JPH0653122A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPH0653122A
JPH0653122A JP3331713A JP33171391A JPH0653122A JP H0653122 A JPH0653122 A JP H0653122A JP 3331713 A JP3331713 A JP 3331713A JP 33171391 A JP33171391 A JP 33171391A JP H0653122 A JPH0653122 A JP H0653122A
Authority
JP
Japan
Prior art keywords
photoresist
resist
pattern
diffraction grating
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3331713A
Other languages
Japanese (ja)
Other versions
JP2936187B2 (en
Inventor
Kazuya Okamoto
和也 岡本
Kunio Tada
邦雄 多田
Yoshiaki Nakano
義昭 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3331713A priority Critical patent/JP2936187B2/en
Publication of JPH0653122A publication Critical patent/JPH0653122A/en
Application granted granted Critical
Publication of JP2936187B2 publication Critical patent/JP2936187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To form a resist pattern which allows high aspect ratio by using material which has photosensitive component absorbance of a prescribed value or more on a G line and non-photosensitive component absorbance of a prescribed value or more as photoresist. CONSTITUTION:Laser beams projected from an He-Cd laser 1 (wavelength 325) are separated in two directions by a beam splitter 2. The separated laser beams are passed through diaphragms 3a and 3b and are reflected by mirrors 4a and 4b. Then, the beams are passed through filters 5a and 5b and are permitted to be parallel light by collimating lenses 6a and 6b. Thus, the two luminous fluxes passed through the collimating lenses 6a and 6b are permitted to interfere and a diffraction grating pattern with 0.36mum or shorter pitch is formed on photoresist 7 applied on a base board 8. The absorbance of the photoresist for photosensitive component at the G line (438nm) is permitted to be 0.6 or more and the absorbance of the non-photosensitive component is permitted to be 0.2 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアスペクト比の高いレジ
ストパタ−ンの形成方法(生産する方法)およびそれに
用いるフォトレジストおよび前記方法により形成したレ
ジストパタ−ンから回折格子を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming (producing) a resist pattern having a high aspect ratio, a photoresist used therefor, and a method for producing a diffraction grating from the resist pattern formed by the above method.

【0002】[0002]

【従来の技術】回折格子は、たとえば分布帰還型(Dist
ributed FeedBack)レ−ザに使用される。分布帰還型レ
−ザは、ファブリ−ペロ型レ−ザに比べ、単色性に優れ
ており、通信用光源等種々の分野に用いられている。図
6は、分布帰還型レ−ザの構成を示す断面図である。レ
−ザ活性層41に近接して導波路層42を設け、導波路層42
の上にはグレ−ティング(回折格子)43が刻まれてい
る。以上の2層をコア部という。このコア部の上下にク
ラッド層44が形成されている。活性層41で発生した光子
が、レ−ザ軸方向に沿って伝搬し、導波路層42上の回折
格子43によって散乱されることによってレ−ザ発振が行
われる。分布帰還型レ−ザは、ファブリ−ペロ型のよう
に両端にミラ−面が必要ないため、レ−ザと導波路を同
一の基板上に構成することができ、集積化に適してい
る。
2. Description of the Related Art A diffraction grating is, for example, a distributed feedback type (Dist.
ributed FeedBack) Used for laser. The distributed feedback laser is superior in monochromaticity to the Fabry-Perot laser and is used in various fields such as a light source for communication. FIG. 6 is a sectional view showing the structure of the distributed feedback laser. A waveguide layer 42 is provided in the vicinity of the laser active layer 41, and the waveguide layer 42
A grating (diffraction grating) 43 is engraved on the top. The above two layers are called a core part. A cladding layer 44 is formed above and below the core portion. The photon generated in the active layer 41 propagates along the laser axis direction and is scattered by the diffraction grating 43 on the waveguide layer 42, whereby laser oscillation is performed. Unlike the Fabry-Perot type, the distributed feedback type laser does not require mirror surfaces at both ends, so that the laser and the waveguide can be formed on the same substrate, which is suitable for integration.

【0003】一般に、分布帰還型レ−ザに要求される回
折格子のピッチは、0.36μm以下である。分布帰還型レ
−ザにおける回折格子の製法については、Opt.Lett.,Vo
l.13,No.7(1988)でも報告したが、一般に次のように
作られる。まず、基板の上にフォトレジストをたとえば
スピンコ−ト法により均一に塗布する。次に、2光束干
渉露光方式によって作られる干渉縞により回折格子パタ
−ンを形成する。その後、現像することにより、回折格
子パタ−ンと同一パタ−ンを有するレジストパタ−ンが
形成される。
Generally, the pitch of the diffraction grating required for the distributed feedback laser is 0.36 μm or less. For the manufacturing method of the diffraction grating in the distributed feedback laser, refer to Opt. Lett., Vo.
As reported in l.13, No.7 (1988), it is generally made as follows. First, a photoresist is uniformly applied on the substrate by, for example, a spin coat method. Next, a diffraction grating pattern is formed by the interference fringes formed by the two-beam interference exposure method. Thereafter, by developing, a resist pattern having the same pattern as the diffraction grating pattern is formed.

【0004】レジストパタ−ンのレジストの載っていな
い部分からは、基板が露出しているので、この後、エッ
チングを行うことにより、露出した基板部分を除去して
溝を掘る。このとき、レジストもエッチングを受けて薄
くなるので、レジストパタ−ンの膜厚は約1000Å以上が
好ましい。最後に、レジストパタ−ンを溶剤その他の手
段で除去する。こうして、基板上に所定間隔(ピッチ)
で溝が並んだ回折格子が得られる。
Since the substrate is exposed from the portion of the resist pattern where the resist is not placed, the exposed portion of the substrate is removed by etching thereafter to form a groove. At this time, since the resist is also thinned by etching, the film thickness of the resist pattern is preferably about 1000 Å or more. Finally, the resist pattern is removed with a solvent or other means. In this way, the predetermined spacing (pitch) on the substrate
A diffraction grating with grooves lined up can be obtained.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来のレジ
ストパタ−ンはアスペクト比(縦横比)が低いという問
題点があった。2光束干渉露光方式を用いた場合、一般
にレジストの膜厚が厚くなるとアスペクト比は低下す
る。アスペクト比が低いと、たとえば形成される回折格
子の溝が浅くなり、そのため回折格子の性能が低くな
る。
The conventional resist pattern has a problem that the aspect ratio (aspect ratio) is low. When the two-beam interference exposure method is used, the aspect ratio generally decreases as the resist film thickness increases. A low aspect ratio, for example, results in shallower grooves in the diffraction grating that is formed, which reduces the performance of the diffraction grating.

【0006】したがって、本発明の目的は、アスペクト
比の高いレジストパタ−ンを形成することにある。
Therefore, an object of the present invention is to form a resist pattern having a high aspect ratio.

【0007】[0007]

【課題を解決するための手段】従来用いられているフォ
トレジストは、G線(波長438nm)におけるAパラメ−
タが0.67、Bパラメ−タが0.10のもの(レジストZと称
する)である。発明者らは、A,Bパラメ−タに着目し
て種々のレジストを検討研究した結果、Aパラメ−タが
それぞれ0.6以上、Bパラメ−タが0.2以上のフォトレジ
ストを用いると高いアスペクト比のレジストパタ−ンが
得られることを見い出し、本発明をなすに至った。
[Means for Solving the Problems] Conventionally used photoresist is an A parameter in G line (wavelength 438 nm).
The data is 0.67 and the B parameter is 0.10 (referred to as resist Z). As a result of investigating and researching various resists by paying attention to A and B parameters, the inventors have found that using a photoresist having A parameter of 0.6 or more and B parameter of 0.2 or more has a high aspect ratio. It was found that a resist pattern could be obtained, and the present invention was completed.

【0008】よって、本発明は、第1に「2光束干渉露
光方式でフォトレジストにピッチ0.36μm以下の回折格
子パタ−ンを露光し、現像することによりレジストパタ
−ンを形成する方法において、前記フォトレジストとし
てG線におけるAパラメ−タが0.6以上でかつBパラメ
−タが0.2以上のものを用いることを特徴とするレジス
トパタ−ンの形成方法」を提供する。
Therefore, the first aspect of the present invention is to provide a method of forming a resist pattern by exposing a photoresist to a diffraction grating pattern having a pitch of 0.36 μm or less by a two-beam interference exposure method and developing it. A method of forming a resist pattern, characterized in that a photoresist having an A parameter in the G line of 0.6 or more and a B parameter of 0.2 or more is used as a photoresist.

【0009】また、本発明は、この形成方法に使用され
る「G線におけるAパラメ−タが0.6以上でかつBパラ
メ−タが0.2以上のフォトレジストからなるピッチ0.36
μm以下の回折格子パタ−ンの形成用フォトレジスト」
を提供する。さらに、本発明は、「基板上にG線におけ
るAパラメ−タが0.6以上でかつBパラメ−タが0.2以上
のフォトレジストを塗布する第1の工程と、2光束干渉
露光方式で前記フォトレジストにピッチ0.36μm以下の
回折格子パタ−ンを露光し、現像することによりレジス
トのパタ−ンを形成する第2の工程と、前記基板の前記
レジストが載っていない部分を除去する第3の工程と、
前記レジストを除去する第4の工程とからなることを特
徴とする回折格子の製造方法」を提供する。
The present invention also uses a pitch 0.36 made of a photoresist having an A parameter in the G line of 0.6 or more and a B parameter of 0.2 or more used in this forming method.
Photoresist for forming diffraction grating pattern of less than μm ”
I will provide a. Further, the present invention relates to a "first step of applying a photoresist having an A parameter of 0.6 or more and a B parameter of 0.2 or more in the G line on a substrate and the photoresist using a two-beam interference exposure method. A second step of forming a resist pattern by exposing and developing a diffraction grating pattern having a pitch of 0.36 μm or less, and a third step of removing a portion of the substrate where the resist is not placed. When,
And a fourth step of removing the resist.

【0010】[0010]

【作用】回折格子パタ−ンの形成には、2光束干渉露光
法、電子ビ−ム描画法、マスクパタ−ン露光法等が考え
られる。電子ビ−ム描画法はスル−プットが悪く、マス
クパタ−ン露光法では、光源としてX線を用いる等しな
ければ0.36μm以下のピッチの回折格子を形成すること
は困難である。X線を用いる場合、装置が大ががりにな
る等、装置面での制約がある。したがって、本発明にお
いては、作成面での容易性、パタ−ン精度、スル−プッ
ト等の良さから、2光束干渉露光法を用いる。
In order to form the diffraction grating pattern, a two-beam interference exposure method, an electron beam drawing method, a mask pattern exposure method, etc. can be considered. The electron beam drawing method has a poor throughput, and with the mask pattern exposure method, it is difficult to form a diffraction grating with a pitch of 0.36 μm or less unless X-rays are used as a light source. When using X-rays, there are restrictions in terms of the device, such as the device becoming large. Therefore, in the present invention, the two-beam interference exposure method is used because of its ease of preparation, pattern accuracy, throughput and the like.

【0011】Aパラメ−タ、Bパラメ−タとは、レジス
トの性質に関するパラメ−タである。Aパラメ−タは感
光成分の吸収度、Bパラメ−タは非感光成分(樹脂と感
光剤骨格化合物)の吸収度を示すものである。これらの
算出式は、 A=(1/D)×(T(∞)/T(0)) B=(1/D)×ln(T(∞)) ただし、T(∞):露光後のレジストの透過率 T(0) :未露光状態のレジストの透過率 D :レジストの膜厚 である。
The A parameter and the B parameter are parameters relating to the properties of the resist. The A parameter represents the absorption of the photosensitive component, and the B parameter represents the absorption of the non-photosensitive component (resin and photosensitive agent skeleton compound). These calculation formulas are: A = (1 / D) × (T (∞) / T (0)) B = (1 / D) × ln (T (∞)) where T (∞): after exposure Resist transmittance T (0): transmittance of unexposed resist D: resist film thickness.

【0012】本発明でのフォトレジストのG線でのAパ
ラメ−タは、0.7以下であることが好ましい。また、B
パラメ−タは0.5以下であることが好ましい。また、本
発明でのフォトレジストの膜厚は、1000Å〜10000Åで
あることが好ましい。
The A parameter at the G line of the photoresist of the present invention is preferably 0.7 or less. Also, B
The parameter is preferably 0.5 or less. Further, the film thickness of the photoresist in the present invention is preferably 1000Å to 10000Å.

【0013】[0013]

【実施例】図1は、2光束干渉露光装置の構成例を示す
図である。図1において、He-Cdレ−ザ(波長325nm)1
から出射されたレ−ザ光は、ビ−ムスプリッタ2で2方
向に分離される。分離されたそれぞれのレ−ザ光は、絞
り3a,3bを通って、ミラ−4a,4bで反射する。
そして、空間フィルタ5a,5bを介してコリメ−ティ
ングレンズ6a,6bで平行光とされる。このようにし
て、コリメ−ティングレンズ6aおよび6bを通った2
光束を干渉させ、基板8上に塗布されたフォトレジスト
7に回折格子パタ−ンを露光する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a configuration example of a two-beam interference exposure apparatus. In Fig. 1, He-Cd laser (wavelength 325 nm) 1
The laser light emitted from the laser beam is split into two directions by the beam splitter 2. The separated laser lights pass through the diaphragms 3a and 3b and are reflected by the mirrors 4a and 4b.
Then, the collimating lenses 6a and 6b collimate the light through the spatial filters 5a and 5b. In this way, the light passing through the collimating lenses 6a and 6b
The light fluxes are caused to interfere with each other, and the photoresist 7 coated on the substrate 8 is exposed to the diffraction grating pattern.

【0014】上記のようにして行う2光束干渉露光にお
いて、フォトレジスト面と入射面の交線方向をZ方向と
すると、2つの光束の光電界複素振幅は次式で示され
る。 E1=Aexp〔−ik(Zsinθ−Xcosθ)〕 E2=CAexp〔−ik(−Zsinθ−Xcosθ)−iφ〕 よって、フォトレジスト面での光感度は次式で示され
る。 |E1+E22 x=0=|A|2〔1+C2+2C・cos2(kZsinθ−φ)〕 この式からわかるように、光強度は、Z方向に正弦波状
に空間変調され、2光束の電界強度比C=1のときに変
調度が最大となる。
In the two-beam interference exposure performed as described above, the optical field complex amplitude of the two beams is given by the following equation, where the direction of the line of intersection of the photoresist surface and the incident surface is the Z direction. E 1 = Aexp Thus [-ik (Zsinθ-Xcosθ)] E 2 = CAexp [-ik (-Zsinθ-Xcosθ) -iφ], photosensitivity of the photoresist surface is expressed by the following equation. | E 1 + E 2 | 2 x = 0 = | A | 2 [1 + C 2 + 2C · cos2 (kZsinθ−φ)] As can be seen from this equation, the light intensity is spatially modulated in the Z direction into a sinusoidal shape, and two light fluxes are obtained. The modulation degree becomes maximum when the electric field strength ratio C = 1.

【0015】一方、回折格子パタ−ンの周期(ピッチ)
は、次式で示される。 Λ=2π/2k・sinθ=λ0/(2n・sinθ) ただし、λ0:光源のレ−ザ光波長(真空中) n :空間媒体の屈折率(〜1) 次に、レジストパタ−ンの形成手順について説明する。
まず、フォトレジストを適当な粘度に調合し、スピンコ
−ト法により膜厚1000Å程度に基板上にコ−トする。そ
の後、所定のベ−キング(焼成)を加える。スピンコ−
トにおいては、レジストを2cp,スピン回転数4000rpm
程度とすることが好ましい。その後、前述の2光束露光
装置により、0.255nmピッチの回折格子パタ−ンを形成
した。この場合、光波面のプロファイルに留意し、空間
フィルタ等を光軸上に適宜設置することは言うまでもな
い。ト−タルの露光エネルギ−は30mJ/cm2程度である。
さらに、所定の現像液により、干渉縞を確認しながら現
像を行う。
On the other hand, the period (pitch) of the diffraction grating pattern
Is expressed by the following equation. Λ = 2π / 2k · sin θ = λ 0 / (2n · sin θ) where λ 0 : Laser light wavelength of light source (in vacuum) n: Refractive index of space medium (up to 1) The forming procedure will be described.
First, a photoresist is prepared to have an appropriate viscosity and coated on a substrate by a spin coating method to a film thickness of about 1000Å. Then, a predetermined baking (baking) is added. Spinco
In this case, the resist is 2 cp and the spin speed is 4000 rpm.
It is preferable to set the degree. After that, a diffraction grating pattern having a pitch of 0.255 nm was formed by the above-mentioned two-beam exposing device. In this case, needless to say, a spatial filter or the like is appropriately installed on the optical axis while paying attention to the profile of the light wavefront. The exposure energy of the total is about 30 mJ / cm 2 .
Further, development is performed with a predetermined developing solution while confirming interference fringes.

【0016】フォトレジストとして、表1に示したレジ
ストX(実施例),Y(比較例),Z(比較例)を用い
た。表1は、レジストX,Y,ZのA,Bパラメ−タの
値を示したものである。
As the photoresist, the resists X (Example), Y (Comparative Example) and Z (Comparative Example) shown in Table 1 were used. Table 1 shows the values of A and B parameters of the resists X, Y and Z.

【0017】[0017]

【表1】 [Table 1]

【0018】これらのフォトレジストを用いて上記のよ
うにして回折格子パタ−ンを形成したレジストパタ−ン
の断面を図2〜図4に示す。図2はフォトレジストXを
用いて得られたレジストパタ−ンであり、図3はフォト
レジストYを用いたもの、図4はフォトレジストZを用
いたものである。それぞれ膜厚は1000Åとした。図2に
示すように、レジストXの場合は矩形状のパタ−ンがで
きており、本来レジストを残したくない部分の残膜も全
くない。仮に多少の残膜があっても、この後ドライエッ
チングするときにエッチングされてしまうので、差し支
えないが、本実施例においては、残膜が全くないので、
ウェットエッチングによりエッチングを行ってもよい。
これに対して、図3および図4に示すように、レジスト
YおよびZの場合は正弦波状であり段差も小さく、残膜
も多い。
2 to 4 are sectional views of a resist pattern in which a diffraction grating pattern is formed as described above using these photoresists. 2 shows a resist pattern obtained by using the photoresist X, FIG. 3 shows one using the photoresist Y, and FIG. 4 shows one using the photoresist Z. The thickness of each film was 1000Å. As shown in FIG. 2, in the case of the resist X, a rectangular pattern is formed, and there is no residual film at a portion where it is not desired to leave the resist. Even if there is some residual film, it may be etched during the dry etching after this, so there is no problem, but in this embodiment, there is no residual film.
You may etch by wet etching.
On the other hand, as shown in FIGS. 3 and 4, the resists Y and Z have a sinusoidal shape, a small step, and a large amount of residual film.

【0019】レジストのパタ−ンの断面形状としては、
後工程のエッチングから言って当然に図2のように矩形
形状になっていることが好ましい。好ましい形状か否か
はレジストパタ−ンの断面形状のアスペクト比(縦横
比)で表すことができる。図5(レジストパタ−ンの断
面図)は、アスペクト比の求め方を説明するための図で
ある。アスペクト比は、谷と谷との長さをaおよび山の
高さをbとするとき、式:アスペクト比=b/aで求め
られる。
The sectional shape of the resist pattern is as follows.
From the viewpoint of etching in the subsequent step, it is naturally preferable that it has a rectangular shape as shown in FIG. Whether or not the shape is preferable can be expressed by the aspect ratio (aspect ratio) of the cross-sectional shape of the resist pattern. FIG. 5 (a cross-sectional view of the resist pattern) is a diagram for explaining how to obtain the aspect ratio. The aspect ratio is calculated by the formula: aspect ratio = b / a, where a is the length of the valley and b is the height of the crest.

【0020】図3〜図5のレジストパタ−ンについて、
アスペクト比を求めた結果を表1に合わせて示す。レジ
ストXによって形成したものが、アスペクト比が大きい
ことがわかる。後工程のエッチングにおいては、このア
スペクト比が大きいことが好ましい。また、レジストX
を用いた場合、現像時間の許容値についても他のものに
比べて2〜3倍も高く、パタ−ン形成の再現性も良好で
ある。
Regarding the resist patterns shown in FIGS. 3 to 5,
The results of obtaining the aspect ratio are also shown in Table 1. It can be seen that the resist X formed has a large aspect ratio. It is preferable that this aspect ratio is large in the etching in the subsequent step. Also, the resist X
In case of using, the permissible value of the developing time is 2 to 3 times higher than the others, and the reproducibility of pattern formation is also good.

【0021】以上のようにして、レジストXを用いて形
成したレジストパタ−ンから、基板8上に回折格子を形
成する。レジストパタ−ンのレジストの載っていない部
分は基板面が露出しているので、ドライエッチングによ
り、露出した基板面を除去して溝を掘る。そして、レジ
ストパタ−ンを溶剤その他の手段で除去することによ
り、基板8上に回折格子を形成することができる。
As described above, the diffraction grating is formed on the substrate 8 from the resist pattern formed using the resist X. Since the substrate surface is exposed in the portion of the resist pattern where the resist is not placed, the exposed substrate surface is removed by dry etching to form a groove. Then, by removing the resist pattern with a solvent or other means, a diffraction grating can be formed on the substrate 8.

【0022】なお、本実施例においては、2光束干渉露
光において、光源としてHe-Cdレ−ザを用いたが、Ar
レ−ザ等を用いてもよい。
In this embodiment, the He-Cd laser is used as the light source in the two-beam interference exposure.
A laser or the like may be used.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、レジス
トの膜厚を厚くしてもアスペクト比の大きいレジストパ
タ−ンを得ることができる。また、本発明によれば、プ
ロセスの許容値も高く、容易にアスペクト比の大きいレ
ジストパタ−ンを得ることができる。
As described above, according to the present invention, a resist pattern having a large aspect ratio can be obtained even if the resist film thickness is increased. Further, according to the present invention, a resist pattern having a high process ratio and a large aspect ratio can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いる2光束干渉露光装置の
構成図である。
FIG. 1 is a configuration diagram of a two-beam interference exposure apparatus used in an embodiment of the present invention.

【図2】表1のレジストXを用いて形成したレジストパ
タ−ンの断面図である。
FIG. 2 is a sectional view of a resist pattern formed using the resist X shown in Table 1.

【図3】表1のレジストYを用いて形成したレジストパ
タ−ンの断面図である。
FIG. 3 is a sectional view of a resist pattern formed using the resist Y in Table 1.

【図4】表1のレジストZを用いて形成したレジストパ
タ−ンの断面図である。
FIG. 4 is a sectional view of a resist pattern formed using the resist Z in Table 1.

【図5】レジストパタ−ンのアスペクト比の求め方を説
明するための図である。
FIG. 5 is a diagram for explaining how to obtain an aspect ratio of a resist pattern.

【図6】分布帰還型レ−ザの構成を示す断面図である。FIG. 6 is a cross-sectional view showing the structure of a distributed feedback laser.

【符号の説明】[Explanation of symbols]

1 He-Cdレ−ザ 2 ビ−ムスプリッタ 3a,3b 絞り 4a,4b ミラ− 5a,5b 空間フィルタ 6a,6b コリメ−ティングレンズ 7 フォトレジスト 8 基板 1 He-Cd laser 2 Beam splitter 3a, 3b Aperture 4a, 4b Mirror 5a, 5b Spatial filter 6a, 6b Collimating lens 7 Photoresist 8 Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2光束干渉露光方式でフォトレジストにピ
ッチ0.36μm以下の回折格子パタ−ンを露光し、現像す
ることによりレジストパタ−ンを形成する方法におい
て、 前記フォトレジストとしてG線におけるAパラメ−タが
0.6以上でかつBパラメ−タが0.2以上のものを用いるこ
とを特徴とするレジストパタ−ンの形成方法。
1. A method of forming a resist pattern by exposing a photoresist to a diffraction grating pattern having a pitch of 0.36 μm or less by a two-beam interference exposure method and developing the photoresist pattern. -
A method of forming a resist pattern, characterized in that one having a B parameter of 0.6 or more and a B parameter of 0.2 or more is used.
【請求項2】G線におけるAパラメ−タが0.6以上でか
つBパラメ−タが0.2以上のフォトレジストからなるピ
ッチ0.36μm以下の回折格子パタ−ンの形成用フォトレ
ジスト。
2. A photoresist for forming a diffraction grating pattern having a pitch of 0.36 .mu.m or less, which is formed of a photoresist having an A parameter of 0.6 or more and a B parameter of 0.2 or more in the G line.
【請求項3】基板上にG線におけるAパラメ−タが0.6
以上でかつBパラメ−タが0.2以上のフォトレジストを
塗布する第1の工程と、 2光束干渉露光方式で前記フォトレジストにピッチ0.36
μm以下の回折格子パタ−ンを露光し、現像することに
よりレジストのパタ−ンを形成する第2の工程と、 前記基板の前記レジストが載っていない部分を除去する
第3の工程と、 前記レジストを除去する第4の工程とからなることを特
徴とする回折格子の製造方法。
3. The A parameter at the G line is 0.6 on the substrate.
The first step of applying a photoresist having a B parameter of 0.2 or more, and a pitch of 0.36 on the photoresist by a two-beam interference exposure method.
a second step of forming a resist pattern by exposing and developing a diffraction grating pattern of μm or less; a third step of removing a portion of the substrate where the resist is not placed; A fourth step of removing the resist, the method for manufacturing a diffraction grating.
JP3331713A 1991-12-16 1991-12-16 Method of forming resist pattern Expired - Lifetime JP2936187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331713A JP2936187B2 (en) 1991-12-16 1991-12-16 Method of forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331713A JP2936187B2 (en) 1991-12-16 1991-12-16 Method of forming resist pattern

Publications (2)

Publication Number Publication Date
JPH0653122A true JPH0653122A (en) 1994-02-25
JP2936187B2 JP2936187B2 (en) 1999-08-23

Family

ID=18246759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331713A Expired - Lifetime JP2936187B2 (en) 1991-12-16 1991-12-16 Method of forming resist pattern

Country Status (1)

Country Link
JP (1) JP2936187B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
JP2008517472A (en) * 2004-10-22 2008-05-22 パウル・シェラー・インスティトゥート System and method for generating periodic and / or quasi-periodic patterns on a sample
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7867692B2 (en) 2004-08-25 2011-01-11 Seiko Epson Corporation Method for manufacturing a microstructure, exposure device, and electronic apparatus
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761602B (en) * 2018-05-22 2020-06-16 苏州大学 Adjusting method for auto-collimation of interference light path in holographic grating photoetching system
CN108761603B (en) * 2018-05-22 2020-06-16 苏州大学 Photoetching system for manufacturing parallel equidistant stripe holographic grating

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804601B2 (en) 1999-06-24 2010-09-28 Asml Holding N.V. Methods for making holographic reticles for characterizing optical systems
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7867692B2 (en) 2004-08-25 2011-01-11 Seiko Epson Corporation Method for manufacturing a microstructure, exposure device, and electronic apparatus
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
JP2008517472A (en) * 2004-10-22 2008-05-22 パウル・シェラー・インスティトゥート System and method for generating periodic and / or quasi-periodic patterns on a sample
JP4724183B2 (en) * 2004-10-22 2011-07-13 オイリタ・アクチエンゲゼルシャフト System and method for generating periodic and / or quasi-periodic patterns on a sample
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator

Also Published As

Publication number Publication date
JP2936187B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US4402571A (en) Method for producing a surface relief pattern
US5225039A (en) Method for producing a diffraction grating
JP2936187B2 (en) Method of forming resist pattern
US4517280A (en) Process for fabricating integrated optics
US4885231A (en) Phase-shifted gratings by selective image reversal of photoresist
JPH1172631A (en) Phase mask for processing optical fiber and its production
JP2006038928A (en) Nonreflective periodic structural body and manufacturing method thereof
JPS59116602A (en) Production of chirped-grating
US6709790B1 (en) Method and apparatus for generating periodic structures in substrates by synthetic wavelength holograph exposure
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
EP0490320B1 (en) A method for producing a diffraction grating
JPS58154285A (en) Manufacture of diffraction grating
JP2527833B2 (en) Method of manufacturing diffraction grating
JPS5983111A (en) Preparation of optical integrated circuit
WO2002010857A2 (en) Process for making a periodic profile
JPH04186829A (en) Manufacture of semiconductor device
JPH047508A (en) Production of reflection type optical bending waveguide
KR970004421B1 (en) Photolithography apparatus in semiconductor
JPH04257801A (en) Manufacture of polarized light diffraction element
JPH0461331B2 (en)
JPH033285A (en) Manufacture of semiconductor device
JPH10326746A (en) Method of forming mask pattern
JPS6271907A (en) Grating optical device
JP2003121619A (en) Optical element and method for manufacturing the same
JPH05343806A (en) Manufacture of phase-shifting diffraction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13