JPH0654349A - Stereoscopic camera apparatus - Google Patents

Stereoscopic camera apparatus

Info

Publication number
JPH0654349A
JPH0654349A JP4204926A JP20492692A JPH0654349A JP H0654349 A JPH0654349 A JP H0654349A JP 4204926 A JP4204926 A JP 4204926A JP 20492692 A JP20492692 A JP 20492692A JP H0654349 A JPH0654349 A JP H0654349A
Authority
JP
Japan
Prior art keywords
camera
image pickup
image
stereoscopic
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4204926A
Other languages
Japanese (ja)
Other versions
JP3332091B2 (en
Inventor
Hajime Sudo
藤 肇 須
Hiroshi Takahashi
橋 博 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20492692A priority Critical patent/JP3332091B2/en
Publication of JPH0654349A publication Critical patent/JPH0654349A/en
Application granted granted Critical
Publication of JP3332091B2 publication Critical patent/JP3332091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To easily adjust the deviation of video images for right and left eyes in a vertical direction by providing an optical axis driving means for adjusting the optical axis direction of at least one of a right camera and a left camera. CONSTITUTION:Zoom lenses are used for lenses 51 and 52 and when a lens optical axis is fluctuated by a zooming operation and the deviation in a position in the vertical direction is generated between monitor video images for the right and left eyes, the reflection mirror 621 of a reflection mirror group 6 is driven by an elevation angle driving mechanism 102 and an image formation position to an imaging device is moved. Also, the reflection mirror 611 is driven by using an azimuth driving mechanism 101, the image forming position of a camera 31 for the left eye is moved toward a horizontal direction and the parallax of the camera 31 for the left eye and the camera 32 for the right eye is adjusted. By this constitution, the relative deviation in the vertical direction between the video images for the right and left eyes easily generated at the time of operating the zoom lenses and adjusting focus can be quickly adjusted and it is unnecessitated to prepare a lot of samples beforehand for arranging desired characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、両眼視差を利用する立
体カメラ装置に係り、撮影手段のレンズ系のズーム操作
時やフォーカス調節時、或いは上記撮影手段の構成要素
の個体差によって生じる左右眼用映像のズレを補償でき
る立体カメラ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic camera apparatus which utilizes binocular parallax, and a left and right side caused by a zoom operation or a focus adjustment of a lens system of a photographing means or an individual difference of the constituent elements of the photographing means. The present invention relates to a stereoscopic camera device capable of compensating for a deviation of an eye image.

【0002】[0002]

【従来の技術】遠隔地に設置された作業機械を操作する
際の視覚情報を得る上で、TVカメラ等を用いたいわゆ
る立体カメラ装置は有用な手段である。
2. Description of the Related Art A so-called stereoscopic camera device using a TV camera or the like is a useful means for obtaining visual information when operating a work machine installed in a remote place.

【0003】立体テレビ装置等にあっては両眼視差方式
が一般的であり、この方式はオペレータが観察したい対
象を僅かに視差を変えて撮影し、適当な映像呈示手段を
通して各々の映像をオペレータの左右眼に個別に提供す
る。オペレータが適正な立体映像を観察できるために
は、左右両眼への映像の倍率が等しいことに加え、左右
眼用映像は左右の水平方向のみに適正量離れ、垂直方向
には相対差が無い事が望ましい。このため従来の両眼視
差方式に用いられるTVカメラにあっては、所望の特性
を有するレンズや撮像部などを選別した後、厳密な調整
を施すことにより適正な映像を得ている。
A binocular parallax system is generally used in a stereoscopic television apparatus and the like. In this system, an operator takes an image of an object to be observed with slightly changing the parallax, and each image is displayed through an appropriate image presenting means. It is provided to the left and right eyes separately. In order for the operator to be able to observe a proper stereoscopic image, in addition to the same magnification for the left and right eyes, the images for the left and right eyes are separated by an appropriate amount only in the left and right horizontal directions, and there is no relative difference in the vertical direction. Things are desirable. Therefore, in the conventional TV camera used for the binocular parallax system, a proper image is obtained by performing strict adjustment after selecting a lens or an imaging unit having a desired characteristic.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、民生製
品から所望の特性を有する構成要素を得るためには同じ
製品を予め多数用意しておき選別する必要がある。ま
た、TVカメラを用いて撮影する際には初期調整だけで
なく、ズーム操作やフォーカス調整などの可動部を操作
する毎に頻繁に行なわなければならないことが多い。
However, in order to obtain components having desired characteristics from consumer products, it is necessary to prepare a large number of the same products in advance and select them. In addition, when shooting with a TV camera, it is often necessary to perform not only initial adjustment but also frequently each time a movable part such as zoom operation and focus adjustment is operated.

【0005】従って立体カメラの使用者は、外力など何
等かの要因で左右眼用映像に過度な垂直方向ズレが生じ
る場合には作業を中断して再度調整をし直すか、或いは
垂直方向ズレの生じない範囲での使用を余儀なくされて
いた。このため、上記方式の立体カメラは必ずしも有効
に利用されているとは言い難かった。
Therefore, the user of the stereoscopic camera should interrupt the work and readjust the image if the left and right eye images are excessively displaced in the vertical direction due to some factor such as external force. It had to be used in a range where it would not occur. Therefore, it has been difficult to say that the stereoscopic camera of the above method is effectively used.

【0006】特に立体カメラの有用性の高い極限環境に
おいては外的要因によって垂直方向のズレが生じる可能
性が高く、また、一度ズレが生じてしまうと再調整等が
非常に困難であった。
Particularly in an extreme environment where the stereoscopic camera is highly useful, there is a high possibility that a vertical shift will occur due to external factors, and once a shift has occurred, readjustment and the like have been extremely difficult.

【0007】そこで本発明の目的は、ズーム操作やフォ
ーカス調整、或いは予期しない原因で左右眼用映像の垂
直方向ズレが生じた場合においても復旧のための調整が
容易であり、かつ所望特性を揃えるために予め多数のサ
ンプルを用意する必要のない立体カメラ装置を提供する
ことにある。
Therefore, it is an object of the present invention to easily perform a zoom operation, a focus adjustment, or an adjustment for restoration even when a vertical shift of left and right eye images occurs due to an unexpected cause, and obtain desired characteristics. Therefore, it is to provide a stereoscopic camera device that does not need to prepare a large number of samples in advance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による立体カメラ装置は、並設された複数の
カメラによって対象物を異なる方向から撮影して前記カ
メラのそれぞれの撮像面へ結像する立体カメラ装置にお
いて、前記カメラの少なくとも一台のカメラのレンズの
光軸方向を、仰角方向、または仰角方向と方位角方向と
水平並進方向のうちの少なくとも一方向について調整す
る光軸駆動手段を備えることを特徴とする。
In order to achieve the above object, a stereoscopic camera device according to the present invention takes images of an object from different directions by a plurality of cameras arranged side by side, and displays the images on respective image pickup surfaces of the cameras. In a stereoscopic camera device that forms an image, an optical axis drive that adjusts an optical axis direction of a lens of at least one of the cameras in an elevation angle direction, or at least one of an elevation angle direction, an azimuth angle direction, and a horizontal translation direction. It is characterized by comprising means.

【0009】また、並設された複数のカメラによって対
象物を異なる方向から撮影して前記カメラのそれぞれの
撮像面へ結像する立体カメラ装置において、前記カメラ
の少なくとも一台のカメラの撮像面を、この撮像部の平
面の垂直方向、または垂直方向と水平方向のうちの少な
くとも一方の方向へ移動させる撮像面駆動手段を備える
ことを特徴とする。
Further, in a stereoscopic camera device for photographing an object from different directions by a plurality of cameras arranged side by side and forming an image on each image pickup surface of the camera, at least one of the camera has an image pickup surface. An image pickup surface driving unit for moving the image pickup unit in the vertical direction of the plane of the image pickup unit or in at least one of the vertical direction and the horizontal direction is provided.

【0010】また、撮像面駆動手段は、互いに平行に配
置されたガイドプレートと、このガイドプレートの軸方
向に沿って伸縮する移動用圧電素子と、この移動用圧電
素子の前後に対称に配置された前記ガイドプレートに対
し垂直方向に伸縮してガイドプレートをクランプする少
なくとも2つのクランプ用圧電素子と、これらクランプ
用圧電気素子と前記ガイドプレートを圧着させる圧着手
段とで構成されることが好適である。
Further, the image pickup surface driving means are arranged in parallel with each other, a moving piezoelectric element which expands and contracts along the axial direction of the guide plate, and symmetrically arranged in front of and behind the moving piezoelectric element. It is preferable that at least two piezoelectric elements for clamping, which extend and contract in the vertical direction with respect to the guide plate to clamp the guide plate, and a piezoelectric element for clamping and a crimping means for crimping the guide plate. is there.

【0011】また、撮像面駆動手段は、前記右カメラま
たは前記左カメラの一方の撮像面をこの撮像部の平面の
垂直方向および水平方向に移動することが好適である。
Further, it is preferable that the image pickup surface driving means moves the image pickup surface of one of the right camera and the left camera in the vertical and horizontal directions of the plane of the image pickup section.

【0012】また、前記光軸駆動手段または前記撮像面
駆動手段が光軸または撮像面を駆動するときに、前記右
カメラおよび前記左カメラのズーム値、フォーカス値、
対象物までの距離、または観察者の視覚特性を参照する
ようにさせる制御手段をさらに備えることが好適であ
る。
Further, when the optical axis driving means or the image pickup surface driving means drives the optical axis or the image pickup surface, the zoom value, the focus value, and the zoom value of the right camera and the left camera,
It is preferable to further include control means for making reference to the distance to the object or the visual characteristics of the observer.

【0013】また、立体カメラ装置は、前記光軸駆動手
段および前記撮像面駆動手段を備えていることが好適で
ある。
Further, it is preferable that the stereoscopic camera device includes the optical axis drive means and the image pickup surface drive means.

【0014】[0014]

【作用】TVカメラ等の立体カメラ装置を遠隔作業の観
察手段として用いる場合に、オペレータは立体カメラ装
置のレンズのズーム操作や立体カメラ装置の撮影方向調
整操作を雲台のパン・チルト操作を適宜行い、所望の映
像を得る。より臨場感のある映像を必要とする場合に
は、僅かに異なる視差で観察対象物を撮影しオペレータ
の左右眼に立体映像を提供できる立体カメラ装置が使用
される。適正な立体映像を観察するためには、上述のパ
ン・チルト操作を行う度に生じ易い左右眼用映像の相対
的な垂直方向ズレを防止する必要がある。
When the stereoscopic camera device such as a TV camera is used as an observation means for remote work, the operator appropriately performs the zoom operation of the lens of the stereoscopic camera device and the adjustment operation of the photographing direction of the stereoscopic camera device by the pan / tilt operation of the platform. Do and get the desired video. When a more realistic image is required, a stereoscopic camera device is used that can capture an observation object with a slightly different parallax and provide stereoscopic images to the left and right eyes of an operator. In order to observe a proper stereoscopic image, it is necessary to prevent a relative vertical shift of the left and right eye images, which is likely to occur each time the pan / tilt operation is performed.

【0015】本発明においては、光軸駆動手段によっ
て、複数のカメラの少なくとも1台のカメラレンズの光
軸方向を、仰角方向、仰角方向と方位角方向と水平方並
進方向のうちの少なくとも一方向について調製する。仰
角方向の調製は左右眼用映像の相対的な垂直方向ズレを
解消する為に用いられる。また、上仰角方向と方位角方
向と水平方並進方向行の調製はより観察しやすい立体映
像を実現する為に用いられる。
In the present invention, the optical axis drive means sets the optical axis direction of at least one camera lens of the plurality of cameras to at least one of an elevation angle direction, an elevation angle direction, an azimuth angle direction, and a horizontal translation direction. Prepare for. The adjustment of the elevation direction is used to eliminate the relative vertical shift of the left and right eye images. In addition, the adjustment of the elevation direction, the azimuth direction, and the horizontal translation direction row is used to realize a stereoscopic image that is easier to observe.

【0016】また、撮像面駆動手段によって、前記カメ
ラの少なくとも1台の撮像面を、この撮像部の平面の垂
直方向、または垂直方向と水平方向のうちの少なくとも
一方の方向へ移動させる。左右眼用映像の相対的な垂直
方向ズレを解消する為に、上記撮像部を水平方向に調整
する機構はより観察しやすい立体映像を実現する為に用
いられる。
Further, the image pickup surface driving means moves at least one image pickup surface of the camera in a direction perpendicular to the plane of the image pickup section, or in at least one of a vertical direction and a horizontal direction. In order to eliminate the relative vertical deviation of the left and right images, the mechanism for adjusting the image pickup unit in the horizontal direction is used to realize a stereoscopic image that is easier to observe.

【0017】光軸駆動手段または撮像面駆動手段による
立体カメラ装置の調整は、立体映像の観察者が手動で行
っても良い。また、ズーム値、フォーカス値、観察対象
物までの距離、または観察者の視覚特性データに基づい
て、制御手段によって自動的に、光軸駆動手段または撮
像面駆動手段による立体カメラ装置の調整を行うことも
可能である。
The adjustment of the stereoscopic camera device by the optical axis driving means or the imaging surface driving means may be manually performed by an observer of a stereoscopic image. Further, the control means automatically adjusts the stereoscopic camera device by the optical axis drive means or the imaging surface drive means based on the zoom value, the focus value, the distance to the observation object, or the visual characteristic data of the observer. It is also possible.

【0018】本発明では立体映像の呈示手段については
言及していないが、上記の制御を行う際には、モニタサ
イズや観察者とモニタ間の距離がパラメータとして考慮
されていることは言うまでもない。
Although the present invention does not refer to the means for presenting a stereoscopic image, it goes without saying that the monitor size and the distance between the observer and the monitor are considered as parameters when the above control is performed.

【0019】また、ズーム値、フォーカス値、または観
察対象までの距離を知る手段は、ポテンショメータや距
離計の使用など公知の手法を利用することができる。
As a means for knowing the zoom value, the focus value, or the distance to the object to be observed, a known method such as using a potentiometer or a distance meter can be used.

【0020】また、観察者の視覚特性データは各個人の
参照テーブルを作成しても良いし、統計的な人間工学デ
ータを用いても良い。
For the visual characteristic data of the observer, a reference table for each individual may be created, or statistical ergonomic data may be used.

【0021】さらに、上記の制御方式は較正テーブルの
参照と補間を併用する方式など一般的な手法を用いるこ
とができる。
Further, as the above-mentioned control method, it is possible to use a general method such as a method of using the reference of the calibration table and the interpolation together.

【0022】[0022]

【実施例】本発明の立体カメラ装置の実施例を図面を参
照して説明する。図1は本発明に係る立体カメラ装置の
第一の実施例の概略を示した図である。なお、特徴を強
調する為に各構成要素の形状や配置は便宜的に実際とは
違えて描いてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the stereoscopic camera device of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a first embodiment of a stereoscopic camera device according to the present invention. In addition, in order to emphasize the features, the shapes and arrangements of the respective constituents are drawn differently from the actual ones for convenience.

【0023】図1において、観察対象1は立体カメラ装
置2によって撮影される。この立体カメラ装置2はパン
(α)方向動作とチルト(β)方向動作が可能な雲台4
上に設置された左眼用カメラ31と右眼用カメラ32と
を備えている。各々のカメラ31、32には左右眼用レ
ンズ51,52が取り付けられている。2台のカメラ3
1、32は筐体を兼ねたカメラ接合部33で結合されて
いる(レンズ51、52の周りもカメラ接合部33で覆
われている)。これら2台のカメラ31、32は垂直方
向に段差をつけ、水平方向に若干の距離をおいて設置さ
れている。
In FIG. 1, the observation object 1 is photographed by the stereoscopic camera device 2. This stereoscopic camera device 2 is a pan head 4 capable of pan (α) direction operation and tilt (β) direction operation.
A left-eye camera 31 and a right-eye camera 32 installed above are provided. Left and right eye lenses 51 and 52 are attached to the cameras 31 and 32, respectively. Two cameras 3
Reference numerals 1 and 32 are joined by a camera joint portion 33 that also serves as a housing (the lenses 51 and 52 are also covered by the camera joint portion 33). These two cameras 31 and 32 have a step in the vertical direction and are installed at a slight distance in the horizontal direction.

【0024】左右眼用レンズ51、52の直前には反射
鏡群6が設置され、観察対象1はこの反射鏡群6を経由
してレンズ51、52に導かれた後、カメラ31、32
内の撮像部に結像される。
A reflecting mirror group 6 is installed immediately in front of the left and right lenses 51 and 52, and the observation object 1 is guided to the lenses 51 and 52 via the reflecting mirror group 6 and then the cameras 31 and 32.
An image is formed on the image pickup section inside.

【0025】本実施例において反射鏡群6は機能的に2
種類の反射鏡群に分けられる。第1の反射鏡群61は第
1の反射鏡611と第2の反射鏡612で構成され、本
実施例では両者の反射面とも鉛直面に対して直角に設置
されている。第2の反射鏡群62も第1の反射鏡621
と第2の反射鏡622で構成され、本実施例では両者の
反射面とも鉛直面に対して直角に設置されている。
In this embodiment, the reflecting mirror group 6 is functionally 2
It is divided into different types of reflectors. The first reflecting mirror group 61 is composed of a first reflecting mirror 611 and a second reflecting mirror 612. In this embodiment, both reflecting surfaces are installed at right angles to the vertical plane. The second reflecting mirror group 62 is also the first reflecting mirror 621.
And the second reflecting mirror 622. In this embodiment, both reflecting surfaces are installed at right angles to the vertical plane.

【0026】左眼用カメラ31に対しては、観察対象1
からの物体光(A)は反射鏡611に入射し反射した
後、反射鏡612で反射され、左眼用レンズ51を経
て、図示されない撮像素子上に結像される。同様にして
右眼用カメラ32に関しては物体光(A)と異なる視差
を有する物体光(B)が、反射鏡621及び622と、
右眼用レンズ52を経た後、図示されない右眼用カメラ
の撮像素子上に結像される。前述したように左右眼用の
2台のカメラ31、32は水平方向に離間して設置され
ており、また反射鏡群6は観察対象1を水平方向にある
視差をもって見込む様に設置されているので、左右眼用
カメラ31、32の図示されない撮像素子に結像される
映像もやはり水平方向に視差をもったものとなる。従っ
てこの両映像を公知の適当な手段に依り、観察者の両眼
に独立に呈示してやれば、この観察者は立体映像を感得
することができる。
For the left-eye camera 31, the observation target 1
The object light (A) from is incident on the reflecting mirror 611, is reflected, then is reflected by the reflecting mirror 612, passes through the lens 51 for the left eye, and is imaged on an image sensor (not shown). Similarly, regarding the right-eye camera 32, the object light (B) having a parallax different from the object light (A) is reflected by the reflecting mirrors 621 and 622.
After passing through the right-eye lens 52, an image is formed on an image pickup device of a right-eye camera (not shown). As described above, the two cameras 31 and 32 for the left and right eyes are installed separately in the horizontal direction, and the reflecting mirror group 6 is installed so as to look at the observation target 1 with a certain parallax in the horizontal direction. Therefore, the images formed on the image pickup elements (not shown) of the left and right cameras 31, 32 also have parallax in the horizontal direction. Therefore, if both images are presented to both eyes of the observer independently by a known appropriate means, the observer can perceive a stereoscopic image.

【0027】第1の反射鏡群61を構成する2枚の反射
鏡の内、本実施例では反射鏡612は左眼用レンズ51
の直前に固定的に設置され、反射鏡611はレンズ51
近傍に設置された軸91を中心に方位角(γ1 )方向に
回転する。この回転動作は方位角駆動機構101によっ
て行われる。また、第1の反射鏡群62を構成する2枚
の反射鏡では、反射鏡622は右眼用レンズ52の直前
に固定的に設置され、反射鏡621はレンズ52近傍に
設置された軸92を中心にして、仰角駆動機構102に
よって仰角(γ2 )方向に駆動される。
Of the two reflecting mirrors constituting the first reflecting mirror group 61, the reflecting mirror 612 is the left eye lens 51 in this embodiment.
Is fixedly installed immediately before, and the reflecting mirror 611 is the lens 51.
It rotates in the azimuth (γ 1 ) direction around the axis 91 installed in the vicinity. This rotation operation is performed by the azimuth drive mechanism 101. Further, in the two reflecting mirrors constituting the first reflecting mirror group 62, the reflecting mirror 622 is fixedly installed immediately in front of the right eye lens 52, and the reflecting mirror 621 is provided with an axis 92 installed near the lens 52. Is driven in the elevation angle (γ 2 ) direction by the elevation angle drive mechanism 102.

【0028】レンズ51,52にズームレンズを使用す
る場合、ズーム操作によってレンズ光軸が変動し、観察
者に呈示される左右眼用モニタ映像の間に垂直方向の位
置ズレが生じ易い。この場合、このズレ量が過大である
と立体視が不可能となる。そこで次のようにしてこのズ
レ量を補償する。すなわち、反射鏡621を駆動するこ
とにより、右眼用カメラ32の撮像素子上の結像位置を
垂直方向に移動させる。このために、反射鏡621を仰
角駆動機構102により駆動して、ズーム操作に生じた
両映像の垂直方向のズレ量だけ撮像素子への結像位置を
移動してやる。これによって、左右眼用両映像の相対的
な垂直方向ズレを解消することができ、観察者が立体感
得を消失することはない。
When a zoom lens is used as the lenses 51 and 52, the optical axis of the lens fluctuates due to the zoom operation, and a vertical position shift is likely to occur between the left and right eye monitor images presented to the observer. In this case, if the amount of deviation is too large, stereoscopic vision becomes impossible. Therefore, the deviation amount is compensated as follows. That is, by driving the reflecting mirror 621, the image forming position on the image pickup element of the right-eye camera 32 is moved in the vertical direction. For this reason, the reflecting mirror 621 is driven by the elevation angle drive mechanism 102, and the image forming position on the image pickup element is moved by the amount of vertical shift of both images caused by the zoom operation. As a result, it is possible to eliminate the relative vertical deviation between the left and right eye images, and the observer does not lose the stereoscopic effect.

【0029】上述のように左右眼映像の相対的な垂直方
向ズレが解消されれば、基本的な立体映像の感得が可能
であるが、レンズの焦点距離と観察対象までの距離の関
係や観察者の瞳孔間隔によっては、観察対象を見込む両
カメラ31、32の視差を調節する必要がある。この場
合には、方位角駆動機構101を用いて反射鏡611を
必要量だけ駆動してやることにより、左眼用カメラ31
の結像位置を水平方向へ移動する。これにより、両カメ
ラ31、32間の等価的な視差調節が可能となり、より
観察し易い立体映像を観察者に呈示することができる。
If the relative vertical deviation of the left and right eye images is eliminated as described above, a basic stereoscopic image can be obtained. However, the relationship between the focal length of the lens and the distance to the observation target is It is necessary to adjust the parallax of both cameras 31 and 32 looking into the observation object depending on the pupil distance of the observer. In this case, the azimuth angle drive mechanism 101 is used to drive the reflecting mirror 611 by a necessary amount, whereby the left-eye camera 31
The image forming position of is moved in the horizontal direction. As a result, equivalent parallax adjustment between the cameras 31 and 32 becomes possible, and a stereoscopic image that is easier to observe can be presented to the observer.

【0030】上述したズーム操作に伴うレンズの焦点距
離変化量やフォーカシング操作に依る焦点距離変化量は
レンズ鏡筒に設置されたポテンショメータ等で測定され
る。このポテンショメータ等で測定した焦点距離変化量
に対して駆動機構制御装置11によって適正な補正量の
計算がなされた後、仰角および方位角駆動機構の一部を
為すモータの駆動信号として送出される。この補正量計
算は公知の様々な方式があり、立体カメラを構成する要
素部品に応じて適正な方式が採用される。
The amount of change in the focal length of the lens due to the above zoom operation and the amount of change in the focal length due to the focusing operation are measured by a potentiometer or the like installed in the lens barrel. An appropriate correction amount is calculated by the drive mechanism control device 11 with respect to the focal length change amount measured by the potentiometer or the like, and then sent as a drive signal of a motor which constitutes a part of the elevation angle and azimuth angle drive mechanism. There are various known methods for calculating the correction amount, and an appropriate method is adopted according to the component parts that make up the stereoscopic camera.

【0031】また、本実施例では左右眼用カメラ31、
32で各々1枚ずつの反射鏡(611及び621)を駆
動しているが、本実施例で固定されている反射鏡(61
2及び622)を併せて協調的に駆動しても良い。この
場合、前述した軸(91及び92)の代りに2自由度の
ジョイントを用いれば、1組の反射鏡群で仰角調整と方
位角調整との両者を実現することができる。 本実施例
の構成によれば、ズーム操作やフォーカス調整、あるい
は予期しない原因で左右眼用映像の垂直方向ズレが生じ
た場合においても復旧のための調整を、容易に行うこと
ができる。
In this embodiment, the left and right eye cameras 31,
Although one reflecting mirror (611 and 621) is driven by 32, each reflecting mirror (61 and 621) is fixed in this embodiment.
2 and 622) may be combined and driven cooperatively. In this case, if a two-degree-of-freedom joint is used instead of the axes (91 and 92) described above, both the elevation angle adjustment and the azimuth angle adjustment can be realized by one set of reflecting mirror groups. According to the configuration of the present embodiment, it is possible to easily perform the zoom operation, the focus adjustment, or the adjustment for the recovery even when the left-eye video image is misaligned in the vertical direction due to an unexpected cause.

【0032】また、立体カメラ装置が所望特性を揃える
ようにするために、予め多数のサンプルを用意しておく
必要がなくなる。
Further, it is not necessary to prepare a large number of samples in advance in order for the stereoscopic camera device to have the desired characteristics.

【0033】また、電磁的な影響を与えないで、ズーム
操作やフォーカス調整、左右眼用映像の垂直方向ズレの
復旧のための調整を行うことができるので、画像信号の
乱れも最小にとどめることができる。
Further, zoom operations, focus adjustments, and adjustments for restoration of vertical shifts of left and right eye images can be performed without giving an electromagnetic effect, so that the disturbance of the image signal can be minimized. You can

【0034】次に図2乃至図5を参照して、本発明によ
る立体カメラ装置の第二の実施例を説明する。
Next, a second embodiment of the stereoscopic camera device according to the present invention will be described with reference to FIGS.

【0035】図2は第二の実施例の概略を模式的に示し
た図である。本実施例の立体カメラ装置は図1に示した
第一実施例の場合と同様に雲台上に設置されるが、本実
施例では簡単の為にこの雲台の記載は省略してある。
FIG. 2 is a diagram schematically showing the outline of the second embodiment. The stereoscopic camera device of the present embodiment is installed on the pan head as in the case of the first embodiment shown in FIG. 1, but in this embodiment, the pan head is omitted for simplicity.

【0036】図1に示した第一実施例においてはレンズ
51,52の直前に、仰角および方位角の駆動機構を備
えた反射鏡群6を設置して立体感得の容易化を図った
が、本実施例ではレンズ51、52の直前に上述の様な
反射鏡群を設置せず、カメラ31、32内の2台の撮像
素子に駆動機構を取り付けている。これらの駆動機構の
うち左眼用カメラ31の撮像素子131に取着された駆
動機構141(図3に詳細を記載する)は、この撮像素
子を水平(H)方向にのみ所望量だけ駆動する機能を有
する。また、右眼用カメラ32の撮像素子132に取着
された駆動機構142は、この撮像素子を垂直(V)方
向にのみ所望量だけ駆動する機能を有する。これらの2
つの駆動機構141,142は基本的には同一の構造で
あり、取り付け方向が互いに90度違えているだけであ
る。図2ではカメラ31、32の一部を切り欠いて撮像
素子131、132を示してあり、これらのカメラ内部
の他の部品の記載は省略してある。
In the first embodiment shown in FIG. 1, a reflecting mirror group 6 having a drive mechanism for elevation angle and azimuth angle is installed immediately before the lenses 51 and 52 to facilitate the stereoscopic effect. In this embodiment, the drive mechanism is attached to the two image pickup devices in the cameras 31 and 32 without installing the above-described reflecting mirror group immediately before the lenses 51 and 52. Of these drive mechanisms, the drive mechanism 141 (described in detail in FIG. 3) attached to the image pickup device 131 of the left-eye camera 31 drives this image pickup device only in the horizontal (H) direction by a desired amount. Have a function. The drive mechanism 142 attached to the image pickup device 132 of the right-eye camera 32 has a function of driving the image pickup device only in the vertical (V) direction by a desired amount. These two
The two drive mechanisms 141 and 142 have basically the same structure, and their mounting directions are different from each other by 90 degrees. In FIG. 2, the image pickup elements 131 and 132 are shown by cutting out a part of the cameras 31 and 32, and description of other parts inside these cameras is omitted.

【0037】第一実施例において説明した様に、ズーム
操作やフォーカシング操作に伴うレンズの光軸変動によ
って左右眼用両映像間に垂直方向の位置ズレが生じた場
合には、撮像素子132の駆動機構142を駆動する事
により、左右眼用映像の相対的な垂直方向ズレを無くす
ることができる。また、両カメラ31、32が観察対象
を見込む視差を変更したい場合には、撮像素子131の
駆動機構141を駆動することにより、この撮像素子1
31への水平方向の結像位置を変更し、等価的な視差調
節を実現することができる。本実施例では、各々の駆動
機構141、142は一方向のみの運動を可能とした
が、一つの駆動機構に水平および垂直の2方向の自由度
を持たせることも可能である。
As described in the first embodiment, when the vertical position shift occurs between the left and right eye images due to the optical axis variation of the lens caused by the zoom operation or the focusing operation, the image pickup element 132 is driven. By driving the mechanism 142, it is possible to eliminate the relative vertical deviation of the images for the left and right eyes. Further, when it is desired for the cameras 31 and 32 to change the parallax in which the observation target is viewed, the driving mechanism 141 of the image pickup device 131 is driven to cause the image pickup device 1 to move.
It is possible to change the horizontal image forming position on 31 and realize equivalent parallax adjustment. In the present embodiment, each drive mechanism 141, 142 is allowed to move in only one direction, but it is also possible to provide one drive mechanism with two degrees of freedom in horizontal and vertical directions.

【0038】駆動機構141、142は第一実施例と同
様に、レンズ鏡筒に取着されたポテンショメータや予め
登録された操作頁の個人特性データを参照しながら、駆
動機構制御装置15により制御される。
The drive mechanisms 141 and 142 are controlled by the drive mechanism controller 15 with reference to the potentiometer attached to the lens barrel and the personal characteristic data of the operation page registered in advance, as in the first embodiment. It

【0039】これらの駆動機構141、142には様々
な実現手段があるが、図3には一例として圧電素子を用
いた方式を示す。
Although there are various means for realizing the driving mechanisms 141 and 142, FIG. 3 shows a system using a piezoelectric element as an example.

【0040】図3においてこの駆動機構141(14
2)は、互いに平行に配置された被クランプ体であるガ
イドプレート20,21と、このガイドプレート20,
21の間にあってガイドプレート20,21の軸方向に
沿って伸縮する移動用圧電素子22と、移動用圧電素子
22の前後に対称に配設されたガイドプレート20,2
1に対し垂直方向に伸縮しガイドプレート20,21の
側壁41,42をクランプするクランプ用圧電素子23
および24と、これらクランプ用圧電素子23,24と
側壁41,42を圧着させるバネ43,44から主に構
成されている。移動用圧電素子22とクランプ用圧電素
子23,24はそれぞれ連結ブロック25,26を介し
て連結され、移動体40を構成し、さらに、連結ブロッ
ク25には、撮像素子131(132)のベース27を
取り付けるための取り付けネジ穴28が、ベース27側
とともに設けられ、ネジ29によって固定されている。
また、ガイドプレート21には、本構成の駆動機構14
1(142)をカメラ31(32)に固定するためのネ
ジ穴46および47が、カメラ31(32)側とともに
設けられ、ボルト45によって固定されている。
In FIG. 3, this drive mechanism 141 (14
2) is a guide plate 20, 21 which is a clamped body arranged parallel to each other, and the guide plate 20,
Piezoelectric element 22 for movement which is located between 21 and expands and contracts along the axial direction of guide plates 20, 21, and guide plates 20, 2 symmetrically arranged in front of and behind piezoelectric element 22 for movement.
1. Clamping piezoelectric element 23 that expands and contracts in the direction perpendicular to 1 and clamps the side walls 41 and 42 of the guide plates 20 and 21.
And 24, and springs 43, 44 for crimping the clamping piezoelectric elements 23, 24 and the side walls 41, 42. The moving piezoelectric element 22 and the clamping piezoelectric elements 23 and 24 are connected to each other via connecting blocks 25 and 26 to form a moving body 40, and the connecting block 25 further includes a base 27 of the image pickup device 131 (132). A mounting screw hole 28 for mounting is provided together with the base 27 side, and is fixed by a screw 29.
In addition, the guide plate 21 includes the drive mechanism 14 of this configuration.
Screw holes 46 and 47 for fixing 1 (142) to the camera 31 (32) are provided together with the camera 31 (32) side and fixed by bolts 45.

【0041】この様な構造の本実施例の動作原理を図4
および図5を用いて説明する。ここで図4は本実施例の
駆動機構の断面を上面から見た動作原理の模式図であ
る。また、図5は移動用圧電素子22およびクランプ用
圧電素子23,24に印加される電圧の経時変化を示す
グラフであり、上段はクランプ用圧電素子23,24に
印加される電圧波形を、下段は移動用圧電素子22に印
加される電圧波形を示す。図5において移動用圧電素子
22に印加される電圧72およびクランプ用圧電素子2
3,24に印加される電圧70および71がそれぞれa
点である時に駆動機構が図4の(1)の状態にあるとす
る。次に電圧がb点まで変化すると、図4の(2)のよ
うにクランプ用圧電素子23,24の先端点も印加電圧
に応じて変化する。ここで、クランプ用圧電素子23の
先端点は図面上方に、クランプ用圧電素子24の先端点
は図面下面に振動軌跡をとる。そして、最後に電圧がa
点と同じc点に戻ると移動用圧電素子22およびクラン
プ用圧電素子23,24は、再び図4の(1)の状態に
戻り、一連の動作が終了する。この一連の動作を繰り返
すことにより、クランプ用圧電素子23,24の先端が
描く軌跡は回転方向が同じで位相が180度異なる楕円
運動73および74となる。この時、ガイドプレート2
0,21はバネによってクランプ用圧電素子23,24
に圧着されるが、ガイドプレート20の慣性によって、
それぞれに係わるクランプ用圧電素子23,24の楕円
運動b→cおよびa→bの状態にある時のみ接触するこ
とから、一方向の推進力だけが伝達される。つまり、ク
ランプ用圧電素子23,24とガイドプレート20,2
1との双方の摩擦力により、移動体は図3に示した矢印
の正方向の向きに駆動する。今度は、移動用圧電素子2
2の印加電圧72を前記と位相が180度異なるタイミ
ングで電圧75を印加すれば、図4の楕円軌跡73,7
4は共に正反対に描かれ、結果的に移動体は図3に示し
た矢印の負方向の向きに駆動する。なお、クランプ用圧
電素子23,24の印加電圧の振幅76は、ガイドプレ
ート20,21間に働く圧着力との関係から最適量を選
ぶことができ、移動用圧電素子22の印加電圧の振幅7
7は、移動体の移動速度を決定する。また、本駆動機構
は本来摩擦駆動であるため、電源をオフにした状態で
は、バネの圧着力による摩擦力で移動体が固定されるの
で、新たにブレーキ機構を必要としない。
The operating principle of this embodiment having such a structure is shown in FIG.
And it demonstrates using FIG. Here, FIG. 4 is a schematic view of the operating principle of the drive mechanism of the present embodiment when the cross section is viewed from above. FIG. 5 is a graph showing changes with time of the voltages applied to the moving piezoelectric element 22 and the clamping piezoelectric elements 23 and 24. The upper graph shows the voltage waveforms applied to the clamping piezoelectric devices 23 and 24. Shows a voltage waveform applied to the moving piezoelectric element 22. In FIG. 5, the voltage 72 applied to the moving piezoelectric element 22 and the clamping piezoelectric element 2
The voltages 70 and 71 applied to 3, 24 are respectively a
It is assumed that the drive mechanism is in the state of (1) in FIG. 4 when it is a point. Next, when the voltage changes to the point b, the tip points of the clamping piezoelectric elements 23 and 24 also change according to the applied voltage as shown in (2) of FIG. Here, the tip of the clamping piezoelectric element 23 has an oscillation locus on the upper side of the drawing, and the tip of the clamping piezoelectric element 24 has a vibration locus on the lower surface of the figure. And finally the voltage is a
When returning to point c, which is the same as the point, the moving piezoelectric element 22 and the clamping piezoelectric elements 23 and 24 return to the state of (1) in FIG. 4 again, and a series of operations is completed. By repeating this series of operations, the loci drawn by the tips of the clamping piezoelectric elements 23 and 24 become elliptical motions 73 and 74 having the same rotation direction but different phases by 180 degrees. At this time, the guide plate 2
0 and 21 are clamping piezoelectric elements 23 and 24 by springs
, But due to the inertia of the guide plate 20,
Since the contact is made only in the states of elliptic motions b → c and a → b of the piezoelectric elements for clamping 23, 24 related to each other, only propulsive force in one direction is transmitted. That is, the clamp piezoelectric elements 23, 24 and the guide plates 20, 2
By the frictional force of both 1 and 1, the moving body is driven in the positive direction of the arrow shown in FIG. This time, the moving piezoelectric element 2
If the voltage 75 is applied to the second applied voltage 72 at a timing 180 degrees out of phase with the above, the elliptical loci 73, 7 of FIG.
Both 4 are drawn oppositely, and as a result, the moving body drives in the negative direction of the arrow shown in FIG. It should be noted that the amplitude 76 of the applied voltage to the clamping piezoelectric elements 23 and 24 can be selected as an optimum amount from the relationship with the crimping force acting between the guide plates 20 and 21, and the amplitude 7 of the applied voltage to the moving piezoelectric element 22 is 7
7 determines the moving speed of the moving body. Further, since the present drive mechanism is originally friction drive, the moving body is fixed by the frictional force due to the crimping force of the spring when the power is turned off, so that no new brake mechanism is required.

【0042】本実施例の構成によれば、ズーム操作やフ
ォーカス調整、或いは予期しない原因で左右眼用映像の
垂直方向ズレが生じた場合においても復旧のための調整
を容易に行うことができる。
According to the structure of the present embodiment, it is possible to easily perform the adjustment for the restoration even when the vertical displacement of the left and right eye images occurs due to the zoom operation, the focus adjustment, or an unexpected cause.

【0043】また、立体カメラ装置が所望特性を揃える
ようにするために、予め多数のサンプルを用意しておく
必要がなくなる。
Further, it is not necessary to prepare a large number of samples in advance in order for the stereoscopic camera device to have the desired characteristics.

【0044】また、構造が極めて簡単でかつ小形軽量で
あり、高い駆動分解能を有する駆動機構を提供すること
ができる。
Further, it is possible to provide a drive mechanism having a very simple structure, a small size and a light weight, and a high drive resolution.

【0045】また、電磁的な影響を与えないで、ズーム
操作やフォーカス調整、左右眼用映像の垂直方向ズレの
復旧のための調整を行うことができるので、画像信号の
乱れも最小にとどめることができる。
Further, since the zoom operation, the focus adjustment, and the adjustment for the recovery of the vertical deviation of the left and right eye images can be performed without electromagnetic influence, the disturbance of the image signal can be minimized. You can

【0046】なお、本発明はTVカメラだけでなく、ス
チールカメラにも適用可能であることは言うまでもな
い。
It goes without saying that the present invention is applicable not only to TV cameras but also to still cameras.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
同一観察対象を水平方向に視差を持った2方向から撮影
して観察者に立体映像を提供する立体テレビ装置におい
て、ズームレンズ操作時やフォーカス調整時に生じ易
い、左右眼用映像間の相対的な垂直方向ズレを速やかに
補正する事ができる。
As described above, according to the present invention,
Description of the Related Art In a stereoscopic television device that provides a stereoscopic image to an observer by shooting the same observation target from two directions with a parallax in the horizontal direction, a relative distance between left and right eye images, which is likely to occur during zoom lens operation or focus adjustment. Vertical deviation can be corrected quickly.

【0048】また、高倍率レンズで近距離の対象の立体
映像を観察する場合に要求される左右眼用両映像の視差
調整や、個人差による視差調整を容易に行うことができ
るので、観察者に常に良好な立体映像を提供することが
できる。
Further, since it is possible to easily perform parallax adjustment of both left and right eye images required for observing a stereoscopic image of an object at a short distance with a high magnification lens and parallax adjustment due to individual differences, It is possible to always provide good stereoscopic images.

【0049】また、左右眼用両映像の垂直方向ズレ補正
や視差調整を構成要素の比較的少ない機構で実現するこ
とができるので、立体カメラ装置全体のサイズを小形化
することができ、また制御機構を簡素化することができ
る。
Further, since it is possible to realize vertical direction deviation correction and parallax adjustment of both left and right eye images with a mechanism having relatively few constituent elements, the overall size of the stereoscopic camera device can be downsized and controlled. The mechanism can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による立体カメラ装置の第一実施例の概
略を示す斜視図。
FIG. 1 is a perspective view schematically showing a first embodiment of a stereoscopic camera device according to the present invention.

【図2】本発明による立体カメラ装置の第二実施例の概
略を示す斜視図。
FIG. 2 is a perspective view schematically showing a second embodiment of the stereoscopic camera device according to the present invention.

【図3】図2における撮像素子駆動機構を詳細に示す斜
視図。
3 is a perspective view showing in detail an image pickup element drive mechanism in FIG.

【図4】図3における撮像素子駆動機構の動作原理を示
す模式図。
FIG. 4 is a schematic diagram showing the operating principle of the image sensor driving mechanism in FIG.

【図5】図3および図4に示した圧電素子に印加される
電圧波形の経時変化を示す図。
FIG. 5 is a diagram showing changes over time in the voltage waveform applied to the piezoelectric element shown in FIGS. 3 and 4.

【符号の説明】[Explanation of symbols]

1 観察対象物 2 立体カメラ装置 4 雲台 6 反射鏡群 11 駆動機構制御装置 15 駆動機構制御装置 20 ガイドプレート 21 ガイドプレート 22 移動用圧電素子 23 クランプ用圧電素子 24 クランプ用圧電素子 25 連結ブロック 26 連結ブロック 27 撮像素子取り付けベース 31 右眼用カメラ 32 左眼用カメラ 33 カメラ接合部 51 右眼用レンズ 52 左眼用レンズ 61 反射鏡群 62 反射鏡群 91 方位角回転軸 92 仰角回転軸 101 方位角駆動機構 102 仰角駆動機構 131 右眼カメラ撮像素子 132 左眼カメラ撮像素子 141 右眼カメラ撮像素子用駆動機構 142 左眼カメラ撮像素子用駆動機構 611 反射鏡 612 反射鏡 621 反射鏡 622 反射鏡 DESCRIPTION OF SYMBOLS 1 Observed object 2 Stereoscopic camera device 4 Platform 6 Reflector group 11 Driving mechanism control device 15 Driving mechanism control device 20 Guide plate 21 Guide plate 22 Moving piezoelectric element 23 Clamping piezoelectric element 24 Clamping piezoelectric element 25 Coupling block 26 Connection block 27 Image sensor mounting base 31 Camera for right eye 32 Camera for left eye 33 Camera joint 51 Lens for right eye 52 Lens for left eye 61 Reflector group 62 Reflector group 91 Azimuth rotation axis 92 Elevation rotation axis 101 Azimuth Angle drive mechanism 102 Elevation drive mechanism 131 Right eye camera image sensor 132 Left eye camera image sensor 141 Right eye camera image sensor drive mechanism 142 Left eye camera image sensor drive mechanism 611 Reflector 612 Reflector 621 Reflector 622 Reflector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】並設された複数のカメラによって対象物を
異なる方向から撮影して前記カメラのそれぞれの撮像面
へ結像する立体カメラ装置において、前記カメラの少な
くとも一台のカメラのレンズの光軸方向を、仰角方向、
または仰角方向と方位角方向と水平並進方向のうちの少
なくとも一方向について調整する光軸駆動手段を備える
ことを特徴とする立体カメラ装置。
1. A stereoscopic camera device for photographing an object from different directions by a plurality of cameras arranged in parallel to form an image on each image pickup surface of the camera, wherein light of a lens of at least one camera of the camera. Axial direction, elevation direction,
Alternatively, a stereoscopic camera device comprising an optical axis drive means for adjusting at least one of an elevation angle direction, an azimuth angle direction, and a horizontal translation direction.
【請求項2】並設された複数のカメラによって対象物を
異なる方向から撮影して前記カメラのそれぞれの撮像面
へ結像する立体カメラ装置において、前記カメラの少な
くとも一台のカメラの撮像面を、この撮像部の平面の垂
直方向、または垂直方向と水平方向のうちの少なくとも
一方の方向へ移動させる撮像面駆動手段を備えることを
特徴とする立体カメラ装置。
2. A stereoscopic camera device for photographing an object from different directions by a plurality of cameras arranged in parallel and forming an image on each image pickup surface of the camera, wherein at least one camera of the camera has an image pickup surface. A stereoscopic camera device comprising: an image pickup surface driving unit that moves the image pickup unit in a vertical direction of the plane of the image pickup unit or in at least one of a vertical direction and a horizontal direction.
JP20492692A 1992-07-31 1992-07-31 3D camera device Expired - Fee Related JP3332091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20492692A JP3332091B2 (en) 1992-07-31 1992-07-31 3D camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20492692A JP3332091B2 (en) 1992-07-31 1992-07-31 3D camera device

Publications (2)

Publication Number Publication Date
JPH0654349A true JPH0654349A (en) 1994-02-25
JP3332091B2 JP3332091B2 (en) 2002-10-07

Family

ID=16498654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20492692A Expired - Fee Related JP3332091B2 (en) 1992-07-31 1992-07-31 3D camera device

Country Status (1)

Country Link
JP (1) JP3332091B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575628B1 (en) * 1998-12-24 2006-11-10 엘지전자 주식회사 Apparatus of 3-Dimension Picture Display
US20080239064A1 (en) * 2007-03-29 2008-10-02 Fujifilm Corporation Stereoscopic image pickup apparatus and method of adjusting optical axis
WO2011159047A3 (en) * 2010-06-16 2012-04-19 Huh Sung Ryong Device for optical axis alignment for image capturing and method for aligning an optical axis
WO2014072348A1 (en) * 2012-11-07 2014-05-15 Stereolabs Automatic alignment of cameras in a 3d system
US8854432B2 (en) 2009-09-24 2014-10-07 Fujifilm Corporation Multi-lens camera and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575628B1 (en) * 1998-12-24 2006-11-10 엘지전자 주식회사 Apparatus of 3-Dimension Picture Display
US20080239064A1 (en) * 2007-03-29 2008-10-02 Fujifilm Corporation Stereoscopic image pickup apparatus and method of adjusting optical axis
US8384767B2 (en) * 2007-03-29 2013-02-26 Fujifilm Corporation Stereoscopic image pickup apparatus and method of adjusting optical axis
US8854432B2 (en) 2009-09-24 2014-10-07 Fujifilm Corporation Multi-lens camera and control method
WO2011159047A3 (en) * 2010-06-16 2012-04-19 Huh Sung Ryong Device for optical axis alignment for image capturing and method for aligning an optical axis
WO2014072348A1 (en) * 2012-11-07 2014-05-15 Stereolabs Automatic alignment of cameras in a 3d system

Also Published As

Publication number Publication date
JP3332091B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
US5325193A (en) Single camera autostereoscopic imaging system
JP2765022B2 (en) 3D image forming device
US6862140B2 (en) Stereoscopic image pickup system
KR20130094294A (en) Variable three-dimensional camera assembly for still photography
US7388719B2 (en) Camera system
JP5821150B2 (en) Three-dimensional image capturing method
JP2004524553A (en) Single axis stereoscopic video imaging device with optical axis alignment capability
JP3332091B2 (en) 3D camera device
JP2007508593A (en) A visual recognition device having an imaging device facing a specific direction
US20070165134A1 (en) Three-dimensional imaging device
KR100399047B1 (en) The Apparatus and Method for Vergence Control of Crossing Axis Stereo Camera
US4509832A (en) Optical arrangement for producing two anamorphotically compressed images correlated by an interocular base distance
JP2791092B2 (en) 3D camera device
KR100389794B1 (en) Dual lens stereo camera
JP5390865B2 (en) Stereo imaging device
KR100421170B1 (en) Stereoscopic camera adjusting focus and vergence at the same time
JP2001016619A (en) Image pickup device, its convergence distance decision method, storage medium and optical device
JP2001016620A (en) Image pickup device, its convergence distance decision method, storage medium and optical device
JP2000152282A (en) Stereoscopic picture photographing device
JP3554398B2 (en) Stereoscopic adapter for endoscope
EP0559801B1 (en) Single camera autostereoscopic imaging system
JP3492921B2 (en) 3D camera device
JP3609874B2 (en) Stereoscopic endoscope
JP4459108B2 (en) Imaging device and microscope
JP3045201B2 (en) Body observation device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees