JPH0653230B2 - Exhaust gas purification catalyst manufacturing method - Google Patents

Exhaust gas purification catalyst manufacturing method

Info

Publication number
JPH0653230B2
JPH0653230B2 JP63149308A JP14930888A JPH0653230B2 JP H0653230 B2 JPH0653230 B2 JP H0653230B2 JP 63149308 A JP63149308 A JP 63149308A JP 14930888 A JP14930888 A JP 14930888A JP H0653230 B2 JPH0653230 B2 JP H0653230B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
average particle
particle size
compound powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63149308A
Other languages
Japanese (ja)
Other versions
JPH01317542A (en
Inventor
徹 田中
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63149308A priority Critical patent/JPH0653230B2/en
Publication of JPH01317542A publication Critical patent/JPH01317542A/en
Publication of JPH0653230B2 publication Critical patent/JPH0653230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車の排気ガス浄化用触媒の製造方法、更に
詳しくは、異臭の原因となるH2Sガスを生成させない排
気ガス浄化用触媒の製造方法に関するものである。
The present invention relates to a method for producing a catalyst for purifying exhaust gas of an automobile, more specifically, a catalyst for purifying exhaust gas which does not generate H 2 S gas causing an offensive odor. The present invention relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

近年、自動車のエンジンから排出される排気ガスが公害
問題として大きく取り上げられるに至り、現在ではエン
ジン排気系に、炭化水素(HC)、一酸化炭素(CO)、窒素酸
化物(NOx)等を無害化処理するための触媒コンバータを
装着することが一般的となつている。一方、エンジン中
の未燃焼ガスを完全燃焼させる目的で二次空気を導入す
ることも行なわれている。
In recent years, exhaust gas emitted from automobile engines has come to be widely taken up as a pollution problem, and now hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), etc. are harmless to the engine exhaust system. It is common to equip a catalytic converter for chemical treatment. On the other hand, secondary air is also introduced for the purpose of completely burning unburned gas in the engine.

そのような触媒コンバータ付自動車では、エンジン高負
荷時に更に二次空気を導入して排気ガス燃焼効率を高め
ると触媒コンバータが異常に加熱され、触媒損傷、機能
低下等の原因となるので、エンジン高負荷時には制御装
置によつて二次空気の導入を停止させたり、燃料の供給
を増加させたりしている。
In such a vehicle with a catalytic converter, if secondary air is further introduced to increase exhaust gas combustion efficiency when the engine is under heavy load, the catalytic converter will be abnormally heated, causing damage to the catalyst and deterioration of its function. At the time of load, the control device stops the introduction of the secondary air or increases the fuel supply.

しかしその場合には排気ガスの空燃比がリツチ側(燃料
過剰側)となり、還元雰囲気となつた触媒コンバータ内
では触媒床に吸着していたSO2が還元されてH2Sが生成し
(8th Int.Congr.Catal.〈第8回国際触媒会議予稿集〉
1984年3月号、第453〜463頁参照)、異臭が発生すると
いう問題があつた。その対策として、H2S処理装置を設
けることが実開昭54-31210号公報に提案されている。
However, in that case, the air-fuel ratio of the exhaust gas becomes the rich side (fuel excess side), and the SO 2 adsorbed on the catalyst bed is reduced within the catalytic converter in the reducing atmosphere to produce H 2 S (8th Int.Congr.Catal. <8th International Catalysis Conference Proceedings>
March 1984 issue, pp. 453-463), there was a problem that an offensive odor was generated. As a countermeasure, it is proposed in Japanese Utility Model Publication No. 54-31210 to provide an H 2 S processing device.

このH2S処理装置は、触媒コンバータ後方にH2S酸化用触
媒装置を設けると共に、該H2S酸化用触媒装置と二次空
気注入系のエアスイツチングバルブを、触媒コンバータ
をバイパスさせて連通し、上記エアスイツチングバルブ
を、触媒コンバータへの二次空気の注入を遮断したとき
に二次空気が前記H2S酸化用触媒装置に導かれるように
切替自在としたものである。
This H 2 S treatment device is provided with a catalyst device for H 2 S oxidation at the rear of the catalytic converter, and bypasses the catalytic converter for the H 2 S oxidation catalyst device and the air switching valve of the secondary air injection system. In communication with each other, the air switching valve is switchable so that the secondary air is guided to the H 2 S oxidation catalyst device when the injection of the secondary air into the catalytic converter is interrupted.

又、本出願人は特願昭62-170332号明細書(特開昭64-15
138号公報)に記載された、耐火性担持体に、A:C
e:Co、Ni、Feの少なくとも1種:Laを、2:0.1〜0.6:
0.03〜2.0:0.01〜0.1のモル比で含んでなる酸化物コー
ト層を形成させ、Pt、Pd、Rhの少なくとも1種の貴金属を
担持させたことを特徴とする排気ガス浄化用触媒を提案
した。
In addition, the applicant of the present invention is directed to Japanese Patent Application No. 62-170332
No. 138), the refractory carrier described in A: C
e: at least one of Co, Ni and Fe: La, 2: 0.1 to 0.6:
An exhaust gas purifying catalyst characterized in that an oxide coat layer containing 0.03 to 2.0: 0.01 to 0.1 in a molar ratio is formed and at least one precious metal of Pt, Pd, and Rh is supported is proposed. .

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし実開昭54-31210号公報に記載されたようなH2S処
理装置を別途設けることは排気ガス浄化システムを一層
複雑化し、自動車の製造により以上のコストが強いられ
ることとなる。
However, the additional provision of the H 2 S treatment device as described in Japanese Utility Model Laid-Open No. 54-31210 further complicates the exhaust gas purification system, and the above cost is imposed on the automobile manufacturing.

又、特願昭62-170332号明細書記載の触媒は、CeとCo、N
i、Feの少なくとも1種とが必ずしも隣接してはいなかつ
たため、このような触媒系が有するリツチ側でのH2Sの
生成抑制効果をまだ充分に発揮させたものではなかつ
た。
The catalyst described in Japanese Patent Application No. 62-170332 is Ce, Co, N.
Since at least one of i and Fe was not necessarily adjacent to each other, the effect of suppressing the generation of H 2 S on the latch side, which such a catalyst system had, was not yet sufficiently exerted.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところはリツチ側における
H2Sの発生を抑制するとともにHC、CO及びNOxの浄化性能
に優れた排気ガス浄化用触媒の容易な製造方法を提供す
ることにある。
The present invention is to solve the problems in the above-mentioned prior art, and the purpose thereof is on the latch side.
An object of the present invention is to provide a method for easily producing an exhaust gas purification catalyst that is excellent in purification performance of HC, CO and NOx while suppressing generation of H 2 S.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち本発明の排気ガス浄化用触媒の製造方法は、平
均粒径0.1μm以上のCeの化合物粉末にNi、Co、Feのうち
の少なくとも1種を担持するか、又は平均粒径0.1μm
以上のNi、Co、Feのうちの少なくとも1種からなる化合物
粉末にCeを担持することにより調製した化合物粉末を使
用して、 耐火性担持上に、A:Ce:Ni、Co、Feのうちの少なくと
も1種:Laを、2:0.1〜0.6:0.01〜1.2:0.01〜0.1の
モル比で含んでなる酸化物コート層を浸漬法により形成
し、 次いで該酸化物コート層にPt、Pd、Rhのうちの少なくとも
1種を担持してなることを特徴とする。
That is, in the method for producing an exhaust gas purifying catalyst of the present invention, a compound powder of Ce having an average particle size of 0.1 μm or more is loaded with at least one of Ni, Co and Fe, or an average particle size of 0.1 μm.
Using a compound powder prepared by supporting Ce on a compound powder consisting of at least one of the above Ni, Co, and Fe, A: Ce: Ni, Co, Fe Of at least one kind of: La at a molar ratio of 2: 0.1 to 0.6: 0.01 to 1.2: 0.01 to 0.1 is formed by a dipping method, and then Pt, Pd, It is characterized by supporting at least one of Rh.

Ceの化合物粉末又はNi、Co、Feのうちの少なくとも1種か
らなる化合物粉末は、平均粒径があまり小さいとCeとN
i、Co、Feのうちの少なくとも1種とが充分に隣接せず、
他の構成成分との間の相互作用の影響がでてきてH2Sの
補捉効果が低下するので、平均粒径0.1μm以上のもの
を使用する必要がある。担持方法は浸漬法を用いる。
The compound powder of Ce or the compound powder consisting of at least one of Ni, Co, and Fe has Ce and N when the average particle size is too small.
At least one of i, Co and Fe is not sufficiently adjacent to each other,
It is necessary to use particles having an average particle size of 0.1 μm or more, because the effect of interaction with other constituents appears and the trapping effect of H 2 S decreases. A dipping method is used as a supporting method.

耐火性担体としてはセラミツク製例えばコージエライト
製、耐熱性金属製等のペレツト又は一体性担体等を使用
することができる。
As the refractory carrier, a pellet made of ceramic, for example, cordierite, a heat-resistant metal, or an integral carrier can be used.

Aはアルミナ例えばγ−Aであつてよい。C
e、Ni、Co、Fe又はLaは酸化物、塩などの所望の形態のもの
を使用する。又、各金属成分の比率は前記比率が得られ
る触媒のH2Sの発生抑制性能及び浄化性能等の点で具合
がよい。
A may be alumina such as γ-A 2 O 3 . C
As e, Ni, Co, Fe or La, those in a desired form such as oxides and salts are used. Further, the ratio of each metal component is good in terms of the H 2 S generation suppressing performance and purification performance of the catalyst that can obtain the above ratio.

Pt、Pd又はRhは耐火性担体上に形成した酸化物コート層
に浸漬法などにより所定量担持する。
Pt, Pd, or Rh is supported in a predetermined amount on the oxide coating layer formed on the refractory carrier by a dipping method or the like.

〔作用〕[Action]

以下にNiを例としてH2Sの生成抑制機構を説明する。な
お、Co及びFeも同様である。リーン側では下記反応(I)
の反応が、リツチ側では下記反応式(II)の反応が起る。
The mechanism of H 2 S production suppression is explained below using Ni as an example. The same applies to Co and Fe. On the lean side, the following reaction (I)
On the side of the latch, the reaction of the following reaction formula (II) occurs.

上記反応(II)において、NiとCeとが隣接して存在すれば
NiSの生成に有利である。又、NiとCeとが隣接している
場合の他の作用として、NiがAと反応してA
NiOを形成してNiのH2S生成抑制効果が失われた
り、浄化性能低下の原因となつたりするのを防止する作
用がある。なお、他の金属成分のうち、Pt、Pd又はRhはH
C、CO又はNOxの浄化作用を示し、又、Laはこの際の助触
媒作用を示す。
In the above reaction (II), if Ni and Ce are adjacent to each other,
It is advantageous for the production of NiS. As another effect when Ni and Ce are adjacent to each other, Ni reacts with A 2 O 3 to form A
It has an effect of preventing 2 NiO 4 from being formed and losing the H 2 S production suppressing effect of Ni, and causing the deterioration of the purification performance. Among other metal components, Pt, Pd or Rh is H
It exhibits a purifying action for C, CO or NOx, and La exhibits a co-catalyst action in this case.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be described in more detail in the following examples and comparative examples. The present invention is not limited to the examples below.

実施例1 平均粒径2μmのCeO2粉末にNi(NO3)2溶液を含浸添加し
たものと、La(NO3)3溶液を予め含浸させたγ−A
のスラリーとを均一に混合し、これを市販のコージエ
ライト質ハニカム担体にウオツシユコートして100℃で
1時間乾燥後700℃で2時間焼成した。次いで、これに
貴金属を担持して触媒化した。
Example 1 CeO 2 powder having an average particle size of 2 μm impregnated with a Ni (NO 3 ) 2 solution and γ-A 2 O impregnated with a La (NO 3 ) 3 solution in advance
The slurry of No. 3 was uniformly mixed, and this was coated on a commercially available cordierite honeycomb carrier with a washcoat, dried at 100 ° C. for 1 hour, and then calcined at 700 ° C. for 2 hours. Then, a noble metal was supported on this to be catalyzed.

実施例2 CeO2粉末の代りに平均粒径2μmのCe(CO3)2を使用する
こと以外は実施例1と同様にして行つた。
Example 2 The procedure of Example 1 was repeated, except that Ce (CO 3 ) 2 having an average particle size of 2 μm was used instead of the CeO 2 powder.

実施例3 平均粒径2μmのCeO2粉末にNi(NO3)2溶液を含浸添加し
たものをスラリー化してコージエライト質ハニカム担体
にウオツシユコートして100℃で1時間乾燥後700℃で2
時間焼成した。次いでこの上に、La(NO3)3溶液を予め含
浸させたγ−Aのスラリーをウオツシユコート
して100℃で1時間乾燥後700℃で2時間焼成した。次い
で、これに貴金属を担持して触媒化した。
Example 3 A CeO 2 powder having an average particle size of 2 μm impregnated with a Ni (NO 3 ) 2 solution was slurried to form a slurry on a cordierite honeycomb carrier, which was dried at 100 ° C. for 1 hour and then at 700 ° C. for 2 hours.
Burned for hours. Then, a slurry of γ-A 2 O 3 pre-impregnated with a La (NO 3 ) 3 solution was applied onto this in a wash-coating manner, dried at 100 ° C. for 1 hour, and then calcined at 700 ° C. for 2 hours. Then, a noble metal was supported on this to be catalyzed.

実施例4 平均粒径2μmのNiO粉末にCe(NO3)2溶液を含浸させた
ものをγ−Aのスラリーに添加して均一に混合
し、コージエライト質ハニカム担体にウオツシユコート
して100℃で1時間乾燥後700℃で2時間焼成した。次い
でこれにLa(NO3)3溶液を含浸させて同様に乾燥、焼成
後、貴金属を担持して触媒化した。
Example 4 A NiO powder having an average particle diameter of 2 μm impregnated with a Ce (NO 3 ) 2 solution was added to a slurry of γ-A 2 O 3 and uniformly mixed, and a cordierite honeycomb carrier was coated with a washcoat. And dried at 100 ° C. for 1 hour and then calcined at 700 ° C. for 2 hours. Next, this was impregnated with a La (NO 3 ) 3 solution, dried and calcined in the same manner, and then supported with a noble metal to form a catalyst.

上記実施例1〜4において、担体1当りの各成分の担
持量を下記第1表に示す。
In the above Examples 1 to 4, the supported amounts of each component per carrier 1 are shown in Table 1 below.

コージエライト質ハニカム担体の寸法としては30φ×
50L(mm)のテストピース及び1.7のフルサイズの2
種類を使用して、本発明の方法によつて排気ガス浄化用
触媒を得た。
The size of the cordierite honeycomb carrier is 30φ ×
50L (mm) test piece and 1.7 full size 2
An exhaust gas purifying catalyst was obtained by the method of the present invention by using various kinds.

なお、上記実施例1〜4において、Ni化合物の代りにCo
又はFe化合物を使用しても同様に触媒を得ることができ
る。
In the above Examples 1 to 4, Co was used instead of the Ni compound.
Alternatively, a catalyst can be obtained in the same manner by using an Fe compound.

比較例1〜4 Ni化合物を使用しないこと以外は実施例1〜4と同様に
して比較例1〜4の触媒を得た。
Comparative Examples 1 to 4 Catalysts of Comparative Examples 1 to 4 were obtained in the same manner as in Examples 1 to 4 except that the Ni compound was not used.

性能評価試験1 (1) H2S抑制効果の評価 テストピース触媒に、イオウ分を0.1wt%含有したガソリ
ン使用時のモデルガスをA/F=15.0で1時間流通させた
後A/F=13.0で5分間流通させ、H2S生成量を測定した。
結果を第2表に示す。
Performance evaluation test 1 (1) Evaluation of H 2 S suppression effect A model gas when gasoline containing 0.1 wt% of sulfur was used in the test piece catalyst at A / F = 15.0 for 1 hour and then A / F = It was circulated at 13.0 for 5 minutes, and the amount of H 2 S produced was measured.
The results are shown in Table 2.

第2表から明らかな如く、本発明の製造方法によつて得
た触媒は比較例の触媒に比べてH2S生成量が少ない。
又、Ni添加量が多くなるにつれてH2Sは更に減少し、Ni
添加量が0.1M/・担体以上ではH2Sは全く発生しない
のが判る。
As is clear from Table 2, the catalyst obtained by the production method of the present invention produces less H 2 S than the catalyst of the comparative example.
In addition, H 2 S decreases further as the amount of Ni added increases.
It can be seen that H 2 S is not generated at all when the added amount is 0.1 M / · carrier or more.

(2) 浄化性能の評価 3エンジンの排気系に実施例1及び比較例1のフルサ
イズ触媒を取り付け、2000rpm、−360mmHg、300℃の測
定条件下で、初期及び床温度900℃、5000rpmで100時間
耐久後のHC、CO及びNOxの浄化率を測定した。結果を第3
表に示す。
(2) Evaluation of purification performance 3 Full-sized catalysts of Example 1 and Comparative Example 1 were attached to the exhaust system of an engine, and the initial and floor temperatures were 900 ° C and 5000rpm at 100 rpm under measurement conditions of 2000 rpm, -360 mmHg, and 300 ° C. The purification rates of HC, CO and NOx after the endurance time were measured. The result is the third
Shown in the table.

第3表に示す如く、本発明の製造方法によつて得た触媒
は比較例の触媒に比べて同等の浄化率を有している。
As shown in Table 3, the catalyst obtained by the production method of the present invention has an equivalent purification rate as compared with the catalyst of the comparative example.

NiS生成の確認 H2S生成量測定後の実施例の触媒を粉砕し、FTIRでNiと
Sとの吸着状態を観察したところ、NiSの結合のピーク
が確認でき、化学的に結合しているのが判つた。
Confirmation of NiS production When the catalyst of the example after measuring the amount of H 2 S produced was pulverized and the adsorption state of Ni and S was observed by FTIR, the peak of NiS binding was confirmed and it was chemically bound. I found out.

実施例5 平均粒径5μmのFe粉末にCe(NO
液を含浸させたものを、γ−A粒子と共に均一
に混合してスラリー化し、コージエライト質ハニカム担
体にウオツシユコートして100℃で1時間乾燥後、6
00℃で2時間焼成した。以下、実施例4と同様にして
触媒化した。
Example 5 A Fe 2 O 3 powder having an average particle size of 5 μm impregnated with a Ce (NO 3 ) 3 solution was uniformly mixed with γ-A 2 O 3 particles to form a slurry, and a cordierite honeycomb carrier was coated with woo. Tissue coat and dry at 100 ° C for 1 hour, then 6
It was baked at 00 ° C. for 2 hours. Thereafter, the same procedure as in Example 4 was carried out to obtain a catalyst.

実施例6 平均粒径5μmのCo粉末にCe(NO
液を含浸させたものを、γ−A粒子と共に均一
に混合してスラリー化し、コージエライト質ハニカム担
体にウオツシユコートして100℃で1時間乾燥後、6
00℃で2時間焼成した。以下、実施例4と同様にして
触媒化した。
Example 6 Co 2 O 3 powder having an average particle size of 5 μm impregnated with a Ce (NO 3 ) 3 solution was uniformly mixed with γ-A 2 O 3 particles to form a slurry, and a cordierite honeycomb carrier was coated with wow. Tissue coat and dry at 100 ° C for 1 hour, then 6
It was baked at 00 ° C. for 2 hours. Thereafter, the same procedure as in Example 4 was carried out to obtain a catalyst.

実施例5及び実施例6の触媒における担体1当たりの
各成分の担持量を下記第4表に示す。
Table 4 below shows the amounts of the respective components supported per carrier in the catalysts of Examples 5 and 6.

性能評価試験2 実施例5及び実施例6の触媒に関して、前記性能評価試
験1と同様にして性能評価試験2を行なった。HS抑
制効果及び浄化性能の評価結果を下記第5表にまとめて
示す。
Performance Evaluation Test 2 With respect to the catalysts of Example 5 and Example 6, performance evaluation test 2 was performed in the same manner as in the performance evaluation test 1. The evaluation results of the H 2 S suppression effect and the purification performance are summarized in Table 5 below.

〔発明の効果〕 上述の如く、本発明の排気ガス浄化用触媒の製造方法
は、耐火性担体上に貴金属を担持するための所定組成の
酸化物コート層を形成する際、平均粒径0.1μm以上のC
eの化合物粉末にNi、Co、Feのうちの少なくとも1種を担
持するか、又は平均粒径0.1μm以上のNi、Co、Feのうち
の少なくとも1種からなる化合物粉末にCeを担持するこ
とにより調製した化合物粉末を使用するため、本発明の
方法によつて製造した触媒ではCeとNi、Co又はFeとが隣
接することとなり、リツチ側の雰囲気においてNi、Co又
はFeの硫化物形成が容易となるので排気ガス中の硫黄分
が効率よく捕捉され、リツチ側の雰囲気におけるH2Sの
生成が抑制される。又、Ni、Co又はFeとAとの
反応が抑制されるので、それによるH2S抑制効果の低下
や浄化性能の低下が防止される。更に、HC、CO及びNO
xの浄化性能も従来の排気ガス浄化用触媒と同等である
ので、本発明の方法を用いれば総合的性能が優れた排気
ガス浄化用触媒を容易に得ることができる。
[Advantages of the Invention] As described above, the method for producing an exhaust gas purifying catalyst of the present invention has an average particle diameter of 0.1 μm when forming an oxide coating layer of a predetermined composition for supporting a noble metal on a refractory carrier. C above
Supporting at least one of Ni, Co and Fe on the compound powder of e, or supporting Ce on the compound powder of at least one of Ni, Co and Fe having an average particle size of 0.1 μm or more. In order to use the compound powder prepared by, the catalyst produced by the method of the present invention, Ce and Ni, Co or Fe will be adjacent to each other, Ni, Co or Fe sulfide formation in the atmosphere of the Rich side Since it becomes easy, the sulfur content in the exhaust gas is efficiently captured, and the generation of H 2 S in the atmosphere on the latch side is suppressed. In addition, since the reaction between Ni, Co or Fe and A 2 O 3 is suppressed, it is possible to prevent a decrease in the H 2 S suppression effect and a decrease in the purification performance due to the reaction. Furthermore, HC, CO and NO
Since the purification performance of x is the same as that of the conventional exhaust gas purifying catalyst, the exhaust gas purifying catalyst having excellent overall performance can be easily obtained by using the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平均粒径0.1μm以上のCeの化合物粉末
にNi、Co、Feのうちの少なくとも1種を担持する
か、又は平均粒径0.1μm以上のNi、Co、Feのう
ちの少なくとも1種からなる化合物粉末にCeを担持す
ることにより調製した化合物粉末を使用して、 耐火性担体上にA:Ce:Ni、Co、Feのうちの
少なくとも1種:Laを、2:0.1〜0.6:0.01〜1.2:
0.01〜0.1のモル比で含んでなる酸化物コート層を浸漬
法により形成し、次いで該酸化物コート層にPt、P
d、Rhのうちの少なくとも1種を担持してなることを
特徴とする排気ガス浄化用触媒の製造方法。
1. A compound powder of Ce having an average particle size of 0.1 μm or more carrying at least one of Ni, Co and Fe, or at least one of Ni, Co and Fe having an average particle size of 0.1 μm or more. At least one of A: Ce: Ni, Co, and Fe: La is used on a refractory carrier by using a compound powder prepared by supporting Ce on a compound powder consisting of one kind: 2: 0.1 to. 0.6: 0.01 ~ 1.2:
An oxide coating layer containing a molar ratio of 0.01 to 0.1 is formed by a dipping method, and then Pt and P are added to the oxide coating layer.
A method for producing an exhaust gas purifying catalyst, which comprises carrying at least one of d and Rh.
JP63149308A 1988-06-17 1988-06-17 Exhaust gas purification catalyst manufacturing method Expired - Fee Related JPH0653230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149308A JPH0653230B2 (en) 1988-06-17 1988-06-17 Exhaust gas purification catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149308A JPH0653230B2 (en) 1988-06-17 1988-06-17 Exhaust gas purification catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JPH01317542A JPH01317542A (en) 1989-12-22
JPH0653230B2 true JPH0653230B2 (en) 1994-07-20

Family

ID=15472292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149308A Expired - Fee Related JPH0653230B2 (en) 1988-06-17 1988-06-17 Exhaust gas purification catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JPH0653230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102739A (en) * 1988-10-07 1990-04-16 Toyota Motor Corp Catalyst for purification of exhaust gas
JP3381489B2 (en) * 1995-11-08 2003-02-24 トヨタ自動車株式会社 Exhaust gas purification catalyst and purification device for diesel engine

Also Published As

Publication number Publication date
JPH01317542A (en) 1989-12-22

Similar Documents

Publication Publication Date Title
AU618391B2 (en) An improved catalyst comprising ceria having a P-type metal oxide disperded thereon, alumina and a platinum group metal
US4675308A (en) Three-way catalyst for lean operating engines
JP4612622B2 (en) Method for removing nitrogen oxides from exhaust gas of a lean combustion internal combustion engine and exhaust gas purification apparatus therefor
CA2223458C (en) Catalyst for purifying exhaust gas and a process for purifying exhaust gas
JP2007534467A (en) Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine
CZ2005148A3 (en) Compression ignition engine, motor vehicle, method for operating such a compression ignition engine and method for increasing rate of catalyzed reaction
KR20140015295A (en) Nox absorber catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US7749474B2 (en) Catalyst composition for use in a lean NOx trap and method of using
JP6348110B2 (en) Catalyst composition
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPH09215922A (en) Catalyst for purifying exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH09220470A (en) Catalyst for purification of exhaust gas
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0653230B2 (en) Exhaust gas purification catalyst manufacturing method
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method
JPH11244695A (en) Oxidation catalyst
JP2018164896A (en) Occlusion-reduction catalyst for purifying exhaust from lean-burn engine
JP4224780B2 (en) Exhaust gas purification catalyst
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same
JP2745644B2 (en) Exhaust gas purification catalyst
JPH08229350A (en) Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
KR920009113B1 (en) Three-way catalysts for lean exhaust systems
JPH06190246A (en) Exhaust gas purifying device for automobile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees