JPH0653822U - Magnetic fluid bearing - Google Patents
Magnetic fluid bearingInfo
- Publication number
- JPH0653822U JPH0653822U JP2532393U JP2532393U JPH0653822U JP H0653822 U JPH0653822 U JP H0653822U JP 2532393 U JP2532393 U JP 2532393U JP 2532393 U JP2532393 U JP 2532393U JP H0653822 U JPH0653822 U JP H0653822U
- Authority
- JP
- Japan
- Prior art keywords
- peripheral surface
- magnetic fluid
- magnetic
- cylindrical
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
(57)【要約】
【目的】 高負荷能力かつ高回転精度で高速回転下にお
いても長寿命な磁性流体軸受を提供する。
【構成】 円筒状磁力源2の内周面と一対の磁極片5の
内側面とで囲まれる空間10に軸1と微小間隙3を介し
て対向するように多孔質体6を設け、該多孔質体6の内
部空隙および前記微小間隙3に磁性流体4を介在させる
と共に、前記軸1の外周面の前記多孔質体6の両端部付
近と対向する部分または、前記多孔質体6の内周面の両
端部付近の少なくともいずれか一方に動圧発生用のスパ
イラルグルーブ7を設けたことを特徴とする。
(57) [Summary] [Purpose] To provide a magnetic fluid bearing with high load capacity, high rotation accuracy, and long life even under high speed rotation. A porous body 6 is provided in a space 10 surrounded by an inner peripheral surface of a cylindrical magnetic force source 2 and an inner side surface of a pair of magnetic pole pieces 5 so as to face the shaft 1 with a minute gap 3 therebetween. The magnetic fluid 4 is interposed in the internal voids of the particulate body 6 and the minute gaps 3, and the portion of the outer peripheral surface of the shaft 1 facing the vicinity of both ends of the porous body 6 or the inner periphery of the porous body 6 It is characterized in that a spiral groove 7 for generating a dynamic pressure is provided on at least one of both ends of the surface.
Description
【0001】[0001]
本考案は、磁性流体を潤滑剤として用いたすべり軸受タイプの磁性流体軸受に 関する。 The present invention relates to a slide bearing type magnetic fluid bearing using magnetic fluid as a lubricant.
【0002】[0002]
従来のこの種の磁性流体軸受としては、例えば図13及び図14に示すような ものがある。まず、図13に示した第1の従来の磁性流体軸受は、ラジアル荷重 を支えるもので、非磁性材の軸101と、該軸101の外周面と微小間隙103 を介して配置した円筒状磁力源としての円筒状永久磁石102と前記微小間隙1 03に介在させた磁性流体104とから構成されたものである。 Conventional magnetic fluid bearings of this type include those shown in FIGS. 13 and 14, for example. First, the first conventional magnetic fluid bearing shown in FIG. 13 supports a radial load, and is composed of a shaft 101 made of a non-magnetic material, and a cylindrical magnetic force arranged between the outer peripheral surface of the shaft 101 and a minute gap 103. It is composed of a cylindrical permanent magnet 102 as a source and a magnetic fluid 104 interposed in the minute gap 103.
【0003】 また、図14に示した第2の従来の磁性流体軸受は、第1従来例と同様にラジ アル荷重を支えるもので、円筒状磁力源としての円筒状永久磁石102′と、円 筒状永久磁石102′の両端面に接して設けた一対の磁極片としての一対の円環 状磁極片105と、円環状磁極片105の内周面と微小間隙103を介して設け た軸101と、円筒状永久磁石102′の内周面と円環状磁極片105の内側面 と軸101の外周面とで囲まれた空間106及び微小間隙103に介在させた磁 性流体104とから構成されたものである。Further, the second conventional magnetic fluid bearing shown in FIG. 14 supports a radial load similarly to the first conventional example, and includes a cylindrical permanent magnet 102 ′ serving as a cylindrical magnetic force source and a circular magnet. A pair of annular magnetic pole pieces 105 as a pair of magnetic pole pieces provided in contact with both end surfaces of the cylindrical permanent magnet 102 ', and a shaft 101 provided with an inner peripheral surface of the annular magnetic pole piece 105 and a minute gap 103. And a space 106 surrounded by the inner peripheral surface of the cylindrical permanent magnet 102 ′, the inner side surface of the annular magnetic pole piece 105, and the outer peripheral surface of the shaft 101, and a magnetic fluid 104 interposed in a minute gap 103. It is a thing.
【0004】[0004]
しかしながら、上記した従来の技術による磁性流体軸受には、以下の如き問題 点がある。すなわち、第1従来例の磁性流体軸受においては、軸101を高速で 回転させた場合、磁性流体104の粘性発熱による温度上昇が大きく、磁性流体 104の劣化や溶媒の蒸発が起こるため軸受の寿命が短くなり、また、磁性流体 104中に異物が混入した場合、円筒状永久磁石102の内周面や軸101の外 周面に損傷を生じ軸受の寿命が短くなるという問題点がある。 However, the magnetic fluid bearing according to the above-mentioned conventional technique has the following problems. That is, in the magnetic fluid bearing of the first conventional example, when the shaft 101 is rotated at a high speed, the temperature rise is large due to viscous heat generation of the magnetic fluid 104, deterioration of the magnetic fluid 104 and evaporation of the solvent occur, so the life of the bearing is increased. When the foreign matter is mixed in the magnetic fluid 104, the inner peripheral surface of the cylindrical permanent magnet 102 and the outer peripheral surface of the shaft 101 are damaged, which shortens the life of the bearing.
【0005】 次に、第1従来例の問題点を解消すべく、円筒状永久磁石102′の内周面と 一対の円環状磁極片105の内側面と軸101の外周面とで囲まれた空間106 (内部空間)に磁性流体104を介在させた第2従来例の磁性流体軸受において は、第1従来例と比べて軸101の高速回転時における磁性流体104の温度上 昇は小さくなるものの、微小間隙103に介在する磁性流体104と内部空間1 06に介在する磁性流体104とが入れ替わりにくいため、微小間隙103に介 在する磁性流体104の劣化が生じやすく、軸受の寿命が短くなると共に、微小 間隙103内へ異物が混入した場合、内部空間106側へ排出されにくいため軸 受の寿命が短くなるという問題点がある。Next, in order to solve the problem of the first conventional example, the inner peripheral surface of the cylindrical permanent magnet 102 ′, the inner side surfaces of the pair of annular magnetic pole pieces 105 and the outer peripheral surface of the shaft 101 are surrounded. In the magnetic fluid bearing of the second conventional example in which the magnetic fluid 104 is interposed in the space 106 (internal space), the temperature rise of the magnetic fluid 104 during the high speed rotation of the shaft 101 is smaller than that in the first conventional example. Since the magnetic fluid 104 existing in the minute gap 103 and the magnetic fluid 104 existing in the internal space 106 are hard to be exchanged with each other, the magnetic fluid 104 existing in the minute gap 103 is apt to deteriorate and the life of the bearing is shortened. However, when foreign matter enters the minute gap 103, it is difficult to discharge the foreign matter to the internal space 106 side, which shortens the life of the bearing.
【0006】 さらに、内部空間106を設けたため、微小間隙103部分、すなわち、軸受 面の面積が減少し負荷能力が小さくなってしまうという問題点がある。Furthermore, since the internal space 106 is provided, there is a problem that the area of the minute gap 103, that is, the bearing surface is reduced and the load capacity is reduced.
【0007】 本考案は上記した従来技術の課題を解決するためになされたもので、その目的 とするところは、高負荷能力かつ高回転精度で高速回転下においても長寿命な磁 性流体軸受を提供することにある。The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a magnetic fluid bearing having a high load capacity, a high rotation accuracy, and a long life even under high speed rotation. To provide.
【0008】[0008]
上記目的を達成するために、本考案にあっては、円筒状磁力源と、該円筒状磁 力源の両端面に接して設けた一対の磁極片と、該磁極片と微小間隙を介して設け た軸と、前記微小間隙に介在させた磁性流体とから成る磁性流体軸受において、 前記円筒状磁力源の内周面と前記一対の磁極片の内側面とで囲まれる空間に前 記軸と微小間隙を介して対向するように多孔質体を設け、該多孔質体の内部空隙 および前記微小間隙にも前記磁性流体を介在させると共に、前記軸の外周面の前 記多孔質体の両端部付近と対向する部分または、前記多孔質体の内周面の両端部 付近の少なくともいずれか一方に動圧発生用のスパイラルグルーブを設けたこと を特徴とする。 In order to achieve the above object, according to the present invention, a cylindrical magnetic force source, a pair of magnetic pole pieces provided in contact with both end surfaces of the cylindrical magnetic power source, and a small gap between the magnetic pole pieces are provided. A magnetic fluid bearing comprising a shaft provided and a magnetic fluid interposed in the minute gap, wherein the shaft is provided in a space surrounded by the inner peripheral surface of the cylindrical magnetic force source and the inner side surfaces of the pair of magnetic pole pieces. Porous bodies are provided so as to face each other with a minute gap, and the magnetic fluid is interposed in the inner voids of the porous body and the minute gaps, and both ends of the porous body on the outer peripheral surface of the shaft. Spiral grooves for generating dynamic pressure are provided in at least one of a portion facing the vicinity and both ends of the inner peripheral surface of the porous body.
【0009】 そして、円筒状多孔質体磁力源と、該円筒状多孔質体磁力源の内周面と微小間 隙を介して設けた軸と、該軸の外周面の前記多孔質体磁力源の両端部付近と対向 する部分または、前記多孔質体の内周面の両端部付近の少なくともいずれか一方 に設けた動圧発生用のスパイラルグルーブと、前記微小間隙および前記円筒状多 孔質体磁力源の内部空隙に介在させた磁性流体とから成るものとしても良い。Then, the cylindrical porous magnetic force source, a shaft provided with a minute gap between the inner peripheral surface of the cylindrical porous magnetic force source, and the porous magnetic force source on the outer peripheral surface of the shaft. A spiral groove for generating dynamic pressure, which is provided at least at a portion facing both end portions of the porous body or near both end portions of the inner peripheral surface of the porous body, and the minute gap and the cylindrical porous body. It may be composed of a magnetic fluid interposed in the inner space of the magnetic force source.
【0010】[0010]
上記構成の磁性流体軸受にあっては、軸が回転すると軸の外周面の多孔質体あ るいは円筒状多孔質体磁力源の両端部付近と対向する部分または、多孔質体ある いは円筒状多孔質体磁力源の内周面の両端部付近の少なくともいずれか一方に設 けたスパイラルグルーブによって動圧が発生して、磁性流体が微小間隙から多孔 質体あるいは円筒状多孔質体磁力源の内部空隙へ流入し、再び微小間隙に戻る循 環流を生じるため、高速回転下においても磁性流体の温度上昇が抑制されると共 に、多孔質体あるいは円筒状多孔質体磁力源がフィルターの役目を果すため、磁 性流体中に異物が混入しても、多孔質体あるいは円筒状多孔質体磁力源の内部空 隙内に閉じ込められて、微小間隙内に留まることが無く、軸受の長寿命化を図る ことができる。 In the magnetic fluid bearing configured as described above, when the shaft rotates, the porous body on the outer peripheral surface of the shaft or the cylindrical porous body faces the vicinity of both ends of the magnetic force source, or the porous body or the cylindrical body. Dynamic pressure is generated by the spiral groove provided in at least one of the both ends of the inner peripheral surface of the porous magnetic force source, and the magnetic fluid flows from the minute gap to the porous or cylindrical porous magnetic source. Since a circulating flow that flows into the internal voids and returns to the minute voids is generated again, the temperature rise of the magnetic fluid is suppressed even under high-speed rotation, and at the same time, the porous or cylindrical porous magnetic source serves as a filter. As a result, even if foreign matter is mixed in the magnetic fluid, it will not be confined in the internal space of the magnetic source of the porous body or cylindrical porous body, and will not remain in the minute gap, resulting in a long bearing life. Can be promoted.
【0011】 また、スパイラルグルーブによって発生する動圧によって負荷能力及び回転精 度が向上する。Moreover, the load capacity and the rotational accuracy are improved by the dynamic pressure generated by the spiral groove.
【0012】[0012]
以下に本考案を図示の実施例に基づいて説明する。図1は本考案の第1実施例 を示している。この磁性流体軸受はラジアル荷重を支えるもので、円筒状磁力源 としての円筒状永久磁石2と、該円筒状永久磁石2の両端面に接して設けた一対 の磁極片としての一対の円環状磁極片5と、該円環状磁極片5の内周面と微小間 隙3を介して設けた非磁性材の軸1と、前記円筒状永久磁石2の内周面と前記一 対の円環状磁極片5の内側面とで囲まれる空間10に前記軸1の外周面との間隙 である微小間隙3を介して対向するように設けた多孔質体としての円筒状多孔質 体6と、該円筒状多孔質体6の内部空隙及び前記微小間隙3に介在させた磁性流 体4と、前記軸1の外周面の前記円筒状多孔質体6の内周面の両端部より少し内 側の付近と対向する部分に設けた動圧発生用のスパイラルグルーブ7とから構成 されたものである。 The present invention will be described below based on the illustrated embodiment. FIG. 1 shows a first embodiment of the present invention. This magnetic fluid bearing supports a radial load, and has a cylindrical permanent magnet 2 as a cylindrical magnetic force source and a pair of annular magnetic poles as a pair of magnetic pole pieces provided in contact with both end surfaces of the cylindrical permanent magnet 2. A piece 5, a shaft 1 of a non-magnetic material provided with an inner peripheral surface of the annular magnetic pole piece 5 and a minute gap 3, an inner peripheral surface of the cylindrical permanent magnet 2 and the pair of annular magnetic poles. A cylindrical porous body 6 as a porous body, which is provided so as to face a space 10 surrounded by the inner side surface of the piece 5 through a minute gap 3 which is a gap with the outer peripheral surface of the shaft 1, and the cylinder. Of the magnetic fluid 4 interposed in the internal voids of the porous body 6 and the minute gaps 3 and in the outer peripheral surface of the shaft 1 slightly inward from both ends of the inner peripheral surface of the cylindrical porous body 6. And a spiral groove 7 for generating dynamic pressure, which is provided in a portion opposed to.
【0013】 このように構成した本実施例の磁性流体軸受は、軸1が回転すると軸1の外周 面に設けられたスパイラルグルーブ7のポンプ作用によって、微小間隙3のスパ イラルグルーブ7の外側部分に介在する磁性流体4が軸方向中央部側へ押し込ま れて微小間隙3の軸方向中央部に位置する磁性流体4の圧力が上昇し、円筒状多 孔質体6の内周面の軸方向中央部より円筒状多孔質体6の内部空隙へ磁性流体4 が押し込まれる。押し込まれた磁性流体4は、円筒状多孔質体6の内部空隙を通 って、径方向外周側へ流れ、外周面近傍で軸方向外側へ向い、端面近傍で径方向 内周側へ向って流れ、微小間隙3のスパイラルグルーブ7の外側部分に再び戻る 。すなわち、図1に矢印で示すような磁性流体4の循環流を生じる。In the magnetic fluid bearing of this embodiment having the above-described structure, when the shaft 1 rotates, the spiral groove 7 provided on the outer peripheral surface of the shaft 1 pumps the outer surface of the spiral groove 7 in the minute gap 3. The magnetic fluid 4 intervening in the axial direction is pushed toward the central portion side in the axial direction and the pressure of the magnetic fluid 4 located in the central portion in the axial direction of the minute gap 3 rises, and the axial direction of the inner peripheral surface of the cylindrical porous body 6 is increased. The magnetic fluid 4 is pushed into the internal void of the cylindrical porous body 6 from the central portion. The magnetic fluid 4 pushed in flows through the inner voids of the cylindrical porous body 6 toward the outer peripheral side in the radial direction, and is directed outward in the axial direction near the outer peripheral surface and toward the inner peripheral side in the radial direction near the end surface. The flow then returns to the outer portion of the spiral groove 7 of the minute gap 3. That is, a circulating flow of the magnetic fluid 4 as shown by an arrow in FIG. 1 is generated.
【0014】 したがって、微小間隙3に介在する磁性流体4が粘性発熱しても、円筒状多孔 質体6の内部空隙内で放熱し、冷却されるため、軸1が高速回転した場合におい ても、磁性流体4の温度上昇が抑制される。また、磁性流体4中に異物が混入し ても、異物が磁性流体4と一緒に微小間隙3から円筒状多孔質体6の内部空隙へ 流入し、内部空隙内に異物だけがトラップされて磁性流体4が微小間隙3へ戻る ため、円筒状多孔質体6がフィルターの役目を果たし、異物が微小間隙3に留ま ることが無い。よって、軸受の長寿命化を図ることができる。Therefore, even if the magnetic fluid 4 interposed in the minute gap 3 viscously generates heat, it is radiated and cooled in the inner void of the cylindrical porous body 6, so that even when the shaft 1 rotates at high speed. The temperature rise of the magnetic fluid 4 is suppressed. Moreover, even if foreign matter is mixed in the magnetic fluid 4, the foreign matter flows into the internal void of the cylindrical porous body 6 from the minute gap 3 together with the magnetic fluid 4, and only the foreign matter is trapped in the internal void, resulting in magnetic properties. Since the fluid 4 returns to the minute gap 3, the cylindrical porous body 6 serves as a filter, and foreign matter does not remain in the minute gap 3. Therefore, the life of the bearing can be extended.
【0015】 また、スパイラルグルーブ7によって発生する動圧によって負荷能力が高くな り回転精度も高くなる。Further, the dynamic pressure generated by the spiral groove 7 increases the load capacity and the rotation accuracy.
【0016】 なお、本実施例では、スパイラルグルーブ7を分離して2個設けた例を示した が、グルーブを延長して両側からのグルーブが中央で接合したスパイラルグルー ブ、すなわち、ヘリングボーングルーブであってもよい。また、本実施例では、 スパイラルグルーブ7を軸1の外周面側に設けたが円筒状多孔質体6の内周面側 に設けてもよく、場合によっては両方に設けても良い。In this embodiment, two spiral grooves 7 are separately provided, but the spiral groove is extended and the grooves from both sides are joined at the center, that is, the herringbone groove. May be Further, in the present embodiment, the spiral groove 7 is provided on the outer peripheral surface side of the shaft 1, but it may be provided on the inner peripheral surface side of the cylindrical porous body 6, or may be provided on both sides in some cases.
【0017】 次に、本考案の第2実施例を図2に示す。この磁性流体軸受は、磁極片として の円環状磁極片51の内側面の、円筒状多孔質体6の端面と接する部分に、径方 向内周側に延びて内周面側に達する連通溝8を円周4ヶ所に設けたものである。Next, a second embodiment of the present invention is shown in FIG. This magnetic fluid bearing has a communication groove that extends radially inward and reaches the inner peripheral surface at the portion of the inner surface of the annular magnetic pole piece 51 as the magnetic pole piece that contacts the end surface of the cylindrical porous body 6. 8 are provided at four places on the circumference.
【0018】 このように構成した本実施例の磁性流体軸受は、連通溝8が設けてあるため、 磁性流体4の循環流(図2中矢印方向)がより流れ易くなると共に冷却効率も高 くなり、信頼性が向上する。その他の構成及び作用については上記第1実施例と 同様なので、同一の構成部分については同一の符号を付して、その説明は省略す る。なお、本実施例では連通溝8を円周4ヶ所に設けた例を示したが、円周の少 なくとも1ヶ所以上に設ければよく、これに限定されるものではない。In the magnetic fluid bearing of the present embodiment configured as described above, since the communication groove 8 is provided, the circulation flow of the magnetic fluid 4 (in the direction of the arrow in FIG. 2) becomes easier to flow and the cooling efficiency is also high. And reliability is improved. Since other configurations and operations are similar to those of the first embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the example in which the communication groove 8 is provided at four places on the circumference has been shown, but it may be provided at least one place on the circumference, and the present invention is not limited to this.
【0019】 次に、本考案の第3実施例を図3に示す。この磁性流体軸受は、磁極片として の円環状磁極片52の内側面の、円筒状多孔質体6の端面の外周側付近と接する 部分に、軸方向内側に延びて円環状磁極片5の軸方向中央部付近へ達し、そこか ら径方向内周側に延びて内周面側へ達する連通孔9を円周4ケ所に設けたもので ある。Next, a third embodiment of the present invention is shown in FIG. This magnetic fluid bearing extends axially inward at a portion of the inner side surface of the annular magnetic pole piece 52 as a magnetic pole piece, which is in contact with the vicinity of the outer peripheral side of the end surface of the cylindrical porous body 6, and extends in the axial direction. Communication holes 9 that reach the vicinity of the central portion in the direction, extend radially inward toward the inner peripheral surface, and reach the inner peripheral surface side are provided at four locations on the circumference.
【0020】 このように構成した本実施例の磁性流体軸受は、連通孔9が設けてあるため、 上記の第2実施例と同様に磁性流体4の循環流(図3中矢印方向)がより流れ易 くなると共に冷却効率も高くなり、信頼性が向上する。その他の構成及び作用に ついては上記実施例と同様なので、同一の構成部分については同一の符号を付し て、その説明は省略する。Since the magnetic fluid bearing of the present embodiment configured as described above is provided with the communication hole 9, the circulation flow of the magnetic fluid 4 (in the direction of the arrow in FIG. 3) is improved as in the second embodiment. As the flow becomes easier, the cooling efficiency becomes higher and the reliability is improved. Since other configurations and operations are the same as those in the above-described embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0021】 なお、本実施例では、上記実施例と同様にスパイラルグルーブ7を軸1の外周 面の円筒状多孔質体6の内周面の両端部より少し内側の付近と対向する部分に設 けた例を示したが、本実施例の場合には軸1の外周面の円環状磁極片2の内周面 の連通孔9開口部より少し内側の付近と対向する部分にスパイラルグルーブ7を 設けても良い。このように構成すると微小間隙3のほぼ全域で循環流を生じるた め、より信頼性が向上する。In this embodiment, similarly to the above embodiment, the spiral groove 7 is provided on the outer peripheral surface of the shaft 1 at a portion opposed to the inner peripheral surface of the cylindrical porous body 6 and slightly inward from both end portions of the inner peripheral surface. However, in the case of the present embodiment, the spiral groove 7 is provided in the outer peripheral surface of the shaft 1 in the inner peripheral surface of the annular magnetic pole piece 2 at a portion slightly inward of the opening of the communication hole 9. May be. With this structure, a circulating flow is generated in almost the entire area of the minute gap 3, so that the reliability is further improved.
【0022】 尚、上記各実施例では、円筒状磁力源として円筒状永久磁石2を用いたものを 例にとって説明したが、円筒状永久磁石に限るものではなく、円筒状電磁石等で あっても良い。また、多孔質体と軸との間隙を磁極片と軸との微小間隙と同じも のを例にとって説明したが、特に同じである必要はない。In each of the above embodiments, the cylindrical permanent magnet 2 is used as the cylindrical magnetic force source, but the present invention is not limited to the cylindrical permanent magnet, and may be a cylindrical electromagnet or the like. good. Although the gap between the porous body and the shaft is the same as the minute gap between the pole piece and the shaft, the description has been given as an example, but the gap does not have to be the same.
【0023】 図4は本考案の第4実施例を示している。尚、上記各実施例で説明した構成部 分と同一の構成部分で同一の作用を有するものには同一の符号を付けて説明する 。FIG. 4 shows a fourth embodiment of the present invention. It should be noted that components having the same functions as those of the components described in each of the above-described embodiments will be described with the same reference numerals.
【0024】 この磁性流体軸受はラジアル荷重とスラスト荷重の両方向の荷重を支えるもの で、円筒状磁力源としての円筒状永久磁石2と、該円筒状永久磁石2の両端面に 接して設けた一対の磁極片としての円環状磁極片53と、該円環状磁極片53の 内周面と微小間隙3を介して対向すると共に該円環状磁極片53の内側面と微小 間隙3を介して対向する突出部11を有する軸1Aと、前記円筒状永久磁石2の 内周面と前記一対の円環状磁極片53の内側面とで囲まれる空間10Aに前記軸 1Aの突出部11の外周面と微小間隙3を介して対向するように設けた多孔質体 としての円筒状多孔質体6と、前記軸1Aの突出部11の外周面および外側面に 設けた動圧発生用のスパイラルグルーブ7,7′と、前記一対の円環状磁極片5 3の内側面の前記円筒状多孔質体6の端面の外周側付近と接する部分に軸方向内 側に延びて前記円環状磁極片53の軸方向中央部付近へ達し、そこから径方向内 周側に延びて内周面側へ達する円周方向4ヶ所に設けた連通孔9と、該連通孔9 および前記円筒状多孔質体6の内部空隙および前記微小間隙3に介在させた磁性 流体4とから構成されたものである。This magnetic fluid bearing supports a radial load and a thrust load in both directions, and has a cylindrical permanent magnet 2 as a cylindrical magnetic force source and a pair of cylindrical permanent magnets 2 provided in contact with both end faces of the cylindrical permanent magnet 2. And an annular magnetic pole piece 53 as a magnetic pole piece of the magnetic pole piece 53 and an inner peripheral surface of the annular magnetic pole piece 53 with a minute gap 3 therebetween, and an inner side surface of the annular magnetic pole piece 53 with a minute gap 3 therebetween. In the space 10A surrounded by the shaft 1A having the protruding portion 11, the inner peripheral surface of the cylindrical permanent magnet 2 and the inner side surfaces of the pair of annular magnetic pole pieces 53, the outer peripheral surface of the protruding portion 11 of the shaft 1A and the outer peripheral surface are minute. A cylindrical porous body 6 as a porous body provided so as to face each other with a gap 3 in between, and spiral grooves 7, 7 for dynamic pressure generation provided on the outer peripheral surface and the outer surface of the protruding portion 11 of the shaft 1A. 'And the pair of annular magnetic pole pieces 5 3 The inner surface of the cylindrical porous body 6 extends axially inward at a portion in contact with the vicinity of the outer peripheral side of the end surface of the cylindrical porous body 6, reaches the vicinity of the central portion in the axial direction of the annular magnetic pole piece 53, and from there, the radially inner peripheral side. Communicating holes 9 provided at four locations in the circumferential direction extending to the inner peripheral surface side, and a magnetic fluid 4 interposed in the communicating holes 9 and the internal voids of the cylindrical porous body 6 and the minute gaps 3. It is composed of
【0025】 このように構成した本実施例の磁性流体軸受は、軸1Aが回転すると軸1Aの 突出部11の外周面および外側面に設けられたスパイラルグルーブ7,7′のポ ンプ作用によって、スラスト側の微小間隙3と、ラジアル側の微小間隙3のラジ アル側スパイラルグルーブ7の外側部分に介在する磁性流体4がラジアル側微小 間隙3の軸方向中央部側へ押し込まれて、この部分に位置する磁性流体4の圧力 が上昇し、円筒状多孔質体6の内周面の軸方向中央部より円筒状多孔質体6の内 部空隙へ磁性流体4が押し込まれる。押し込まれた磁性流体4は、円筒状多孔質 体6の内部空隙を通って、径方向外周側へ流れ、連通孔9を通って、円環状磁極 片53の内周面側より再び微小間隙3に戻る。すなわち、図4に太い矢印で示す ような磁性流体4の循環流を生じる。In the magnetic fluid bearing of the present embodiment configured as described above, when the shaft 1A rotates, the spiral groove 7, 7'provided on the outer peripheral surface and the outer surface of the protruding portion 11 of the shaft 1A causes the pumping action. The magnetic fluid 4 present on the thrust-side minute gap 3 and on the outer side of the radial-side minute gap 3 on the radial-side spiral groove 7 is pushed toward the central portion in the axial direction of the radial-side minute gap 3 and enters this portion. The pressure of the magnetic fluid 4 located increases, and the magnetic fluid 4 is pushed into the inner space of the cylindrical porous body 6 from the axial center of the inner peripheral surface of the cylindrical porous body 6. The pressed magnetic fluid 4 flows through the inner cavity of the cylindrical porous body 6 toward the outer peripheral side in the radial direction, passes through the communication hole 9, and again from the inner peripheral surface side of the annular magnetic pole piece 53 to the minute gap 3 again. Return to. That is, a circulating flow of the magnetic fluid 4 as shown by a thick arrow in FIG. 4 is generated.
【0026】 したがって、微小間隙3に介在する磁性流体4が粘性発熱しても円筒状多孔質 体6の内部空隙内および円環状磁極片53の連通孔9内で放熱し、冷却されるた め、軸1Aが高速回転した場合においても、磁性流体4の温度上昇が抑制される 。また、磁性流体4中に異物が混入しても、異物が磁性流体4と一緒に微小間隙 3から円筒状多孔質体6の内部空隙へ流入し、内部空隙内に異物だけがトラップ されて磁性流体4が微小間隙3へ戻るため、円筒状多孔質体6がフィルターの役 目を果たし、異物が微小間隙3に留まることが無い。よって、軸受の長寿命化を 図ることができる。Therefore, even if the magnetic fluid 4 interposed in the minute gap 3 viscously generates heat, heat is radiated and cooled in the internal void of the cylindrical porous body 6 and the communication hole 9 of the annular magnetic pole piece 53. The temperature rise of the magnetic fluid 4 is suppressed even when the shaft 1A rotates at high speed. Further, even if foreign matter is mixed in the magnetic fluid 4, the foreign matter flows into the internal void of the cylindrical porous body 6 together with the magnetic fluid 4 from the minute gap 3, and only the foreign matter is trapped in the internal void, so that the magnetic property is reduced. Since the fluid 4 returns to the minute gap 3, the cylindrical porous body 6 serves as a filter, and foreign matter does not remain in the minute gap 3. Therefore, the life of the bearing can be extended.
【0027】 また、スパイラルグルーブ7,7′によって発生する動圧によって負荷能力が 高くなり回転精度も高くなる。Further, the dynamic pressure generated by the spiral grooves 7, 7 ′ increases the load capacity and the rotation accuracy.
【0028】 なお、本実施例では、ラジアル側のスパイラルグルーブ7を分離して2個設け た例を示したが、グルーブを延長して両側からのグルーブが中央で接合したスパ イラルグルーブ、すなわちヘリングボーングルーブであっても良い。また、本実 施例では、ラジアル側のスパイラルグルーブ7とスラスト側のスパイラルグルー ブ7′を両方設けたが、少なくともいずれか一方を設ければ良い。In the present embodiment, an example in which two spiral grooves 7 on the radial side are separated and provided is shown. However, the spiral groove is extended so that the grooves from both sides are joined at the center, that is, the herring. It may be a bone groove. Further, in this embodiment, both the spiral groove 7 on the radial side and the spiral groove 7'on the thrust side are provided, but at least one of them may be provided.
【0029】 また、本実施例では、スパイラルグルーブ7,7′を軸1Aの突出部11の外 周面および外側面側に設けたが、反対側すなわち、円筒状多孔質体6の内周面側 および円環状磁極片53の内側面側に各々ラジアル側のスパイラルグルーブ7お よびスラスト側のスパイラルグルーブ7′を設けても良く、場合によっては対向 する面の両側に設けても良い。ただし、円筒状多孔質体6の内周面側にスパイラ ルグルーブ7を設ける場合には、その部分の表面の空孔を封止することが望まし い。Further, in this embodiment, the spiral grooves 7 and 7 ′ are provided on the outer peripheral surface and the outer surface side of the protruding portion 11 of the shaft 1 A, but on the opposite side, that is, the inner peripheral surface of the cylindrical porous body 6. The spiral groove 7 on the radial side and the spiral groove 7'on the thrust side may be provided on the side and on the inner surface side of the annular magnetic pole piece 53, respectively, and may be provided on both sides of the facing surface in some cases. However, when the spiral groove 7 is provided on the inner peripheral surface side of the cylindrical porous body 6, it is not desirable to seal the pores on the surface of that portion.
【0030】 さらに、本実施例では連通孔9を円周4ヶ所に設けた例を示したが、円周の少 なくとも1ヶ所以上に設ければよく、これに限定されるものではない。Further, in the present embodiment, an example in which the communication holes 9 are provided at four places on the circumference is shown, but it is sufficient to provide the communication holes 9 at at least one place on the circumference, and the present invention is not limited to this.
【0031】 次に、本考案の第5実施例を図5に示す。この磁性流体軸受は、軸1Aの突出 部11の外周面にスパイラルグルーブ7の代わりにレイリーステップ12を設け たものである。このように、ラジアル側にレイリーステップ12を設けるとラジ アル方向の回転精度がさらに向上する。その他の構成及び作用については、上記 第4実施例と同様なので、同一の構成部分については同一の符号を付して、その 説明は省略する。Next, a fifth embodiment of the present invention is shown in FIG. In this magnetic fluid bearing, a Rayleigh step 12 is provided instead of the spiral groove 7 on the outer peripheral surface of the protruding portion 11 of the shaft 1A. Thus, providing the Rayleigh step 12 on the radial side further improves the rotational accuracy in the radial direction. Other configurations and operations are similar to those of the fourth embodiment, and therefore, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0032】 次に、本考案の第6実施例を図6に示す。この磁性流体軸受は、円筒状多孔質 体6の内周面側に一対のレイリーステップ12を離隔して設けると共に、円筒状 多孔質体6の内周面のレイリーステップ12の部分およびそこより軸方向外側の 部分に封止部13を設け、さらに、軸1Aの突出部11の外周面の、一対のレイ リーステップ12の間の部分と対向する位置に撥油部14を設けたものである。 封止部13は、切削や研磨加工によって多孔質体表面の空孔を目潰しするか、封 止剤(接着剤等)を塗布または含浸させることによって形成すればよく、その他 、コーティング(蒸着,メッキ等)や封止材(金属,樹脂等)の貼り付け(埋設 )によって形成してもよい。また、撥油部14は、磁性流体4に対して撥油性を 示す撥油剤(例えば、フッ素系コーティング剤)を塗布またはコーティングして 形成すればよく、撥油材(例えばフッ素系樹脂)を貼り付ける(埋設する)こと によって形成してもよい。Next, a sixth embodiment of the present invention is shown in FIG. This magnetic fluid bearing is provided with a pair of Rayleigh steps 12 spaced apart from each other on the inner peripheral surface side of the cylindrical porous body 6, and the Rayleigh step 12 portion on the inner peripheral surface of the cylindrical porous body 6 and the shaft from the portion. The sealing portion 13 is provided on the outer side in the direction, and the oil repellent portion 14 is provided on the outer peripheral surface of the protruding portion 11 of the shaft 1A at a position facing the portion between the pair of Rayleigh steps 12. . The sealing portion 13 may be formed by cutting or polishing the pores on the surface of the porous body, or by applying or impregnating a sealing agent (adhesive, etc.), and other coatings (evaporation, plating). Etc.) or a sealing material (metal, resin, etc.) is attached (embedded). The oil-repellent portion 14 may be formed by applying or coating an oil-repellent agent (for example, a fluorine-based coating agent) that exhibits oil-repellency on the magnetic fluid 4, and an oil-repellent material (for example, a fluorine-based resin) is attached. It may be formed by attaching (embedding).
【0033】 このように構成した本実施例の磁性流体軸受は、円筒状多孔質体6の内周面の 中央部付近を除いた軸方向外側の部分に封止部13が設けてあるため、磁性流体 4が円筒状多孔質体6の内周面の中央部付近のみから内部空隙へ流入し、径方向 外周側,軸方向外側へ流れるため、磁性流体4が円筒状多孔質体6の内部空隙を 通過する距離が長くなり冷却効率がさらに高くなる。また、軸1Aの突出部11 の外周面の、一対のレイリーステップ12の間の部分と対向する位置に撥油部1 4が設けてあるため、レイリーステップ12の作用と無関係な軸1Aの突出部1 1の外周面の中央部では、撥油部14の表面で磁性流体4のすべりを生じ、せん 断による磁性流体4の粘性発熱が少なくなると共に損失トルクを低減することが できる。その他の構成および作用については上記第4,第5実施例と同様なので 、同一の構成部分については同一の符号を付してその説明は省略する。In the magnetic fluid bearing of the present embodiment thus configured, the sealing portion 13 is provided on the axially outer portion of the cylindrical porous body 6 excluding the vicinity of the central portion of the inner peripheral surface thereof. Since the magnetic fluid 4 flows into the internal voids only from the vicinity of the central portion of the inner peripheral surface of the cylindrical porous body 6, and flows to the outer peripheral side in the radial direction and the outer side in the axial direction, the magnetic fluid 4 remains inside the cylindrical porous body 6. The longer the distance passes through the gap, the higher the cooling efficiency. Further, since the oil repellent portion 14 is provided on the outer peripheral surface of the protrusion 1 1 of the shaft 1A at a position facing the portion between the pair of Rayleigh steps 12, the protrusion of the shaft 1A unrelated to the action of the Rayleigh step 12. At the central portion of the outer peripheral surface of the portion 11, slippage of the magnetic fluid 4 occurs on the surface of the oil repellent portion 14, viscous heat generation of the magnetic fluid 4 due to breaking is reduced, and loss torque can be reduced. Since other configurations and operations are the same as those in the fourth and fifth embodiments, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0034】 尚、上記第4乃至第6実施例では、円筒状磁力源として円筒状永久磁石2を用 いたものを例にとって説明したが、円筒状永久磁石に限るものではなく、円筒状 電磁磁石等であってもよい。In the fourth to sixth embodiments, the cylindrical permanent magnet 2 is used as the cylindrical magnetic force source, but the cylindrical magnetic magnet is not limited to the cylindrical permanent magnet. And so on.
【0035】 図7は本考案の第7実施例を示している。尚、上記各実施例で説明した構成部 分と同一の構成部分で同一の作用を有するものには同一の符号を付けて説明する 。FIG. 7 shows a seventh embodiment of the present invention. It should be noted that components having the same functions as those of the components described in each of the above-described embodiments will be described with the same reference numerals.
【0036】 この磁性流体軸受はラジアル荷重を支えるもので、円筒状多孔質体磁力源とし ての円筒状多孔質永久磁石22と該円筒状多孔質永久磁石22の両端面に接して 設けた一対の磁極片としての円環状磁極片5と、前記円筒状多孔質永久磁石22 の外周面に設けた封止部13と、前記円筒状多孔質永久磁石22の内周面および 前記一対の円環状磁極片5の内周面と微小間隙3を介して対向する軸1と、該軸 1の外周面の前記円筒状多孔質永久磁石22の内周面の両端部より少し内側の付 近と対向する部分に設けた動圧発生用のスパイラルグルーブ7と、前記微小間隙 3および前記円筒状多孔質永久磁石22の内部空隙に介在させた磁性流体4とか ら構成されたものである。This magnetic fluid bearing supports a radial load, and has a pair of cylindrical porous permanent magnets 22 serving as a magnetic force source of a cylindrical porous body, and a pair provided in contact with both end surfaces of the cylindrical porous permanent magnet 22. Of the magnetic pole piece 5, the sealing portion 13 provided on the outer peripheral surface of the cylindrical porous permanent magnet 22, the inner peripheral surface of the cylindrical porous permanent magnet 22, and the pair of annular rings. The shaft 1 that faces the inner peripheral surface of the pole piece 5 with a minute gap 3 and the shaft 1 that faces the outer peripheral surface of the shaft 1 slightly inward of both ends of the inner peripheral surface of the cylindrical porous permanent magnet 22. It is composed of a spiral groove 7 for dynamic pressure generation provided in a portion to be formed, and a magnetic fluid 4 interposed in the minute gap 3 and the internal void of the cylindrical porous permanent magnet 22.
【0037】 円筒状多孔質永久磁石22は、内部空隙を有する多孔質状の永久磁石であり例 えば、磁石材料にポリマーを混合して成型した後に、ポリマーのみを蒸発または 燃焼により除去することによって得られる。また、封止部13は、切削や研磨加 工によって円筒状多孔質永久磁石22の表面の空孔を目潰しするか、封止剤(接 着剤等)を塗布または含浸させることによって形成すればよく、その他、コーテ ィング(蒸着,メッキ等)や封止材(金属,樹脂等)の貼り付けによって形成し てもよい。なお、材質として磁性材を用いて封止部13を形成すると磁気シール ド効果をもつため外部への漏れ磁場が小さくなる。The cylindrical porous permanent magnet 22 is a porous permanent magnet having an internal void. For example, by mixing a polymer with a magnet material and molding the polymer, only the polymer is removed by evaporation or combustion. can get. Further, the sealing portion 13 may be formed by cutting or polishing to fill the pores on the surface of the cylindrical porous permanent magnet 22 or by applying or impregnating a sealing agent (adhesive or the like). Alternatively, it may be formed by coating (evaporation, plating, etc.) or attaching a sealing material (metal, resin, etc.). When the sealing portion 13 is formed by using a magnetic material as the material, it has a magnetic shield effect, and the leakage magnetic field to the outside is reduced.
【0038】 このように構成した本実施例の磁性流体軸受は、軸1が回転すると軸1の外周 面に設けられたスパイラルグルーブ7のポンプ作用によって、微小間隙3のスパ イラルグルーブ7の外側部分に介在する磁性流体4が軸方向中央部側へ押し込ま れて微小間隙3の軸方向中央部に位置する磁性流体4の圧力が上昇し、円筒状多 孔質永久磁石22の内周面の軸方向中央部より、円筒状多孔質永久磁石22の内 部空隙へ磁性流体4が押し込まれる。押し込まれた磁性流体4は、円筒状多孔質 永久磁石22の内部空隙を通って、径方向外周側へ流れ、外周面近傍で軸方向外 側へ向い、端面近傍で径方向内周側へ向って流れ、微小間隙3のスパイラルグル ーブ7の外側部分に再び戻る。すなわち、図7に矢印で示すような磁性流体4の 循環流を生じる。In the magnetic fluid bearing of the present embodiment having the above-described structure, when the shaft 1 rotates, the spiral groove 7 provided on the outer peripheral surface of the shaft 1 pumps, so that the outer portion of the spiral groove 7 of the minute gap 3 is separated. The magnetic fluid 4 intervening in the axial direction is pushed toward the central portion side in the axial direction, and the pressure of the magnetic fluid 4 located in the central portion in the axial direction of the minute gap 3 rises, and the shaft of the inner peripheral surface of the cylindrical multi-hole permanent magnet 22 is The magnetic fluid 4 is pushed into the inner space of the cylindrical porous permanent magnet 22 from the central portion in the direction. The magnetic fluid 4 pushed in passes through the inner void of the cylindrical porous permanent magnet 22 toward the outer peripheral side in the radial direction, faces the outer side in the axial direction near the outer peripheral surface, and faces the inner peripheral side in the radial direction near the end surface. Flow back to the outside of the spiral groove 7 of the minute gap 3. That is, a circulating flow of the magnetic fluid 4 as shown by an arrow in FIG. 7 is generated.
【0039】 したがって、微小間隙3に介在する磁性流体4が粘性発熱しても、円筒状多孔 質永久磁石22の内部空隙内で放熱し、冷却されるため、軸1が高速回転した場 合においても、磁性流体4の温度上昇が抑制される。また、磁性流体4中に異物 が混入しても、異物が磁性流体4と一緒に微小間隙3から円筒状多孔質永久磁石 22の内部空隙へ流入し、内部空隙内に異物だけがトラップされて磁性流体4が 微小間隙3へ戻るため、円筒状多孔質永久磁石22がフィルターの役目を果たし 、異物が微小間隙3に留まることが無い。よって、軸受の長寿命化を図ることが できる。Therefore, even if the magnetic fluid 4 interposed in the minute gap 3 viscously generates heat, it is radiated and cooled in the internal void of the cylindrical porous permanent magnet 22, so that when the shaft 1 rotates at high speed. Also, the temperature rise of the magnetic fluid 4 is suppressed. Further, even if foreign matter is mixed in the magnetic fluid 4, the foreign matter flows into the internal void of the cylindrical porous permanent magnet 22 together with the magnetic fluid 4 from the minute gap 3 and only foreign matter is trapped in the internal void. Since the magnetic fluid 4 returns to the minute gap 3, the cylindrical porous permanent magnet 22 serves as a filter, and foreign matter does not remain in the minute gap 3. Therefore, the life of the bearing can be extended.
【0040】 また、スパイラルグルーブ7によって発生する動圧によって負荷能力が高くな り回転精度も高くなる。Further, the dynamic pressure generated by the spiral groove 7 increases the load capacity and the rotation accuracy.
【0041】 さらに、円筒状多孔質永久磁石22が永久磁石と多孔質体の2つの機能を兼ね 備えているため、永久磁石と多孔質体を別々に設けた場合に比べて外径が小さく 軽量となり、部品点数削減によるコストダウンも図れる。Further, since the cylindrical porous permanent magnet 22 has the two functions of the permanent magnet and the porous body, the outer diameter is smaller and lighter than the case where the permanent magnet and the porous body are provided separately. Therefore, the cost can be reduced by reducing the number of parts.
【0042】 なお、本実施例では、スパイラルグルーブ7を分離して2個設けた例を示した が、グルーブを延長して両側からのグルーブが中央で接合したスパイラルグルー ブ、すなわち、ヘリングボーングルーブであってもよい。また、本実施例では、 スパイラルグルーブ7を軸1の外周面側に設けたが、円筒状多孔質永久磁石22 の内周面側に設けてもよく、場合によっては両方に設けてもよい。ただし、円筒 状多孔質永久磁石22の内周面側にスパイラルグルーブ7を設ける場合には、そ の部分の表面空孔を封止することが望ましい。In this embodiment, an example in which two spiral grooves 7 are separately provided is shown. However, the spiral groove is extended and the grooves from both sides are joined at the center, that is, the herringbone groove. May be Further, in this embodiment, the spiral groove 7 is provided on the outer peripheral surface side of the shaft 1, but it may be provided on the inner peripheral surface side of the cylindrical porous permanent magnet 22, or may be provided on both sides in some cases. However, when the spiral groove 7 is provided on the inner peripheral surface side of the cylindrical porous permanent magnet 22, it is desirable to seal the surface voids in that portion.
【0043】 次に、本考案の第8実施例を図8に示す。この磁性流体軸受は、円環状磁極片 51の内側面の、円筒状多孔質永久磁石22の端面と接する部分に、径方向内周 側に延びて内周面側に達する連通溝8を円周4ヶ所に設けたものである。Next, an eighth embodiment of the present invention is shown in FIG. This magnetic fluid bearing has a communication groove 8 which extends radially inward and reaches the inner peripheral surface at the portion of the inner surface of the annular magnetic pole piece 51 in contact with the end surface of the cylindrical porous permanent magnet 22. It is provided in four places.
【0044】 このように構成した本実施例の磁性流体軸受は、連通溝8が設けてあるため、 磁性流体4の循環流がより流れ易くなると共に冷却効率も高くなり、信頼性が向 上する。その他の構成及び作用については上記第7実施例と同様なので、同一の 構成部分については同一の符号を付して、その説明は省略する。なお、本実施例 では連通溝8を円周4ヶ所に設けた例を示したが、円周の少なくとも1ヶ所以上 に設ければよく、これに限定されるものではない。In the magnetic fluid bearing of the present embodiment thus configured, since the communication groove 8 is provided, the circulation flow of the magnetic fluid 4 becomes easier to flow, the cooling efficiency is also increased, and the reliability is improved. . Since other configurations and operations are the same as those of the seventh embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the communication groove 8 is provided at four places on the circumference, but it may be provided on at least one place on the circumference, and the present invention is not limited to this.
【0045】 次に、本考案の第9実施例を図9に示す。この磁性流体軸受は、一対の円環状 磁極片51の代わりに円筒状多孔質永久磁石22の両端面および外周面に接する 突入部15を内周側に有する断面凹状回転体の磁極片5′を設けると共に、該磁 極片5′の突入部15の内側面の、円筒状多孔質永久磁石22の端面の外周側付 近と接する部分に、軸方向内側に延びて軸方向中央部付近へ達し、そこから径方 向内周側に延びて内周面側へ達する連通孔9を円周4ヶ所に設けたものである。Next, a ninth embodiment of the present invention is shown in FIG. In this magnetic fluid bearing, instead of a pair of annular magnetic pole pieces 51, a magnetic pole piece 5'having a concave cross section having a protrusion 15 on the inner peripheral side that contacts both end surfaces and the outer peripheral surface of the cylindrical porous permanent magnet 22 is provided. At the same time, the inner surface of the protrusion 15 of the magnetic pole piece 5 ′ extends inward in the axial direction and reaches the vicinity of the central portion in the axial direction at a portion in contact with the outer peripheral side of the end surface of the cylindrical porous permanent magnet 22. Communication holes 9 extending radially inward from the inner peripheral side toward the inner peripheral surface side are provided at four locations on the circumference.
【0046】 このように構成した本実施例の磁性流体軸受は、連通孔9が設けてあるため、 上記の第8実施例と同様に磁性流体4の循環流がより流れ易くなると共に冷却効 率も高くなり、信頼性が向上する。また、磁極片5′が円筒状多孔質永久磁石2 2の両端面および外周面に接しているため、磁気シールド効果が高く、外部への 漏れ磁場が極めて小さくなる。その他の構成及び作用については上記第7,第8 実施例と同様なので、同一の構成部分については同一の符号を付して、その説明 は省略する。なお、本実施例では、上記第7,第8実施例と同様にスパイラルグ ルーブ7を軸1の外周面の、円筒状多孔質永久磁石22の内周面の両端部より少 し内側の付近と対向する部分に設けた例を示したが、本実施例の場合には、軸1 の外周面の、磁極片5′の内周面の連通孔9開口部より少し内側の付近と対向す る部分にスパイラルグルーブ7を設けても良い。このように構成すると、微小間 隙3のほぼ全域で循環流を生じるため、より信頼性が向上する。Since the magnetic fluid bearing of the present embodiment configured as described above is provided with the communication hole 9, the circulation flow of the magnetic fluid 4 becomes easier to flow and the cooling efficiency is the same as in the eighth embodiment. Also becomes higher, and reliability is improved. Further, since the magnetic pole pieces 5'are in contact with both end surfaces and the outer peripheral surface of the cylindrical porous permanent magnet 22, the magnetic shield effect is high and the leakage magnetic field to the outside is extremely small. Since other configurations and operations are the same as those of the seventh and eighth embodiments, the same components are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, as in the seventh and eighth embodiments, the spiral groove 7 is located on the outer peripheral surface of the shaft 1 in the vicinity of the inner peripheral surface of the cylindrical porous permanent magnet 22 slightly less than both ends. In the case of this embodiment, it is provided on the outer peripheral surface of the shaft 1 on the inner peripheral surface of the magnetic pole piece 5'a little inside the communication hole 9 opening. The spiral groove 7 may be provided in the portion to be covered. According to this structure, a circulating flow is generated in almost the entire area of the minute gap 3, so that the reliability is further improved.
【0047】 次に、本考案の第10実施例を図10に示す。この磁性流体軸受は、一対の円 環状磁極片5や磁極片5′を設けずに、外周面および両端面に封止部13を設け た円筒状多孔質永久磁石22のみを用いたものである。このように円筒状多孔質 永久磁石22のみを用いた場合には、構造が極めて簡単になるため、より小型化 や軽量化が図れると共に低コストとなる。なお、一対の円環状磁極片5や磁極片 5′を用いた場合に比べて外部への漏れ磁場が大きくなるが、封止部13に磁性 材を用いると磁気シールド効果により漏れ磁場を低減することができる。その他 の構成及び作用については、上記各実施例と同様なので、同一の構成部分につい ては同一の符号を付してその説明は省略する。Next, a tenth embodiment of the present invention is shown in FIG. This magnetic fluid bearing uses only the cylindrical porous permanent magnet 22 provided with the sealing portions 13 on the outer peripheral surface and both end surfaces without providing the pair of annular magnetic pole pieces 5 and the magnetic pole pieces 5 '. . As described above, when only the cylindrical porous permanent magnet 22 is used, the structure is extremely simple, so that the size and weight can be further reduced and the cost can be reduced. Although the leakage magnetic field to the outside is larger than that in the case where the pair of annular magnetic pole pieces 5 and the magnetic pole piece 5'is used, the leakage magnetic field is reduced by the magnetic shield effect when the magnetic material is used for the sealing portion 13. be able to. Since other configurations and operations are the same as those in the above-described respective embodiments, the same components are designated by the same reference numerals, and the description thereof will be omitted.
【0048】 次に、本考案の第11実施例を図11に示す。この磁性流体軸受はラジアル荷 重とスラスト荷重の両方向の荷重を支えるもので、円筒状多孔質永久磁石22と 、該円筒状多孔質永久磁石22の両端面に接して設けた一対の円環状磁極片54 と、前記円筒状多孔質永久磁石22の外周面に設けた封止部13と、前記一対の 円環状磁極片54の内周面と微小間隙3を介して対向すると共に前記円筒状多孔 質永久磁石22の内周面および前記一対の円環状磁極片54の内側面と微小間隙 3を介して対向する突出部11を有する軸1Aと、該軸1Aの突出部11の外周 面および外側面に設けた動圧発生用のスパイラルグルーブ7,7′と、前記一対 の円環状磁極片54の内側面の前記円筒状多孔質永久磁石22の端面の外周側付 近と接する部分に軸方向内側に延びて中央部付近に達し、そこから径方向内周側 に延びて内周面側に達する円周方向4ヶ所に設けた連通孔9と、該連通孔9およ び前記円筒状多孔質永久磁石22の内部空隙および前記微小間隙3に介在させた 磁性流体4とから構成されたものである。Next, an eleventh embodiment of the present invention is shown in FIG. This magnetic fluid bearing supports both radial load and thrust load, and comprises a cylindrical porous permanent magnet 22 and a pair of annular magnetic poles provided in contact with both end surfaces of the cylindrical porous permanent magnet 22. The piece 54, the sealing portion 13 provided on the outer peripheral surface of the cylindrical porous permanent magnet 22, and the inner peripheral surface of the pair of annular magnetic pole pieces 54 face each other through a minute gap 3 and the cylindrical porous Shaft 1A having a protrusion 11 that faces the inner peripheral surface of the permanent magnet 22 and the inner surface of the pair of annular magnetic pole pieces 54 with a minute gap 3, and the outer peripheral surface and the outer surface of the protrusion 11 of the shaft 1A. The spiral grooves 7 and 7 ′ for generating dynamic pressure provided on the side surfaces and the inner surface of the pair of annular magnetic pole pieces 54 are axially contacted with the outer peripheral side of the end surfaces of the cylindrical porous permanent magnets 22. It extends inward and reaches near the center, where Communication holes 9 provided at four circumferential positions extending radially inward toward the inner peripheral surface side, the communication holes 9 and the internal voids of the cylindrical porous permanent magnet 22 and the minute gaps. The magnetic fluid 4 is interposed between the magnetic fluid 4 and the magnetic fluid 4.
【0049】 このように構成した本実施例の磁性流体軸受は、軸1Aが回転すると軸1Aの 突出部11の外周面および外側面に設けられたスパイラルグルーブ7,7′のポ ンプ作用によって、スラスト側の微小間隙3と、ラジアル側の微小間隙3のラジ アル側スパイラルグルーブ7の外側部分に介在する磁性流体4がラジアル側微小 間隙3の軸方向中央部側へ押し込まれて、この部分に位置する磁性流体4の圧力 が上昇し、円筒状多孔質永久磁石22の内周面の軸方向中央部より円筒状多孔質 永久磁石22の内部空隙へ磁性流体4が押し込まれる。押し込まれた磁性流体4 は、円筒状多孔質永久磁石22の内部空隙を通って、径方向外周側へ流れ、連通 孔9を通って、円環状磁極片5の内周面側より再び微小間隙3に戻る。すなわち 、図11に太い矢印で示すような磁性流体4の循環流を生じる。その他の構成お よび作用については、上記各実施例と同様なので、同一の構成部分については、 同一の符号を付してその説明は省略する。In the magnetic fluid bearing of the present embodiment configured as described above, when the shaft 1A rotates, the spiral groove 7, 7'provided on the outer peripheral surface and the outer surface of the protrusion 11 of the shaft 1A causes the pumping action. The magnetic fluid 4 present on the thrust-side minute gap 3 and on the outer side of the radial-side minute gap 3 of the radial-side spiral groove 7 is pushed toward the central portion in the axial direction of the radial-side minute gap 3 and enters this portion. The pressure of the magnetic fluid 4 located increases, and the magnetic fluid 4 is pushed into the internal void of the cylindrical porous permanent magnet 22 from the axial center portion of the inner peripheral surface of the cylindrical porous permanent magnet 22. The pressed magnetic fluid 4 flows through the inner space of the cylindrical porous permanent magnet 22 to the outer peripheral side in the radial direction, passes through the communication hole 9, and again from the inner peripheral surface side of the annular magnetic pole piece 5 to form a small gap again. Return to 3. That is, a circulating flow of the magnetic fluid 4 as shown by a thick arrow in FIG. 11 is generated. Since other configurations and operations are the same as those in the above-mentioned respective embodiments, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0050】 なお、本実施例では、ラジアル側のスパイラルグルーブ7とスラスト側のスパ イラルグルーブ7′を両方設けたが、少なくともいずれか一方を設ければ良い。 また、本実施例では、スパイラルグルーブ7,7′を軸1Aの突出部11の外周 面および外側面側に設けたが、反対側すなわち、円筒状多孔質永久磁石22の内 周面側および円環状磁極片54の内側面側に各々ラジアル側のスパイラルグルー ブ7およびスラスト側のスパイラルグルーブ7′を設けても良く、場合によって は対向する面の両側に設けても良い。ただし、円筒状多孔質永久磁石22の内周 面側にスパイラルグルーブ7を設ける場合には、その部分の表面の空孔を封止す ることが望ましい。また、本実施例では、一対の円環状磁極片54を用いたが、 これに変えて円筒状多孔質永久磁石22の両端面および外周面に接する突入部を 内周側に有する断面凹状回転体の磁極片を用いてもよい。In this embodiment, both the spiral groove 7 on the radial side and the spiral groove 7'on the thrust side are provided, but at least one of them may be provided. Further, in this embodiment, the spiral grooves 7 and 7'are provided on the outer peripheral surface and the outer surface side of the projecting portion 11 of the shaft 1A, but on the opposite side, that is, the inner peripheral surface side of the cylindrical porous permanent magnet 22 and the circular surface. The radial side spiral groove 7 and the thrust side spiral groove 7'may be provided on the inner side surface side of the annular magnetic pole piece 54, respectively, and in some cases, may be provided on both sides of the facing surface. However, when the spiral groove 7 is provided on the inner peripheral surface side of the cylindrical porous permanent magnet 22, it is desirable to seal the pores on the surface of that portion. Further, in the present embodiment, the pair of annular magnetic pole pieces 54 are used, but instead of this, the rotating body having a concave cross section having the protrusions contacting both end surfaces and the outer peripheral surface of the cylindrical porous permanent magnet 22 on the inner peripheral side. You may use the magnetic pole piece of.
【0051】 次に、本考案の第12実施例を図12に示す。この磁性流体軸受もラジアル荷 重とスラスト荷重の両方向の荷重を支えるもので、一対の円環状磁極片54を設 けずに、軸1Aの突出部11の外周面および外側面と微小間隙3を介して対向す る突入部15を内周側に有する断面凹状回転体の多孔質永久磁石22′を設ける と共に、軸1Aの突出部11の外周面と対向する該多孔質永久磁石22′の突入 部15の内周面の中央部付近を除いた部分と、該突入部15の内側面および多孔 質永久磁石22′の外周面と両端面に封止部13を設けたものである。Next, FIG. 12 shows a twelfth embodiment of the present invention. This magnetic fluid bearing also supports both radial load and thrust load, and without providing a pair of annular magnetic pole pieces 54, a small gap 3 is formed between the outer peripheral surface and the outer surface of the protrusion 11 of the shaft 1A. Is provided with a porous permanent magnet 22 'having a concave cross section having an inwardly facing protruding portion 15 on the inner peripheral side, and the protruding portion of the porous permanent magnet 22' facing the outer peripheral surface of the protruding portion 11 of the shaft 1A. Sealing portions 13 are provided on the inner peripheral surface of the inner peripheral surface of 15 except the central portion, the inner surface of the protruding portion 15, the outer peripheral surface of the porous permanent magnet 22 ', and both end surfaces.
【0052】 このように断面凹状回転体の多孔質永久磁石22′のみを用いた場合は、部品 点数が少なくなり、一層の小型化や軽量化が図れると共に低コストとなる。その 他の構成及び作用については、上記各実施例と同様なので、同一の構成部分につ いては同一の符号を付してその説明は省略する。As described above, when only the porous permanent magnet 22 'having a concave rotating body is used, the number of parts is reduced, and the size and weight can be further reduced and the cost can be reduced. Since other configurations and operations are the same as those in the above-mentioned respective embodiments, the same components are designated by the same reference numerals and the description thereof will be omitted.
【0053】 尚、上記第7乃至第12実施例では、円筒状多孔質体磁力源として円筒状多孔 質永久磁石22を用いたものを例にとって説明したが、円筒状多孔質永久磁石に 限るものではなく、円筒状多孔質体の電磁石等であってもよい。Although the seventh to twelfth embodiments have been described by taking the cylindrical porous permanent magnet 22 as the magnetic source of the cylindrical porous body as an example, the present invention is not limited to the cylindrical porous permanent magnet. Instead, it may be a cylindrical porous electromagnet or the like.
【0054】[0054]
本考案は、以上の構成および作用を有するもので、軸の外周面の多孔質体ある いは円筒状多孔質体磁力源の両端部付近と対向する部分または、多孔質体あるい は円筒状多孔質体磁力源の内周面の両端部付近の少なくともいずれか一方に設け たスパイラルグルーブで発生する動圧によって、磁性流体が微小間隙から多孔質 体あるいは円筒状多孔質体磁力源の内部空隙へ流入し、再び微小間隙へ戻る循環 流を生じるため、高速回転下においても磁性流体の温度上昇が抑制されると共に 、磁性流体中に混入した異物が多孔質体あるいは円筒状多孔質体磁力源のフィル ター作用によって微小間隙内に留まらないため、軸受の長寿命化を図ることがで きる。 The present invention has the above-described structure and action, and is formed on the outer peripheral surface of the shaft by a porous body or a cylindrical porous body, a portion facing the vicinity of both ends of the magnetic source, or a porous body or a cylindrical body. Due to the dynamic pressure generated by the spiral groove provided on at least one of the both ends of the inner peripheral surface of the porous magnetic force source, the magnetic fluid flows from the minute gap to the internal void of the porous body or the cylindrical porous magnetic force source. Since a circulating flow that flows into the magnetic fluid and returns to the minute gap is generated again, the temperature rise of the magnetic fluid is suppressed even under high speed rotation, and the foreign matter mixed in the magnetic fluid is a porous body or a cylindrical porous body magnetic source. Since it does not stay in the minute gap due to the filter action of, the life of the bearing can be extended.
【0055】 また、スパイラルグルーブによって発生する動圧によって負荷能力が高くなり 回転精度も高くなる。Further, the dynamic pressure generated by the spiral groove increases the load capacity and the rotation accuracy.
【図1】図1は本考案の一実施例に係る磁性流体軸受の
縦断面図である。FIG. 1 is a vertical cross-sectional view of a magnetic fluid bearing according to an embodiment of the present invention.
【図2】図2は本考案の第2実施例に係る磁性流体軸受
の縦断面図である。FIG. 2 is a vertical cross-sectional view of a magnetic fluid bearing according to a second embodiment of the present invention.
【図3】図3は本考案の第3実施例に係る磁性流体軸受
の縦断面図である。FIG. 3 is a vertical sectional view of a magnetic fluid bearing according to a third embodiment of the present invention.
【図4】図4は本考案の第4実施例に係る磁性流体軸受
の縦断面図である。FIG. 4 is a vertical sectional view of a magnetic fluid bearing according to a fourth embodiment of the present invention.
【図5】図5は本考案の第5実施例に係る磁性流体軸受
の縦断面図である。FIG. 5 is a longitudinal sectional view of a magnetic fluid bearing according to a fifth embodiment of the present invention.
【図6】図6は本考案の第6実施例に係る磁性流体軸受
の縦断面図である。FIG. 6 is a longitudinal sectional view of a magnetic fluid bearing according to a sixth embodiment of the present invention.
【図7】図7は本考案の第7実施例に係る磁性流体軸受
の縦断面図である。FIG. 7 is a longitudinal sectional view of a magnetic fluid bearing according to a seventh embodiment of the present invention.
【図8】図8は本考案の第8実施例に係る磁性流体軸受
の縦断面図である。FIG. 8 is a vertical sectional view of a magnetic fluid bearing according to an eighth embodiment of the present invention.
【図9】図9は本考案の第9実施例に係る磁性流体軸受
の縦断面図である。FIG. 9 is a vertical cross-sectional view of a magnetic fluid bearing according to a ninth embodiment of the present invention.
【図10】図10は本考案の第10実施例に係る磁性流
体軸受の縦断面図である。FIG. 10 is a longitudinal sectional view of a magnetic fluid bearing according to a tenth embodiment of the present invention.
【図11】図11は本考案の第11実施例に係る磁性流
体軸受の縦断面図である。FIG. 11 is a longitudinal sectional view of a magnetic fluid bearing according to an eleventh embodiment of the present invention.
【図12】図12は本考案の第12実施例に係る磁性流
体軸受の縦断面図である。FIG. 12 is a vertical cross-sectional view of a magnetic fluid bearing according to a twelfth embodiment of the present invention.
【図13】図13は第1の従来例の磁性流体軸受の縦断
面図である。FIG. 13 is a vertical sectional view of a magnetic fluid bearing of a first conventional example.
【図14】図14は第2の従来例の磁性流体軸受の縦断
面図である。FIG. 14 is a vertical sectional view of a magnetic fluid bearing of a second conventional example.
1,1A 軸 2 円筒状永久磁石(円筒状磁力源) 22 円筒状多孔質永久磁石(円筒状多孔質体磁力源) 3 微小間隙 4 磁性流体 5,51,52,53,54 円環状磁極片(磁極片) 6 円筒状多孔質体(多孔質体) 7 スパイラルグルーブ 8 連通溝 9 連通孔 10 空間 11 突出部 12 レイリーステップ 13 封止部 14 撥油部 15 突入部 1,1A Axis 2 Cylindrical permanent magnet (cylindrical magnetic force source) 22 Cylindrical porous permanent magnet (cylindrical porous magnetic force source) 3 Micro gap 4 Magnetic fluid 5,51,52,53,54 Annular magnetic pole piece (Magnetic pole piece) 6 Cylindrical porous body (porous body) 7 Spiral groove 8 Communication groove 9 Communication hole 10 Space 11 Projection part 12 Rayleigh step 13 Sealing part 14 Oil repellent part 15 Projection part
Claims (2)
面に接して設けた一対の磁極片と、該磁極片と微小間隙
を介して設けた軸と、前記微小間隙に介在させた磁性流
体とから成る磁性流体軸受において、 前記円筒状磁力源の内周面と前記一対の磁極片の内側面
とで囲まれる空間に前記軸と微小間隙を介して対向する
ように多孔質体を設け、該多孔質体の内部空隙および前
記微小間隙にも前記磁性流体を介在させると共に、前記
軸の外周面の前記多孔質体の両端部付近と対向する部分
または、前記多孔質体の内周面の両端部付近の少なくと
もいずれか一方に動圧発生用のスパイラルグルーブを設
けたことを特徴とする磁性流体軸受。1. A cylindrical magnetic force source, a pair of magnetic pole pieces provided in contact with both end faces of the cylindrical magnetic force source, a shaft provided with the magnetic pole pieces with a minute gap, and a shaft provided in the minute gap. In a magnetic fluid bearing composed of a magnetic fluid, a porous body is disposed so as to face a space surrounded by an inner peripheral surface of the cylindrical magnetic force source and inner side surfaces of the pair of magnetic pole pieces with the shaft with a minute gap therebetween. Is provided, and the magnetic fluid is interposed also in the internal voids and the minute gaps of the porous body, and the portion of the outer peripheral surface of the shaft that faces the vicinity of both ends of the porous body or the inside of the porous body. A magnetic fluid bearing characterized in that a spiral groove for generating a dynamic pressure is provided on at least one of both ends of the peripheral surface.
質体磁力源の内周面と微小間隙を介して設けた軸と、該
軸の外周面の前記多孔質体磁力源の両端部付近と対向す
る部分または、前記多孔質体の内周面の両端部付近の少
なくともいずれか一方に設けた動圧発生用のスパイラル
グルーブと、前記微小間隙および前記円筒状多孔質体磁
力源の内部空隙に介在させた磁性流体とから成る磁性流
体軸受。2. A cylindrical porous magnetic force source, a shaft provided with a minute gap from the inner peripheral surface of the cylindrical porous magnetic force source, and the porous magnetic force source on the outer peripheral surface of the shaft. A spiral groove for generating dynamic pressure, which is provided in at least one of a portion facing the vicinity of both ends or near both ends of the inner peripheral surface of the porous body, the minute gap and the cylindrical porous body magnetic source Magnetic fluid bearing consisting of a magnetic fluid interposed in the inner space of the.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1993025323U JP2593795Y2 (en) | 1992-11-13 | 1993-04-16 | Magnetic fluid bearing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-84669 | 1992-11-13 | ||
JP8466992 | 1992-11-13 | ||
JP1993025323U JP2593795Y2 (en) | 1992-11-13 | 1993-04-16 | Magnetic fluid bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0653822U true JPH0653822U (en) | 1994-07-22 |
JP2593795Y2 JP2593795Y2 (en) | 1999-04-12 |
Family
ID=26362922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1993025323U Expired - Lifetime JP2593795Y2 (en) | 1992-11-13 | 1993-04-16 | Magnetic fluid bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2593795Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019109373A (en) * | 2017-12-19 | 2019-07-04 | 新思考電機有限公司 | Support mechanism, optical member drive device, camera device, and electronic apparatus |
-
1993
- 1993-04-16 JP JP1993025323U patent/JP2593795Y2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019109373A (en) * | 2017-12-19 | 2019-07-04 | 新思考電機有限公司 | Support mechanism, optical member drive device, camera device, and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2593795Y2 (en) | 1999-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5834870A (en) | Oil impregnated porous bearing units and motors provided with same | |
JPH0942298A (en) | Improved seal for fluid bearing unit | |
US6955469B2 (en) | Dynamic pressure bearing device | |
US20090238505A1 (en) | Stampable thrust washer with flow cutouts | |
US20100166346A1 (en) | Dynamic bearing device | |
JP4360482B2 (en) | Hydrodynamic bearing device | |
JP3958922B2 (en) | Hydrodynamic bearing unit and manufacturing method thereof | |
JPH0653822U (en) | Magnetic fluid bearing | |
KR20060079630A (en) | A hydrodynamic bearing motor | |
JP2007071274A (en) | Dynamic pressure bearing device | |
JP3602707B2 (en) | Hydrodynamic bearing motor | |
JPS624565B2 (en) | ||
JP3892995B2 (en) | Hydrodynamic bearing unit | |
JP2006112614A (en) | Dynamic pressure bearing device | |
KR100453331B1 (en) | Fluid dynamic bearing spindle motor | |
JP3299685B2 (en) | Magnetic fluid bearing device | |
JP3234030B2 (en) | Spindle motor | |
JPS61294218A (en) | Fluid bearing device | |
JP2006292161A (en) | Bearing unit and production method therefor | |
JPH07310746A (en) | Dynamic pressure bearing device | |
JP2004108549A (en) | Hydrodynamic bearing device | |
JP2000352416A (en) | Dynamic pressure type bearing unit and its manufacture | |
KR102130091B1 (en) | Motor | |
JPS6233073Y2 (en) | ||
JPH03260415A (en) | Dynamic pressure fluid bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990119 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 10 |