxides from oxygen-containing exhaust gases
DE2803876A1 (en) 1977-01-31 1978-08-03 Kurashiki Boseki Kk PROCESS AND EQUIPMENT FOR DETERMINING THE COMPOSITION OF A GAS FLOW DUCTED TO A NITROGEN OXIDE SEPARATION UNIT
US4302205A (en) 1977-01-31 1981-11-24 Kurashiki Boseki Kabushiki Kaisha Input control method and means for nitrogen oxide removal
US4314345A (en) * 1978-01-23 1982-02-02 Mitsubishi Jukogyo Kabushiki Kaishi Controlling the injection of ammonia in a dry type exhaust gas denitration process
US4312280A (en) * 1980-03-13 1982-01-26 The United States Of America As Represented By The United States Department Of Energy Method of increasing the sulfation capacity of alkaline earth sorbents
US4328020A (en) 1980-11-24 1982-05-04 Ppg Industries, Inc. Melting glass with reduced NOx emissions
GB2132112A (en) 1982-12-27 1984-07-04 Gen Electric Catalytic pollution control system for gas turbine exhaust
DE3337793A1 (en) 1983-10-18 1985-05-02 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD FOR REGULATING THE ADDED AMOUNT OF REDUCING AGENTS IN THE CATALYTIC REDUCTION OF NO (ARROW DOWN) X (ARROW DOWN)
US4565679A (en) 1983-10-18 1986-01-21 L. & C. Steinmuller Gmbh Method of regulating the amount of reducing agent added during catalytic reduction of NOx contained in flue gases
DE3631729A1 (en) 1986-09-18 1988-03-24 Gea Luftkuehler Happel Gmbh Process for the catalytic conversion of nitrogen oxides in the flue gases arising in glass manufacture
DE4139862A1 (en) 1991-12-03 1993-06-09 Martin Gmbh Fuer Umwelt- Und Energietechnik, 8000 Muenchen, De METHOD FOR REGULATING THE INPUT QUANTITY OF A TREATMENT MEDIUM FOR REDUCING THE NITROGEN OXIDE CONTENT IN THE EXHAUST GASES OF COMBUSTION PROCESSES
US5425928A (en) 1991-12-03 1995-06-20 Martin GmbH fur Umwelt- und Energietechnik & Techform Engineering AG Procedure for regulating the quantity of a processing medium that is used to reduce the nitrogen monoxide content in the exhaust gases generated by combustion processes
DE4237705A1 (en) 1992-11-07 1994-05-11 Mtu Friedrichshafen Gmbh Diesel engine exhaust catalytic converter reduction agent inflow control - by sensors positioned down flow from reduction catalytic convertersimplifying registration of operating parameters end economising use of reduction agent
US5587136A (en) * 1994-05-10 1996-12-24 Mitsui Mining Co., Ltd. Dry process desulfurization and denitrifcation process
DE4434943A1 (en) 1994-09-30 1996-04-04 Noell Abfall & Energietech Reducing nitrogen oxide content of flue gas from waste incineration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABB Review, No. 9, 1993, pp.13-20, "Controller Improves Denox Performance in Power Plants'.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172677A1 (en) * 2001-06-27 2005-08-11 Jensen Leif M. Process and apparatus for making mineral fibres
US8176754B2 (en) * 2001-06-27 2012-05-15 Rockwool International A/S Process and apparatus for making mineral fibres
US20040241069A1 (en) * 2002-05-31 2004-12-02 Ri Kokun Perfluoride processing apparatus
US20060245983A1 (en) * 2002-05-31 2006-11-02 Ri Kokun Perfluoride processing apparatus
US7658890B2 (en) 2002-05-31 2010-02-09 Hitachi, Ltd. Perfluoride processing apparatus
US7666365B2 (en) 2002-05-31 2010-02-23 Hitachi, Ltd. Perfluoride processing apparatus
EP1537904A1 (en) * 2003-12-04 2005-06-08 Lurgi Energie und Entsorgung GmbH Process for controlling the dosing of a sorbent
US20060113658A1 (en) * 2004-11-29 2006-06-01 Tzyy-Jang Tseng Substrate core and method for fabricating the same
CN108786401A (en) * 2018-06-07 2018-11-13 光大环保技术研究院(南京)有限公司 A kind of PNCR denitrfying agents spray gun control system and PNCR denitrfying agent spray gun control methods

Also Published As

Publication number Publication date
IN191439B (en) 2003-12-06
BR9709863A (en) 1999-08-10
DE19624619C1 (en) 1997-07-10
TW448134B (en) 2001-08-01
WO1997048481A1 (en) 1997-12-24
EP0906148B1 (en) 2001-05-09
EP0906148A1 (en) 1999-04-07
DE59703509D1 (en) 2001-06-13

Similar Documents

Publication Publication Date Title
US4565679A (en) Method of regulating the amount of reducing agent added during catalytic reduction of NOx contained in flue gases
CN111966060B (en) SCR ammonia injection control optimization method, device, equipment and storage medium
US8268275B2 (en) Method and device for controlling the supply of a reducing agent to an SCR system
US6237368B1 (en) Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately
CN106731829A (en) Suppress control system and method for the purging on thermal power plant's discharged nitrous oxides influence
CN113419570A (en) Control method of flue gas denitration system of waste incineration power plant
CN112569785A (en) SCR ammonia injection control system and method based on ammonia escape monitoring
US6499412B2 (en) Method of firebox temperature control for achieving carbon monoxide emission compliance in industrial furnaces with minimal energy consumption
CN108919845B (en) Automatic control method for nitrogen oxide concentration of denitration system
US4058372A (en) Flue gas conditioning with spiking gas containing sulfur trioxide
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
CN111530278A (en) Denitration control method and device and boiler denitration control system
CN206631437U (en) Suppress the control system that purging influences on thermal power plant's discharged nitrous oxides
JP3775694B2 (en) Denitration treatment method and denitration apparatus for exhaust gas
JP3702094B2 (en) Ammonia injection equipment
CN114632417B (en) Denitration ammonia supply automatic regulating system with accurate feedforward signal
CN219291064U (en) Thermal power generating unit denitration system
JPH0351453B2 (en)
JPS6339635B2 (en)
CN111425884B (en) Method for reducing emission concentration of sulfur dioxide in flue gas of full-combustion gas boiler
JPH08257370A (en) Exhaust gas denitration apparatus
JPH10176829A (en) Automatic regulating method of set value for controlling concentration of oxygen in boiler waste gas
JP2695654B2 (en) Control device for ammonia gas injection volume
CN113304609A (en) Balance control method for thermal power generating unit denitration system
CN116227705A (en) Smoke temperature prediction system and use method

Legal Events

Date Code Title Description
AS Assignment

Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEISSWENGER, HANS;HASSELWANDER, KLAUS;HERDEN, HANSJORG;AND OTHERS;REEL/FRAME:010199/0817;SIGNING DATES FROM 19990125 TO 19990305

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20050529