JPH0654765B2 - Heat treatment container - Google Patents

Heat treatment container

Info

Publication number
JPH0654765B2
JPH0654765B2 JP18854185A JP18854185A JPH0654765B2 JP H0654765 B2 JPH0654765 B2 JP H0654765B2 JP 18854185 A JP18854185 A JP 18854185A JP 18854185 A JP18854185 A JP 18854185A JP H0654765 B2 JPH0654765 B2 JP H0654765B2
Authority
JP
Japan
Prior art keywords
container
heat treatment
lid
space
lid container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18854185A
Other languages
Japanese (ja)
Other versions
JPS6249620A (en
Inventor
良成 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18854185A priority Critical patent/JPH0654765B2/en
Publication of JPS6249620A publication Critical patent/JPS6249620A/en
Publication of JPH0654765B2 publication Critical patent/JPH0654765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は熱処理用容器に係り、特に化合物半導体を熱
処理する場合に材料の熱分解や熱的劣化を防止するに有
効な熱処理用容器に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment container, and more particularly to a heat treatment container effective for preventing thermal decomposition or thermal deterioration of a material when heat-treating a compound semiconductor.

〔従来技術とその問題点〕 半導体プロセスにはたくさんの熱処理工程がある。イオ
ン注入後の熱処理はその代表例である。ほとんどの材料
は温度が高い程、その機械的性質は弱くなるために熱処
理工程ではていねいな材料に対する配慮が必要となる。
特に化合物半導体では熱処理工程で化学量論的欠陥が生
じ易い。こうしたプロセスで発生する化学量論的欠陥は
多くの場合、半導体の基本的性質であるキャリアの移動
度や寿命等を著しく落とすために化学量論的欠陥の発生
を伴って作られた素子の性能は低いものとなる。例え
ば、集積回路素材として注目を集めているGaAsでは
イオン注入後の熱処理工程の安定度に問題が残っている
ことはよく知られている。通常、イオン注入後の熱処理
ではSiOやSi3N4等の絶縁膜を被覆して行なわれる
が、絶縁膜そのものあるいは絶縁膜とGaAsの界面構
造を十分に制御することが難しく、表面にはしばしば顕
微鏡観察可能な欠陥が見られたり、GaAs集積回路の
基本素子である電界効果トランジスタ(FET:Field
Effect Transistor)のしきい値電圧等の再現性が得ら
れず、また同一ウエーハ内での均一性も十分でない。こ
うした状況から蒸気圧を制御したAs雰囲気の中でイオ
ン注入後の熱処理を行なう方法等が取られるが、表面の
鏡面状態は比較的保持できるもののしきい値等に関して
先の再現性や均一性に対する要求を必ずしも満足するも
のではない。これらの主因は熱処理時に表面近くの化学
量論的比の制御が不十分なことを物語るものである。再
現性や均一性といった問題以外に化学量論的欠陥は作ら
れた素子の信頼性を損なうものとも考えられており、化
合物半導体を熱処理する場合には化学量論的欠陥の発生
を防止することを配慮しなければならない。
[Prior Art and its Problems] There are many heat treatment steps in a semiconductor process. A typical example is heat treatment after ion implantation. Since the mechanical properties of most materials become weaker at higher temperatures, careful consideration must be given to careful materials during the heat treatment process.
Particularly in compound semiconductors, stoichiometric defects are likely to occur in the heat treatment step. Stoichiometric defects generated in such processes are often the performance of devices produced with the occurrence of stoichiometric defects in order to significantly reduce the carrier mobility and lifetime, which are the basic properties of semiconductors. Will be low. For example, it is well known that GaAs, which has attracted attention as an integrated circuit material, has a problem in stability of a heat treatment process after ion implantation. Usually, the heat treatment after ion implantation is performed by coating an insulating film such as SiO 2 or Si 3 N 4 , but it is difficult to sufficiently control the insulating film itself or the interface structure between the insulating film and GaAs. Often, microscopically observable defects are observed, and field effect transistors (FET: Field), which are the basic elements of GaAs integrated circuits
Effect Transistor) threshold voltage etc. are not reproducible and the uniformity in the same wafer is not sufficient. From such a situation, a method of performing heat treatment after ion implantation in an As atmosphere in which the vapor pressure is controlled is used. However, although the mirror state of the surface can be relatively retained, the threshold value and the like can be compared with the above reproducibility and uniformity. It does not always meet the requirements. The main cause of these is that the stoichiometric ratio near the surface is insufficiently controlled during heat treatment. In addition to problems such as reproducibility and uniformity, stoichiometric defects are also considered to impair the reliability of fabricated devices, and when heat treating compound semiconductors, prevent the occurrence of stoichiometric defects. Must be considered.

〔発明の目的〕[Object of the Invention]

本発明の目的は従来技術とその問題点で述べたように特
に化合物半導体を熱処理する場合に化学量論的欠陥の発
生を防止し、高性能で信頼性の高い素子を製作するに有
効な安定した熱処理用容器を提供することにある。
As described in the prior art and its problems, the object of the present invention is to prevent the occurrence of stoichiometric defects, especially in the case of heat treating a compound semiconductor, and to provide a stable and effective device for manufacturing a high performance and highly reliable device To provide a heat treatment container.

〔発明の構成〕[Structure of Invention]

本発明の熱処理用容器は化合物半導体ウエーハを収納で
きる開放した部屋を備えると共に、外周全体に亘って嵌
合部が形成された蓋容器と、前記蓋容器が被せられたと
きに少なくとも前記開放した部屋を収納できるように形
成された第1の空間を備えると共に、前記第1の空間と
細孔で連通されかつ前記蓋容器が被せられたときに前記
嵌合部を収納できるように形成された第2の空間を備え
た容器と、を含んで構成したものである。
The heat treatment container of the present invention is provided with an open chamber capable of accommodating a compound semiconductor wafer, a lid container having a fitting portion formed over the entire outer periphery, and at least the open chamber when the lid container is covered. A first space formed so as to accommodate the first space, the first space being in communication with the first space through a pore, and the first space formed so as to house the fitting portion when the lid container is covered. And a container having two spaces.

〔発明の作用と原理〕[Operation and principle of the invention]

ここでは化合物半導体の中で最も注目されているGaA
s材料を例に本発明の熱処理用容器の作用と原理を第1
図および第2図を参照して説明する。GaAsは集積回
路素材として注目され、熱処理工程として一般的な代表
例はイオン注入後の熱処理であろう。化合物半導体の熱
処理工程では一般に該化合物半導体と熱処理雰囲気とが
熱力学的に非平衡であるがために試料表面近くには化学
量論的欠陥が発生する。熱力学的に平衡条件下での熱処
理を意図したものが従来技術とその問題点で述べた蒸気
圧を制御したAs雰囲気での熱処理であるがあくまでも
As雰囲気は人為的に制御されたもので熱力学的平衡条
件に限りなく近いとはいえないし、またその制御も容易
ではない。基本的には温度さえ定めれば自動的に熱力学
的平衡条件となることが理想である。この発明では第1
図のような容器中で熱処理するもので、限りなく熱力学
的平衡に近い条件での熱処理を温度を定めれば自動的に
つくることができる容器の構造を示すものである。第1
図はこの発明の熱処理用容器の一例で、この場合には円
筒状容器であり、横断面構造で示すもので、容器11およ
び蓋容器12は炭素製であり、容器11に掘られた堀状の溝
13によって第2の空間が形成され、この溝13にはGa13
1とGaAs132が用意され、熱処理時にはAsで飽和し
たGa溶液14となるものである(第2図)。さらに溝13
にはB2O315が入れられており、熱処理時にはこのB2O315
も溶融し、比重差の関係でGa溶液14を覆うものであ
る。蓋容器12には被熱処理GaAs基板16を設置する開
放した部屋としてのサセプター部17が作られている。い
ま、500℃以上のある温度に上げられた状態にあり、容
器11に蓋容器12が被さった状態の断面図は第2図のよう
になる。溝13中のGa131には温度のみで決まる溶解度
に見合ったGaAs132が溶融し、Ga溶液14となり、B
2O315がその上を覆っている。蓋容器12が容器11に被さ
った状態では蓋容器12につけられたテーパー状の嵌合部
18が上記溶融状態のB2O315に少なくともつきささった状
態をつくるように設定されている。第2図の状態をつく
ることで容器11内部は外部と遮断された構造となってい
る。容器は溶融したGa溶液14とB2O315で密封された状
態になる。容器内空間はAsの飽和溶液であるGa溶液
と容器11の溝13の内壁に作られたたくさんの細孔19で接
しているので熱平衡にある気相でみたされ、当然のこと
ながらこの気相はGaAs基板16とも熱平衡になる。ま
た、Ga溶液14は封入容器外の雰囲気とはB2O315で遮断
されているため、Ga溶液からのAsの気相への解離飛
散もきわめて少ない。なお、B2O3はGaAs結晶引き上
げ時に溶液からAsの気相への解離飛散を防ぐための溶
液表面封止用の溶融素材として極めて有名な材料であ
り、B2O315を通して母材構成元素の解離飛散を極めて有
効に阻止するものである。すなわち、以上で述べた容器
を用いることでGaAs基板16を取り巻く封入容器内部
の気相は該GaAs基板16とは熱平衡にあり、かつ、気
相の組成は温度のみで自動的に定まるために表面の化学
量論的比も常に温度のみで決まり、安定した熱処理を実
現できる。
Here, GaA, which has received the most attention among compound semiconductors
First, the action and principle of the heat treatment container of the present invention will be described with reference to s materials.
A description will be given with reference to the drawings and FIG. GaAs has attracted attention as an integrated circuit material, and a typical typical heat treatment process is a heat treatment after ion implantation. In the heat treatment step of the compound semiconductor, since the compound semiconductor and the heat treatment atmosphere are generally thermodynamically nonequilibrium, stoichiometric defects occur near the sample surface. Thermodynamically intended heat treatment under equilibrium conditions is the heat treatment in the As atmosphere in which the vapor pressure is controlled as described in the related art and its problems, but the As atmosphere is artificially controlled. It cannot be said that it is close to the mechanical equilibrium condition, and its control is not easy. Basically, it is ideal that the thermodynamic equilibrium condition is automatically established if the temperature is determined. 1st in this invention
The heat treatment is carried out in a container as shown in the figure, and the structure of the container is shown which can be automatically prepared by setting the temperature for heat treatment under conditions close to thermodynamic equilibrium. First
The figure is an example of a container for heat treatment of the present invention, in this case is a cylindrical container, which is shown in a cross-sectional structure, the container 11 and the lid container 12 are made of carbon, and a moat shape dug in the container 11. Groove
A second space is formed by 13 and Ga 13 is formed in this groove 13.
1 and GaAs 132 are prepared and become a Ga solution 14 saturated with As during heat treatment (FIG. 2). Further groove 13
In is placed is B 2 O 3 15, at the time of the heat treatment the B 2 O 3 15
Also melts and covers the Ga solution 14 due to the difference in specific gravity. The lid container 12 has a susceptor portion 17 as an open room in which the heat-treated GaAs substrate 16 is placed. FIG. 2 is a cross-sectional view of the state in which the container 11 is covered with the lid container 12 at a certain temperature of 500 ° C. or higher. In the Ga 131 in the groove 13, GaAs 132 corresponding to the solubility determined only by the temperature is melted to become a Ga solution 14 and B
2 O 3 15 covers it. When the lid container 12 covers the container 11, a tapered fitting portion attached to the lid container 12
18 is set to create at least a clinging state to the molten B 2 O 3 15 described above. By creating the state shown in FIG. 2, the inside of the container 11 is cut off from the outside. The container is sealed with the molten Ga solution 14 and B 2 O 3 15. The inner space of the container is in contact with the Ga solution, which is a saturated solution of As, with many pores 19 formed in the inner wall of the groove 13 of the container 11. Is in thermal equilibrium with the GaAs substrate 16. Further, since the Ga solution 14 is shielded from the atmosphere outside the sealed container by B 2 O 3 15, the dissociation and scattering of As from the Ga solution into the gas phase is extremely small. Incidentally, B 2 O 3 is a very famous material as a molten material solution surface sealing to prevent dissociation scattering from the solution during GaAs crystal pulling As to the gas phase, the base material structure through B 2 O 3 15 It dissociates and scatters elements very effectively. That is, by using the container described above, the gas phase inside the enclosed container surrounding the GaAs substrate 16 is in thermal equilibrium with the GaAs substrate 16, and the composition of the gas phase is automatically determined only by the temperature. The stoichiometric ratio of is always determined only by the temperature, and stable heat treatment can be realized.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例を詳細に説明す
る。第3図に示すように、反応管20の底面には、炭素製
の有底円筒状容器11が載置されている。この容器11は、
内面がテーパー状に形成された円筒状外壁11Aと、この
外壁11Aと円心状に形成されかつ外壁11Aより低くされた
円筒状内壁11Bを備えている。円筒状内壁11Bには、周方
向に沿って複数の細孔19が等間隔に穿設され、この細孔
19によって内壁11Bの内側空間と、内壁11Bと外壁11Aと
の間の空間とが連通されている。
An embodiment of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 3, a bottomed cylindrical container 11 made of carbon is placed on the bottom surface of the reaction tube 20. This container 11
A cylindrical outer wall 11A having an inner surface formed in a tapered shape, and a cylindrical inner wall 11B formed in a circular center with the outer wall 11A and lower than the outer wall 11A. The cylindrical inner wall 11B is provided with a plurality of pores 19 at equal intervals along the circumferential direction.
The space between the inner wall 11B and the outer wall 11A communicates with the inner space of the inner wall 11B by 19.

蓋容器12は、軸方向に移動自在の石英片封じ管22の一端
に連結された状態で反応管20内に収納されている。蓋容
器12の底面側外周には、外面が容器11の外壁11Aと同様
にテーパー状にされた嵌合部18が形成されている。嵌合
部18に囲まれた円柱状部には、化合物半導体ウエーハを
収納する開放したサセプター部17が形成されている。そ
して、反応管20の底面側外周には、熱処理を行なうため
の高周波コイル21が配置されている。
The lid container 12 is housed in the reaction tube 20 in a state of being connected to one end of a quartz piece sealing tube 22 which is movable in the axial direction. On the outer periphery of the bottom surface of the lid container 12, a fitting portion 18 having an outer surface tapered like the outer wall 11A of the container 11 is formed. An open susceptor portion 17 for accommodating the compound semiconductor wafer is formed in a cylindrical portion surrounded by the fitting portion 18. A high frequency coil 21 for heat treatment is arranged on the outer periphery of the bottom surface of the reaction tube 20.

以下、GaAs材料のイオン注入後の熱処理を例にとっ
て本実施例の作用について説明する。実際に熱処理を行
なうには、先ず第3図のように反応管20中に容器11と蓋
容器12を別々に配置した後、反応管20中にH2ガスを100
ml/minの割合で流して十分に反応管20中をH2で置
換する。この後、高周波コイル21に電流を通じ、容器11
を800℃に加熱する。この時蓋容器12はGaAs基板16
の温度を100℃以下に保つべく十分に容器11からはなし
ておく。容器11を800℃に加熱して30分間保つことでG
a溶液14が十分にAsで飽和される。この後、高周波コ
イル21の電流を減少して容器11の温度を800℃に下げ
る。その後、石英片封じ管22を反応管外部より動かして
速やかに蓋容器12を容器11に被せる。この状態は第4図
に示してあり、発明の作用と原理で説明したようにGa
As基板16は温度のみで決まる封入容器内熱平衡雰囲気
に置かれるため、表面状態は変化せず、化学量論的欠陥
の発生もない安定した熱処理を行なうことができる。す
なわち、上記した容器を用いることで安定した化合物半
導体の熱処理ができる。
The operation of the present embodiment will be described below by taking the heat treatment after ion implantation of the GaAs material as an example. In order to actually perform the heat treatment, first, as shown in FIG. 3, the container 11 and the lid container 12 are separately arranged in the reaction tube 20, and then 100 H 2 gas is introduced into the reaction tube 20.
The reaction tube 20 is sufficiently flushed with H 2 by flowing it at a rate of ml / min. After this, an electric current is passed through the high frequency coil 21 and the container 11
To 800 ° C. At this time, the lid container 12 is the GaAs substrate 16
The container 11 is sufficiently removed from the container 11 in order to keep the temperature below 100 ° C. By heating container 11 to 800 ℃ and keeping it for 30 minutes, G
Solution 14 is fully saturated with As. Then, the current of the high frequency coil 21 is reduced to lower the temperature of the container 11 to 800 ° C. After that, the quartz piece sealing tube 22 is moved from the outside of the reaction tube to quickly cover the lid container 12 on the container 11. This state is shown in FIG. 4, and as described in the operation and principle of the invention, Ga
Since the As substrate 16 is placed in the thermal equilibrium atmosphere in the sealed container determined only by the temperature, the surface state does not change, and stable heat treatment can be performed without the occurrence of stoichiometric defects. That is, stable heat treatment of the compound semiconductor can be performed by using the container described above.

以上説明したように本実施例によれば、FETのしきい
値電圧のGaAsウエーハ内での均一性を格段に向上す
ることができる。
As described above, according to this embodiment, the uniformity of the threshold voltage of the FET in the GaAs wafer can be significantly improved.

なお、容器11や蓋容器12の構造は実施例で示したものに
限らず、形状等は問わない。必要な要件は容器11と被熱
処理材料を入れる部屋を持った蓋容器12の間を溶融液に
て封止できる構造をもち、容器11に作られた溶融液を入
れる溝13との間には細孔19がつくられて被熱処理材料を
入れる部屋と少なくとも連通されていればよい。さら
に、容器11および蓋容器12の材質は炭素の例を示したが
BN等も採用でき、本質的に材料を限定するものではな
い。また、以上の記述からも明白であるが被熱処理母材
化合物半導体の種類も限定するものではなく、GaP,
InPはいうにおよばずInGaAsP等の混晶群に対
しても適用できる熱処理用容器である。
It should be noted that the structures of the container 11 and the lid container 12 are not limited to those shown in the embodiments, and the shapes and the like are not limited. The necessary requirement is to have a structure capable of sealing the space between the container 11 and the lid container 12 having a room for containing the material to be heat-treated with the melt, and between the groove 13 for containing the melt made in the container 11 It is sufficient that the pores 19 are formed and at least communicate with the room for containing the material to be heat treated. Further, although carbon is shown as an example of the material of the container 11 and the lid container 12, BN or the like can be adopted, and the material is not essentially limited. Further, as is clear from the above description, the kind of the base material compound semiconductor to be heat treated is not limited, and GaP,
Not to mention InP, it is a vessel for heat treatment applicable to a mixed crystal group such as InGaAsP.

〔発明の効果〕〔The invention's effect〕

この発明の熱処理用容器を適用することにより、イオン
注入化合物半導体ウエーハは表面状態も変化せず、化学
量論的欠陥の発生もない安定した熱処理を行なうことが
できる。さらに加えて何時、いかなる状況にあってもこ
の発明の容器を採用することでほとんど作業者のノウハ
ウといったものが必要のない再現性に優れたイオン注入
後熱処理プロセスが行なえるようになる、という効果が
得られる。
By applying the heat treatment container of the present invention, the ion-implanted compound semiconductor wafer can be subjected to stable heat treatment in which the surface state does not change and stoichiometric defects do not occur. In addition, by using the container of the present invention at any time and under any circumstances, it is possible to perform a post-ion implantation heat treatment process with excellent reproducibility that requires almost no operator know-how. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はこの発明の作用原理を説明するた
めの熱処理用容器の横断面図、 第3図および第4図は本発明の実施例の横断面図であ
る。 11……容器 12……蓋容器 13……溝 14……Ga溶液 15……B2O3 16……GaAs基板 17……サセプター部 18……嵌合部 19……細孔
1 and 2 are cross-sectional views of a heat treatment container for explaining the principle of operation of the present invention, and FIGS. 3 and 4 are cross-sectional views of an embodiment of the present invention. 11 …… Container 12 …… Lid container 13 …… Groove 14 …… Ga solution 15 …… B 2 O 3 16 …… GaAs substrate 17 …… Susceptor part 18 …… Mating part 19 …… Pore

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体ウエーハを収納できる開放し
た部屋を備えると共に、外周全体に亘って嵌合部が形成
された蓋容器と、前記蓋容器が被せられたときに少なく
とも前記開放した部屋を収納できるように形成された第
1の空間を備えると共に、前記第1の空間と細孔で連通
されかつ前記蓋容器が被せられたときに前記嵌合部を収
納できるように形成された第2の空間を備えた容器と、
を含む熱処理用容器。
1. A lid container having an open chamber capable of accommodating a compound semiconductor wafer, a lid container having a fitting portion formed over the entire outer periphery thereof, and at least the open chamber accommodated when the lid container is covered. A second space formed so as to be capable of being communicated with the first space through a pore and capable of accommodating the fitting portion when the lid container is covered. A container with a space,
A heat treatment container containing.
JP18854185A 1985-08-29 1985-08-29 Heat treatment container Expired - Lifetime JPH0654765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18854185A JPH0654765B2 (en) 1985-08-29 1985-08-29 Heat treatment container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18854185A JPH0654765B2 (en) 1985-08-29 1985-08-29 Heat treatment container

Publications (2)

Publication Number Publication Date
JPS6249620A JPS6249620A (en) 1987-03-04
JPH0654765B2 true JPH0654765B2 (en) 1994-07-20

Family

ID=16225510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18854185A Expired - Lifetime JPH0654765B2 (en) 1985-08-29 1985-08-29 Heat treatment container

Country Status (1)

Country Link
JP (1) JPH0654765B2 (en)

Also Published As

Publication number Publication date
JPS6249620A (en) 1987-03-04

Similar Documents

Publication Publication Date Title
US3828722A (en) Apparatus for producing ion-free insulating layers
EP0038915B1 (en) A capless annealing method for ion-implanted iii-v compounds
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
CA1124409A (en) Semiconductor plasma oxidation
US4246296A (en) Controlling the properties of native films using selective growth chemistry
US4470192A (en) Method of selected area doping of compound semiconductors
JPH0654765B2 (en) Heat treatment container
US4135952A (en) Process for annealing semiconductor materials
US4725565A (en) Method of diffusing conductivity type imparting material into III-V compound semiconductor material
US4353936A (en) Method of manufacturing semiconductor device
US4820651A (en) Method of treating bodies of III-V compound semiconductor material
US3666546A (en) Ion-free insulating layers
JP2000049105A (en) Method for diffusing zn to 3-5-group compound semiconductor crystal and diffuser
JPH0654766B2 (en) Heat treatment method
US4331710A (en) Method of forming an insulation film on semiconductor device surface
KR930004120B1 (en) Thermal treating method of compound semiconductor wafer
EP0023925B1 (en) Method of producing insulating film for semiconductor surfaces and semiconductor device with such film
JPS62122122A (en) Diffusing method for impurity
JP2617486B2 (en) (III) Heat treatment method for -V compound semiconductor
JPH0511410B2 (en)
Biedenbender et al. Chemical Nature of Silicon Nitride‐Indium Phosphide Interface and Rapid Thermal Annealing for InP MISFETs
JPS5917846B2 (en) 3↓-5 Method of diffusing impurities into compound semiconductors
JPH0511409B2 (en)
JP3617128B2 (en) Heat treatment method of compound semiconductor single crystal
JPS6122453B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term