JPH0653615A - Light sensing device and semiconductor laser for light sensing device - Google Patents

Light sensing device and semiconductor laser for light sensing device

Info

Publication number
JPH0653615A
JPH0653615A JP4206701A JP20670192A JPH0653615A JP H0653615 A JPH0653615 A JP H0653615A JP 4206701 A JP4206701 A JP 4206701A JP 20670192 A JP20670192 A JP 20670192A JP H0653615 A JPH0653615 A JP H0653615A
Authority
JP
Japan
Prior art keywords
light
laser
sensing device
wavelength
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4206701A
Other languages
Japanese (ja)
Inventor
Hiroo Nomura
浩朗 野村
Hideaki Iwano
英明 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4206701A priority Critical patent/JPH0653615A/en
Publication of JPH0653615A publication Critical patent/JPH0653615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a light sensing device which is compact and safe for eyes by using semiconductor laser as a light source and by making the wavelength longer than a specified value. CONSTITUTION:Semiconductor laser 13 driven by a laser driver 12 repeats the specified light emitting. Then, the light coming from a light source is discharged forward in the air through an optical transmission system 14. The laser is irradiated to an object. The dispersed or reflected light from hear is caught by an optical reception system 15. In a light detector 16, such light is converted into an electric signal, and the information signal is transmitted to a signal processing circuit 17. The signal processing circuit 17 provides the measured results of the time during transmission and reception of laser, or the spectrum of the object measured. A data processing section 18 converts actual data transmitted from the signal processing circuit 17 into measured results of distribution by considering the correlation with statistical processing or measured time. The wavelength of a semiconductor laser 13 is specified more than 1.4mum, thereby two conditions of safety security for laser beams and excellent optical transmissivity in the air become compatible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光をある目標物に照射
し、その反射または散乱光からその目標物に関する情報
を得る光センシング装置とその光源用半導体レーザに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical sensing device for irradiating a target with light and obtaining information on the target from the reflected or scattered light, and a semiconductor laser for a light source thereof.

【0002】[0002]

【従来の技術】従来、この種の光センシング装置として
は、目標との距離を測る光波測距儀が知られている。ま
た、大気中の浮遊物質などの計測を行う気象・宇宙など
の環境計測分野では、レーザレーダとして知られてい
る。これらについてはレーザハンドブック(レーザ学会
編、オーム社)第27章に詳しい説明があるので、これ
らを参考にされたい。しかし、このような光センシング
装置は大型で用途が測量や気象用に限られていたので、
まだ我々の日常生活からは縁遠いものであった。しか
し、最近の環境問題の深刻化により気象観測網の整備や
人工衛星搭載用として、段々知られるようになってき
た。また、そのような目的のためには小型・携帯可能な
ものが強く望まれている。さらには、最近同じような原
理に基づく光センシング装置として自動車の車間距離セ
ンサが、事故の未然防止を目的に実用化の段階に入って
きた。
2. Description of the Related Art Conventionally, as this type of optical sensing device, a light wave distance measuring device for measuring a distance to a target has been known. It is also known as a laser radar in the field of environmental measurement such as meteorology and space, which measures suspended matter in the atmosphere. These are described in detail in Chapter 27 of the Laser Handbook (Laser Society, edited by Ohmsha), so please refer to them. However, since such an optical sensing device is large and its use is limited to surveying and meteorology,
It was still far from our daily life. However, due to the recent seriousness of environmental problems, it has gradually become known as a meteorological observation network and for installing satellites. Further, for such a purpose, a compact and portable device is strongly desired. Furthermore, recently, an inter-vehicle distance sensor of an automobile as an optical sensing device based on the same principle has been put into practical use for the purpose of preventing accidents.

【0003】このような応用の発展の中で、特開昭56
−76074は車載用の障害物検知装置として、波長
1.38μmの発光素子を用いる事を特徴に出願がなさ
れている。その根拠は、測定光のノイズ源として地上ま
で到達する太陽光があり、これが測定系に混入するのを
避けるために、明細書6ページ5行に記載のように太陽
光エネルギー密度が低い波長を選択・使用するものであ
る。
In the development of such applications, Japanese Patent Application Laid-Open No. 56-56
-76074 has been filed for application as an on-vehicle obstacle detection device using a light emitting element having a wavelength of 1.38 μm. The reason for this is that there is sunlight that reaches the ground as a noise source of the measurement light, and in order to prevent this from entering the measurement system, wavelengths with low solar energy density as described in line 5 on page 6 of the specification are used. It is what you select and use.

【0004】[0004]

【発明が解決しようとする課題】しかし、これは同時に
特開昭56−76074の6頁12行に述べられている
通り大気中透過率が悪く、伝播効率の悪い波長になって
いる。従って、送信光をパルスにする場合や、なるべく
弱い出力で検知能力を上げるためにはこの波長は不利で
あり、到達距離の小さなセンサにしか用いる事ができな
い。
However, at the same time, as described in JP-A-56-76074, page 6, line 12, the transmittance in the atmosphere is poor and the wavelength is low in the propagation efficiency. Therefore, this wavelength is disadvantageous when the transmitted light is pulsed or in order to improve the detection capability with a weak output, and it can be used only for a sensor having a short reach.

【0005】また、上記センシング装置では光源にレー
ザを用いるため、携帯性が増せば増すほど人体に対する
安全性を確保しなければならない。特に、これを地上に
平行に投光するような車載用装置では、人体に対する安
全性は充分過ぎるまで考慮しなければならない。上記従
来例では、このような配慮は全くなされていない。さら
には、このようなセンシング装置を広く普及させるため
には、装置自体の小型化を図り携帯性を増したり、自動
車搭載用としてデザイン上も問題のない充分な大きさを
実現する必要がある。
Further, in the above-mentioned sensing device, since a laser is used as a light source, it is necessary to secure safety for a human body as the portability increases. In particular, in a vehicle-mounted device that projects the light parallel to the ground, the safety for the human body must be taken into consideration until it is sufficient. In the above-mentioned conventional example, such consideration is not made at all. Furthermore, in order to widely disseminate such a sensing device, it is necessary to reduce the size of the device itself and increase portability, and to realize a sensing device that is large enough to be mounted on a vehicle and has no design problem.

【0006】本発明はこのような安全性の向上と、装置
の小型化を目的としてなされたものである。
The present invention has been made for the purpose of improving the safety and reducing the size of the apparatus.

【0007】[0007]

【課題を解決するための手段】本発明による光センシン
グ装置は、前方に光を放出し、その前方のある物体から
の反射または散乱光を受光素子によって捕獲する事によ
って、前記物体と受光素子間の距離の算出、あるいは、
反射または散乱物体の計測をする光センシング装置であ
って、光源の波長が1.4μm以上である半導体レーザ
を用いたことを特徴とする。また、上記光源が1.4μ
mから1.7μmのInGaAsP系半導体レーザであ
ることを他の特徴としている。さらには、この光源が発
振領域幅200μm以上である量子井戸型半導体レーザ
であることを特徴としている。
A light sensing device according to the present invention emits light to the front, and captures reflected or scattered light from an object in front of the light by a light receiving element, whereby the light is absorbed between the object and the light receiving element. Of the distance, or
An optical sensing device for measuring a reflected or scattered object, characterized in that a semiconductor laser having a light source wavelength of 1.4 μm or more is used. Also, the light source is 1.4μ
Another feature is that the semiconductor laser is an InGaAsP-based semiconductor laser of m to 1.7 μm. Further, the light source is a quantum well type semiconductor laser having an oscillation region width of 200 μm or more.

【0008】[0008]

【実施例】図1は本発明による光センシング装置の概略
構成である。まず、レーザドライバ2によって駆動され
た半導体レーザ3は、所定の発光を繰り返す。次に、光
源から出た光は、送信光学系4を通して前方空中に放出
される。このレーザは測定対象物(図示せず)に当た
り、ここからの散乱または反射光は、受信光学系5で捕
獲される。光検出器6では、これを電気信号に変換し、
受け取った情報信号を信号処理回路7へと渡す。信号処
理回路7では、レーザの発信から受信までの時間の計
測、あるいは、被測定物の分光的計測の結果を出す。デ
ータ処理部8は信号処理回路7からの生データに、統計
的処理あるいは計測時間と生データとの相関をとり、分
布の計測結果などに変換し、観測者の扱い易い形でまと
め排出する。1のシステム制御は、その名の通り全体の
流れの管理・統括・命令の発信を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration of an optical sensing device according to the present invention. First, the semiconductor laser 3 driven by the laser driver 2 repeats predetermined light emission. Next, the light emitted from the light source is emitted to the front air through the transmission optical system 4. The laser hits an object to be measured (not shown), and scattered or reflected light from the object is captured by the receiving optical system 5. The photodetector 6 converts this into an electric signal,
The received information signal is passed to the signal processing circuit 7. The signal processing circuit 7 measures the time from the laser emission to the laser reception, or outputs the result of spectroscopic measurement of the measured object. The data processing unit 8 statistically processes the raw data from the signal processing circuit 7 or correlates the measurement time with the raw data, converts the raw data into a distribution measurement result, and collects and discharges the raw data in a form that is easy for an observer to handle. As its name implies, the system control of No. 1 manages, controls, and issues orders for the entire flow.

【0009】本構成において、通常レーザは100ns
以下のパルスとして発信され、そのレーザ光の強力な出
力と指向性によって遠方の物体、状態、その距離、方
向、大きさ、形状、速度、密度、組成などの諸情報を遠
隔的に測定するものである。また、本発明ではこの半導
体レーザ3の波長を、1.4μm以上とする事が大きな
特徴であり、それはレーザ光に対する安全確保と、光の
大気透過率の良い条件を両立させた為である。
In this structure, a normal laser is 100 ns.
Transmitted as the following pulses and remotely measuring various information such as distant objects, states, distances, directions, sizes, shapes, velocities, densities, compositions, etc. by the powerful output and directivity of the laser light. Is. In the present invention, the wavelength of the semiconductor laser 3 is set to 1.4 μm or more, which is a major feature, because the safety of the laser light is ensured and the atmospheric light transmittance is good.

【0010】図2は、JIS C6802−1991の
付図13「クラス1の可視および近赤外レーザ製品のA
EL(被ばく放出限界)」を転載したものであるが、可
視光に対しより波長の長い近赤外光の方が安全な事が分
かる。例えば、可視の400nmから700nmのns
オーダーの放出持続時間の所では、放出エネルギで2×
10-7Jが上限であるが、波長1400nmから105
nmでは8×10-5Jとなり、400倍まで許される。
同様に、これを現在最も入手がたやすく、かつ、出力が
出ている830nmのレーザで求めると、放出エネルギ
の上限は3.6×10-7であるので、これを波長140
0nm以上に変更すると200倍以上の出力増大が出来
る。即ち、半導体レーザの波長を1400nm以上にす
ると、人体に対し絶対安全といわれているクラス1レー
ザ装置に於いても、検知能力の大幅向上が図れる。
FIG. 2 is a drawing 13 of JIS C6802-1991, "A of Class 1 Visible and Near Infrared Laser Products".
It is a reprint of "EL (exposure emission limit)", but it can be seen that near infrared light, which has a longer wavelength than visible light, is safer. For example, visible ns from 400 nm to 700 nm
At the order of emission duration, the emission energy is 2 ×
The upper limit is 10 -7 J, but the wavelength is from 1400 nm to 10 5
In nm, it is 8 × 10 −5 J, which is allowed up to 400 times.
Similarly, when this is obtained with the 830 nm laser which is the most easily available and has an output, the upper limit of the emission energy is 3.6 × 10 −7.
If it is changed to 0 nm or more, the output can be increased 200 times or more. That is, when the wavelength of the semiconductor laser is set to 1400 nm or more, even in the class 1 laser device which is said to be absolutely safe for the human body, the detection ability can be greatly improved.

【0011】図3は光の波長と眼球透過率及び眼底吸収
率を図示したもので、可視光および近赤外光は眼球をよ
く透過し、波長1.4μm以上では眼内に光が殆ど入ら
ず、角膜表層にエネルギが吸収される事が分かる。ま
た、眼球を透過し網膜に焦点を結ぶ可視光は、単位面積
当たり光強度で角膜上の1万倍にもなると云われてい
る。この様な事が、上記レーザの波長に対する安全性の
大きな差の現れる理由である。
FIG. 3 shows the wavelength of light and the transmittance of the eyeball and the absorption rate of the fundus of the eye. Visible light and near-infrared light pass through the eyeball well, and when the wavelength is 1.4 μm or more, almost no light enters the eye. However, it can be seen that energy is absorbed in the corneal surface layer. Further, it is said that the visible light which passes through the eyeball and focuses on the retina has a light intensity per unit area of 10,000 times on the cornea. This is the reason why a large difference in safety with respect to the wavelength of the laser appears.

【0012】一方、図4は距離1.6kmで波長に対す
る大気の透過率をみたもので(レーザハンドブック 図
27.2を転載)、波長1.4μmから1.8μmで透
過が良くなっており、そのピークは80%までに達して
いる事が分かる。また、先に揚げた特開昭56−760
74の図3(ロ)の伝播距離300mに対する大気中の
光の透過率も、同様に波長1.4μmから1.8μmで
透過率が良くなっている。従って、半導体レーザの波長
をこの1.4〜1.8μmの間に設定すれば、目に対す
る安全性が高く、かつ、到達距離の長いリモートセンシ
ング装置を実現できる事が容易に分かる。また、到達距
離が有限で使える物については、光の発光ピークをこの
距離に合わせ出力を抑えて使えば、より一層の安全が確
保できる事は云うまでもない。なお、大気の透過率の悪
いところでは水や炭酸ガスによる吸収が起こっている。
次に、本発明のこの目的を実現するための光源について
述べる。
On the other hand, FIG. 4 shows the transmittance of the atmosphere with respect to the wavelength at a distance of 1.6 km (Laser Handbook, FIG. 27.2 is reproduced). The transmittance is improved from the wavelength of 1.4 μm to 1.8 μm. It can be seen that the peak reaches up to 80%. In addition, Japanese Patent Laid-Open No. 56-760
Similarly, the transmittance of light in the atmosphere with respect to the propagation distance of 300 m in FIG. 3B of 74 is also good at wavelengths of 1.4 μm to 1.8 μm. Therefore, it is easily understood that if the wavelength of the semiconductor laser is set within the range of 1.4 to 1.8 μm, it is possible to realize a remote sensing device with high eye safety and long reach. Needless to say, for objects that can be used with a finite reach, even more safety can be ensured if the light emission peak is adjusted to this distance and output is suppressed. It should be noted that water and carbon dioxide are absorbed in places where the atmospheric transmittance is poor.
Next, a light source for achieving this object of the present invention will be described.

【0013】図5は波長1μm帯のInGaAsPレー
ザの利得導波型ストライプ構造の例である。基本的には
最も実用化が進んでいるAlGaAsレーザの場合と同
じであるので、そちらの解説書も参考にされたい。基本
構造はInP基板51の上に、InGaAsPの活性層
53をp型、n型のInPクラッド層55、52でサン
ドイッチしたものを積み上げ、これにオーミック電極を
とり易くする為のp−InGaAsPのキャップ層56
を重ねる。オーミック電極としては、p側58にはAu
−Zn、n側59にはAu−Ge−Niがよく用いられ
る。また、電極を帯状にする為の絶縁には、SiO2
7を用いる。1.4μm以上の波長のInGaAsPレ
ーザでは、第3層InPクラッド層を液層成長する際、
活性層がメルトバックされて界面が凸凹になるので、こ
れを避けるためにInGaAsPのアンチメルトバック
54が付けられるか、低温で高い過冷却度のもとに第3
層p−InPが成長される。また、液層成長以外の気層
成長法(MO−CVDなど)やMBEで作る場合には、
メルトバック現象は無いのでAM層は不要である。活性
層厚は0.1μmから0.2μm程度、ストライプ幅は
10μm前後でよい。波長については、In1-xGax
y1-y活性層の組成比x、yを変える事により、1.
11μmから1.67μmが得られる。レーザの製造と
センシング装置の実用の2点から、本発明に最適な波長
は1.55μm近辺である。
FIG. 5 shows an example of a gain waveguide type stripe structure of an InGaAsP laser having a wavelength of 1 μm band. Since it is basically the same as the case of the AlGaAs laser which has been most practically used, please refer to that manual as well. The basic structure is such that an InGaAsP active layer 53 is sandwiched between p-type and n-type InP clad layers 55 and 52 on an InP substrate 51, and a p-InGaAsP cap for facilitating the formation of an ohmic electrode is stacked thereon. Layer 56
Pile up. As an ohmic electrode, Au is provided on the p-side 58.
Au-Ge-Ni is often used for the -Zn and n-side 59. In addition, SiO 2 5
7 is used. In the InGaAsP laser having a wavelength of 1.4 μm or more, when the third InP clad layer is grown by liquid phase,
Since the active layer is melted back and the interface becomes uneven, in order to avoid this, an InGaAsP anti-meltback 54 is attached, or the third layer is formed at a low temperature and under a high degree of supercooling.
The layer p-InP is grown. In addition, when the vapor phase growth method (MO-CVD etc.) other than the liquid layer growth or MBE is used,
Since there is no meltback phenomenon, the AM layer is unnecessary. The active layer thickness may be about 0.1 μm to 0.2 μm, and the stripe width may be about 10 μm. Regarding the wavelength, In 1-x Ga x A
s y P 1-y activity composition ratio of the layer x, by changing the y, 1.
11 μm to 1.67 μm are obtained. The optimum wavelength for the present invention is around 1.55 μm from the two points of manufacturing the laser and practically using the sensing device.

【0014】図6は波長1μm帯の屈折率導波型ストラ
イプレーザの代表的なものの構造である。屈折率導波型
では、局在する利得領域の中に屈折率分布を持った導波
路が作られ、これが導波領域となって水平横モードを決
定する。導波路幅Wは2μm前後であり、電流注入スト
ライプ幅Sとの関係から、S>Wのリブ導波型とS=W
のBH(埋め込み)型に大きく2分できる。図は前者の
タイプで示した。一般に、屈折率導波型ストライプ構造
では水平横モードが安定しており、縦モードも単一化し
易い。また、光学損傷が発生しにくく、高光出力密度で
の動作が可能であることも特徴である。
FIG. 6 shows a typical structure of a refractive index guided stripe laser having a wavelength band of 1 μm. In the refractive index guided type, a waveguide having a refractive index distribution is formed in a localized gain region, which serves as a waveguide region and determines a horizontal transverse mode. The waveguide width W is about 2 μm. From the relationship with the current injection stripe width S, the rib waveguide type of S> W and S = W
BH (embedded) type can be roughly divided into two. The figure shows the former type. Generally, in the refractive index guided stripe structure, the horizontal and transverse modes are stable, and the longitudinal modes are easily unified. In addition, it is also characterized in that optical damage is unlikely to occur and operation at high light output density is possible.

【0015】上記InGaAsP系レーザは、主に光通
信用でポピュラーであり、CW出力で数10mW、パル
スで数100mWクラスのレーザが得られている。
The InGaAsP-based laser is popular mainly for optical communication, and a laser having a CW output of several 10 mW and a pulse of several 100 mW is obtained.

【0016】図7は、活性層を多重量子井戸構造とした
新しいタイプのレーザである。構造は前述の利得導波型
と共通する所が多い。即ち、n−InP基板71上にn
型InPのクラッド層72を成長させ、この上に量子井
戸構造の活性層73In1-xGaxAsy1-yを積み上
げ、さらに、p−InPのクラッド層74で挟みサンド
イッチ構造とする。この時、量子井戸その他の形成には
MOCVDまたはMBE法を用い、組成のxは0.76
または0.65に固定する。また、y組成についてはy
の上限をを0.4から0.9に取り、yの底を0.1に
なるように振る。さらには、この時の井戸幅は100オ
ングストローム以下、バリア幅は70オングストローム
程度に設定する。こうして活性層を形成した後は、オー
ミックコンタクトを得るためのキャップ層75p−In
GaAsPを成長させ、不要部分をSiO2 76で絶縁
の後、p電極77のストライプ幅を200μm以上のブ
ロードにする。共振器長は400〜500μmである。
このようにすると、発振波長で1.4μmから1.6μ
m、レーザ発振領域の大面積化で出力数10W、パルス
幅100ns以下のジャイアントパルス半導体レーザが
得られる。これは出力で従来タイプの一桁から二桁のア
ップであるから、光を飛ばし行って帰ってきた光の計測
を行うリモートセンシングの能力向上には効果絶大であ
る。また、前述した通り目に対しても影響の無い波長域
となっているので安全性も極めて高い。 さて、上記量
子井戸構造のレーザにはいくつかの特徴がある。第1
は、低いしきい値電流が可能なことである。この事は装
置の低パワー化、バッテリ駆動化にとって好都合とな
る。第2の特徴は、量子井戸の幅を変えるだけで発振波
長を変えることが出来ることである。この事は波長を操
作するパラメータが、材料組成の変化の他に井戸の幅を
変えるという手段も取れるので、自由度が非常に高くな
る。第3の特徴は、しきい値電流の温度依存性がダブル
へテロレーザと較べると小さいということである。これ
は実用上非常に好都合で、温度依存性の少ない装置を実
現できる。第4の特徴は、ダブルへテロレーザよりも高
速変調特性が優れていることである。これも光をパルス
化して送信する光センシング装置にとっては大事なファ
クターとなる。このように量子井戸型レーザを使用可能
とする事で、実用機にとっては幾多の好結果をもたら
す。
FIG. 7 shows a new type laser having an active layer having a multiple quantum well structure. The structure has many points in common with the above-mentioned gain waveguide type. That is, n on the n-InP substrate 71
A type InP clad layer 72 is grown, and an active layer 73In 1-x Ga x As y P 1-y having a quantum well structure is stacked on the clad layer 72, and is sandwiched by a p-InP clad layer 74 to form a sandwich structure. At this time, MOCVD or MBE method is used for forming the quantum wells and the like, and the composition x is 0.76.
Alternatively, fix it at 0.65. For the y composition, y
The upper limit of is taken from 0.4 to 0.9, and the bottom of y is shaken to be 0.1. Further, at this time, the well width is set to 100 angstroms or less and the barrier width is set to about 70 angstroms. After forming the active layer in this way, a cap layer 75p-In for obtaining ohmic contact is formed.
After growing GaAsP and insulating unnecessary portions with SiO 2 76, the stripe width of the p-electrode 77 is broadened to 200 μm or more. The resonator length is 400 to 500 μm.
With this, the oscillation wavelength is 1.4 μm to 1.6 μm.
m, a giant pulse semiconductor laser with an output of 10 W and a pulse width of 100 ns or less can be obtained by increasing the area of the laser oscillation region. This is a one-digit to two-digit increase in output, so it is extremely effective in improving the remote sensing capability of measuring the returned light by scattering the light. Further, as mentioned above, the wavelength range has no effect on the eyes, so that the safety is extremely high. The quantum well structure laser has several features. First
Is that low threshold currents are possible. This is convenient for lowering the power of the device and making it battery-operated. The second feature is that the oscillation wavelength can be changed only by changing the width of the quantum well. This means that the parameter for controlling the wavelength can be changed by changing the material composition as well as by changing the width of the well, so that the degree of freedom is extremely high. The third feature is that the temperature dependence of the threshold current is smaller than that of the double hetero laser. This is very convenient in practice, and a device having little temperature dependence can be realized. The fourth characteristic is that the high speed modulation characteristic is superior to that of the double hetero laser. This is also an important factor for an optical sensing device that transmits light in pulses. By making it possible to use the quantum well laser in this manner, a number of good results are obtained for practical machines.

【0017】以上述べたInGaAsP系以外で、波長
1.4μm以上の半導体レーザを実現する可能性を持っ
たものは、2μm付近と3〜4μm範囲ではInGaA
sSb系、1〜6μm帯ではInAsPSb系、4〜8
μm帯ではPbSSe系、6〜28μm帯ではPbSn
Te系とPbSnSe系がある。しかし、一般に発振波
長が長くなるとバンド間エネルギの小さい合金を用いる
ので、熱エネルギで電子や正孔が励起され易くpn接合
が形成がされなくなる。また、これらの電荷寿命は温度
が高いほど短くなるので、それを防ぐための冷却器が必
要になってくる。従って、本発明のもう一つの目的であ
る装置の小型化には、相反するものとなりかねない。注
意が必要である。
Other than the above-mentioned InGaAsP system, there is a possibility of realizing a semiconductor laser having a wavelength of 1.4 μm or more, InGaA near 2 μm and in the range of 3 to 4 μm.
sSb system, InAsPSb system in the 1-6 μm band, 4-8
PbSSe system in the μm band, PbSn in the 6 to 28 μm band
There are Te type and PbSnSe type. However, in general, when the oscillation wavelength becomes long, an alloy having a small band-to-band energy is used, so that electrons and holes are easily excited by thermal energy and a pn junction is not formed. Further, the higher the temperature, the shorter the life of these charges. Therefore, a cooler is required to prevent this. Therefore, the miniaturization of the device, which is another object of the present invention, may be conflicting. Caution must be taken.

【0018】次に、発光素子と対になる受光素子につい
て簡単に述べる。図8はInGaAsをi層とする波長
1μm帯のPINフォトダイオードであり、受光感度は
1〜1.65μm付近まで充分高いので1μm帯の全波
長域について受光素子として使える。光は裏面入射型
で、0.92μm以上の波長に透明なInP基板を通し
てInGaAs層に導入される。InGaAs層が充分
厚ければ、光はInGaAs表面までは届かないから、
そこでの表面再結合は量子効率に影響を与える事がな
い。i層の厚みは2〜3μm、キャリア濃度は1014
1016cm-3であり、応答速度はCR時定数制限の周波
数特性となる。受光径100μmの場合、0.1ns前
後の立ち上がり、立ち下り時間が得られる。暗電流はG
eより2桁小さい。なお、Geを用いたPINフォトダ
イオードも1μm帯であるが、これは1.5μm以上で
急激に量子効率が落ちるので、本センシング装置にはあ
まり向かない。この他、GaSb、AlGaAsSb、
InGaSbなど多くの2元、3元、4元結晶のPIN
フォトダイオードがある。2μmを越える長波長帯で
は、HgCdTeが適当であろう。また、PINフォト
ダイオードと構造を別とするもので、半導体中で発生し
た光電流を増倍できるアバランシェダイオードがあり、
これは高感度、高速応答を要するときに用いればよい。
Next, the light receiving element paired with the light emitting element will be briefly described. FIG. 8 shows a PIN photodiode having a wavelength of 1 μm band using InGaAs as an i-layer. Since the photosensitivity is sufficiently high up to around 1 to 1.65 μm, it can be used as a light receiving element in the entire wavelength range of 1 μm band. The light is back-illuminated and is introduced into the InGaAs layer through a transparent InP substrate with a wavelength of 0.92 μm or more. If the InGaAs layer is thick enough, light will not reach the InGaAs surface.
The surface recombination there does not affect the quantum efficiency. The thickness of the i layer is 2 to 3 μm, and the carrier concentration is 10 14 to
It is 10 16 cm −3 , and the response speed has a frequency characteristic of CR time constant limitation. When the light receiving diameter is 100 μm, a rising and falling time of about 0.1 ns can be obtained. Dark current is G
2 digits smaller than e. The PIN photodiode using Ge is also in the 1 μm band, but the quantum efficiency sharply drops at 1.5 μm or more, so it is not suitable for the present sensing device. In addition, GaSb, AlGaAsSb,
PIN of many binary, ternary and quaternary crystals such as InGaSb
There is a photodiode. In the long wavelength band above 2 μm, HgCdTe may be suitable. Further, there is an avalanche diode which has a structure different from that of the PIN photodiode and which can multiply the photocurrent generated in the semiconductor.
This may be used when high sensitivity and high speed response are required.

【0019】[0019]

【発明の効果】以上述べたとおり、本発明は光源に半導
体レーザを用い、かつ、その波長を1.4ミクロン以上
に設定したので、小型で目に対する安全性の高いリモー
トセンシング装置が提供できた。また、活性層に量子井
戸構造を取り入れたInGaAsP系半導体レーザで
は、波長;1.5ミクロン前後、持続時間;数10n
s、尖頭値;数10Wのパルスレーザが実現でき、小型
でもセンシング能力の高い装置が実現できた。その結
果、本発明を応用した測定装置として、安全性の高い各
種携帯型気象レーザレーダ、事故の未然予防に役立つ車
の車間距離センサ、障害物センサ、危険ガスの漏洩監視
を目的とするリモートガスセンサーなど多彩に応用展開
ができる。また、目に対する安全性が高いので、市街地
に於いても安全に使用できる。
As described above, according to the present invention, since the semiconductor laser is used as the light source and the wavelength thereof is set to 1.4 μm or more, it is possible to provide a remote sensing device which is small and has high eye safety. . In the InGaAsP-based semiconductor laser having a quantum well structure incorporated in the active layer, the wavelength is about 1.5 μm, the duration is several tens of nanometers.
s, peak value: several tens of watts of pulsed laser could be realized, and a small device with high sensing ability could be realized. As a result, as a measuring device to which the present invention is applied, various highly portable portable weather laser radars, inter-vehicle distance sensors for vehicles useful for preventing accidents, obstacle sensors, remote gas for the purpose of monitoring leakage of dangerous gas Various applications such as sensors can be developed. Also, since it is highly eye-safe, it can be used safely even in urban areas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光センシング装置の概略構成図。FIG. 1 is a schematic configuration diagram of an optical sensing device of the present invention.

【図2】クラス1の可視及び近赤外レーザ製品のAEL
を表した規格図。
Figure 2: Class 1 visible and near infrared laser products AEL
The standard diagram showing.

【図3】光の波長と眼球透過率及び眼底吸収率を示した
測定図。
FIG. 3 is a measurement diagram showing a wavelength of light, eyeball transmittance, and fundus absorptivity.

【図4】波長に対する大気中の透過率を示した観測図。FIG. 4 is an observation diagram showing transmittance in the atmosphere with respect to wavelength.

【図5】InGaAsP系レーザの利得導波型ストライ
プ構造の概略構成図。
FIG. 5 is a schematic configuration diagram of a gain waveguide type stripe structure of an InGaAsP laser.

【図6】InGaAsP系レーザの屈折率導波型ストラ
イプ構造の構成図。
FIG. 6 is a configuration diagram of a refractive index guided stripe structure of an InGaAsP laser.

【図7】本発明によるInGaAsP系多重量子井戸型
レーザの概略構成図。
FIG. 7 is a schematic configuration diagram of an InGaAsP multiple quantum well laser according to the present invention.

【図8】InGaAs系PINフォトダイオードの構成
図。
FIG. 8 is a configuration diagram of an InGaAs PIN photodiode.

【符号の説明】[Explanation of symbols]

11 システム制御 12 レーザドライバ 13 半導体レーザ 14 送信光学系 15 受信光学系 16 光検出器 17 信号処理回路 18 データ処理部 51 n−InP基板 52 n−InP 53 InGaAsP活性層 54 InGaAsP AM層 55 p−InP 56 p−InGaAsP 57 SiO2 58 p−電極 59 n−電極 71 n−InP基板 72 n−InP 73 InGaAsP活性層 74 p−InP 75 p−InGaAsP 76 SiO2 77 p−電極 78 n−電極 11 system control 12 laser driver 13 semiconductor laser 14 transmission optical system 15 reception optical system 16 photodetector 17 signal processing circuit 18 data processing unit 51 n-InP substrate 52 n-InP 53 InGaAsP active layer 54 InGaAsP AM layer 55 p-InP 56 p-InGaAsP 57 SiO2 58 p-electrode 59 n-electrode 71 n-InP substrate 72 n-InP 73 InGaAsP active layer 74 p-InP 75 p-InGaAsP 76 SiO2 77 p-electrode 78 n-electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 前方に光を放出し、その前方のある物体
からの反射または散乱光を受光素子によって捕獲する事
によって、前記物体と受光素子間の距離の算出、あるい
は、反射または散乱物体の計測をする光センシング装置
において、光源の波長が1.4μm以上である半導体レ
ーザを用いたことを特徴とする光センシング装置。
1. A light-emitting element emits light in the forward direction and captures reflected or scattered light from an object in front of it by a light-receiving element to calculate the distance between the object and the light-receiving element, or An optical sensing device for measurement, wherein a semiconductor laser having a light source wavelength of 1.4 μm or more is used.
【請求項2】 上記光源が波長1.4μmから1.7μ
mのInGaAsP系半導体レーザであることを特徴と
する請求項1に記載の光センシング装置。
2. The light source has a wavelength of 1.4 μm to 1.7 μm.
2. The optical sensing device according to claim 1, which is an InGaAsP-based semiconductor laser of m.
【請求項3】 発振領域幅200μm以上で、かつ、活
性領域が量子井戸型構造をもつことを特徴とする請求項
2に記載の光センシング装置用半導体レーザ。
3. The semiconductor laser for a photo-sensing device according to claim 2, wherein the oscillation region width is 200 μm or more, and the active region has a quantum well structure.
JP4206701A 1992-08-03 1992-08-03 Light sensing device and semiconductor laser for light sensing device Pending JPH0653615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206701A JPH0653615A (en) 1992-08-03 1992-08-03 Light sensing device and semiconductor laser for light sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206701A JPH0653615A (en) 1992-08-03 1992-08-03 Light sensing device and semiconductor laser for light sensing device

Publications (1)

Publication Number Publication Date
JPH0653615A true JPH0653615A (en) 1994-02-25

Family

ID=16527689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206701A Pending JPH0653615A (en) 1992-08-03 1992-08-03 Light sensing device and semiconductor laser for light sensing device

Country Status (1)

Country Link
JP (1) JPH0653615A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060711A1 (en) * 1999-04-05 2000-10-12 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
JP2001102686A (en) * 1999-09-29 2001-04-13 Denso Corp Semiconductor laser
WO2009005098A1 (en) * 2007-07-03 2009-01-08 Hamamatsu Photonics K.K. Back surface incident type distance measuring sensor and distance measuring device
JP2009014461A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
JP2009014460A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
JP2009014459A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
JP2014013944A (en) * 2008-03-14 2014-01-23 Asahi Kasei Electronics Co Ltd Infrared light-emitting element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060711A1 (en) * 1999-04-05 2000-10-12 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
US6778574B1 (en) 1999-04-05 2004-08-17 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
JP2001102686A (en) * 1999-09-29 2001-04-13 Denso Corp Semiconductor laser
JP2009014459A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
JP2009014461A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
JP2009014460A (en) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk Backside-illuminated distance measuring sensor and distance measuring device
WO2009005098A1 (en) * 2007-07-03 2009-01-08 Hamamatsu Photonics K.K. Back surface incident type distance measuring sensor and distance measuring device
US8264673B2 (en) 2007-07-03 2012-09-11 Hamamatsu Photonics K.K. Back-illuminated distance measuring sensor and distance measuring device
US8477292B2 (en) 2007-07-03 2013-07-02 Hamamatsu Photonics K.K. Back-illuminated distance measuring sensor and distance measuring device
KR101355283B1 (en) * 2007-07-03 2014-01-27 하마마츠 포토닉스 가부시키가이샤 Back surface incident type distance measuring sensor and distance measuring device
US8665422B2 (en) * 2007-07-03 2014-03-04 Hamamatsu Photonics K.K Back-illuminated distance measuring sensor and distance measuring device
JP2014013944A (en) * 2008-03-14 2014-01-23 Asahi Kasei Electronics Co Ltd Infrared light-emitting element
JP5526360B2 (en) * 2008-03-14 2014-06-18 旭化成エレクトロニクス株式会社 Infrared light emitting element

Similar Documents

Publication Publication Date Title
US4292512A (en) Optical monitoring photodiode system
US5838708A (en) Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
JP5322444B2 (en) Measuring device and measuring system
US9705283B1 (en) Diffused channel semiconductor light sources
JP2007533126A (en) Anti-waveguide inclined cavity type VCSEL or LED
JPH0653615A (en) Light sensing device and semiconductor laser for light sensing device
US20070091953A1 (en) Light-emitting diode with a narrow beam divergence based on the effect of photonic band crystal-mediated filtration of high-order optical modes
Ashley et al. Mid-infrared In 1− x Al x Sb/InSb heterostructure diode lasers
Aho et al. High-power 1.5 μm tapered distributed Bragg reflector laser diodes for eye-safe LIDAR
US5223722A (en) Superluminescent diode
JPH03197931A (en) Combination of optical amplifier and opti- cal detector
US20230059270A1 (en) Light source device and distance measuring device
JP2003008148A (en) Hetero inter-sub-band(hisb) optical device
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JP2002090457A (en) Distance measuring apparatus
Moss et al. High-speed photodetection in a reverse biased GaAs/AlGaAs GRINSCH SQW laser structure
JPH08162669A (en) Superluminescent diode
TWI822147B (en) Surface emitting laser, laser device, detection device, mobile object, and surface emitting laser driving method
Raghavendra Optical wireless communication link design
JP2003133539A (en) INTEGRATION OF AMORPHOUS SILICON TRANSMITTING/RECEIVING STRUCTURE WITH GaAs OR InP PROCESSED DEVICE
EP4343990A1 (en) Light-emitting device, ranging device, and movable body
Noda et al. Optical functional device by vertical and direct integration of heterojunction phototransistor and laser diode
CN117833015A (en) Laser transceiver unit of human eye safety wave band, array chip and manufacturing method
EP0308082A2 (en) Edge emitting light emission diode
Millar et al. Ge-on-Si Single Photon Avalanche Diode Detectors for LIDAR in the Short Wave Infrared