JPH0653053A - Winding for stationary induction apparatus - Google Patents

Winding for stationary induction apparatus

Info

Publication number
JPH0653053A
JPH0653053A JP20126792A JP20126792A JPH0653053A JP H0653053 A JPH0653053 A JP H0653053A JP 20126792 A JP20126792 A JP 20126792A JP 20126792 A JP20126792 A JP 20126792A JP H0653053 A JPH0653053 A JP H0653053A
Authority
JP
Japan
Prior art keywords
winding
conductor
heat
hollow
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20126792A
Other languages
Japanese (ja)
Inventor
Hiroshi Shioda
広 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20126792A priority Critical patent/JPH0653053A/en
Publication of JPH0653053A publication Critical patent/JPH0653053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To provide an interleave winding capable of miniaturizing the whole winding while making the temperature gradient easier as well as the increase in cooling efficiency and the reduction in thermal deterioration feasible. CONSTITUTION:The second conductor (b) formed in a hollow shape with a cooling medium sealed up therein comprises a heat pipe. In such a constitution, one connecting end at respective brazed parts A of the second conductor (b) is extended to form a heat dissipation part 51 wherein a fin 51a is provided. On the other hand, the wound up part of the second conductor (b) comprises a heat detector 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器およびリアクト
ル等の静止誘導機器用巻線に係わり、特に冷却性の改善
を図った静止誘導機器用巻線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winding wire for a static induction device such as a transformer and a reactor, and more particularly to a winding wire for a static induction device with improved cooling performance.

【0002】[0002]

【従来の技術】図5には、従来の静止誘導機器用巻線で
あるインターリーブ巻線の一例を示す。同図において、
第1の導体aは1a,2a,…から形成され、第2の導
体bは、6b,7b,…から形成されており、それぞれ
の数字は巻回順を示している。[1],[2],
[3],…は、それぞれ第1の導体aおよび第2の導体
bにインターリーブされた巻線群であり、全体としてイ
ンターリーブ巻線1を構成している。
2. Description of the Related Art FIG. 5 shows an example of an interleaved winding which is a conventional winding for a static induction device. In the figure,
The first conductor a is formed of 1a, 2a, ..., The second conductor b is formed of 6b, 7b, ..., and each number indicates the winding order. [1], [2],
[3], ... Are winding groups interleaved with the first conductor a and the second conductor b, respectively, and constitute the interleaved winding 1 as a whole.

【0003】このようなインターリーブ巻線1にサージ
電圧Vが侵入した場合の初期電位分布Vnは、巻線の直
列静電容量kと、対地静電容量cとにより決定されるも
ので、次の(1)式で表される。
The initial potential distribution Vn when the surge voltage V enters the interleaved winding 1 is determined by the series capacitance k of the winding and the ground capacitance c. It is expressed by equation (1).

【0004】[0004]

【数1】 lxは巻き終わりからの距離、lは巻線全長である。初
期電位分布Vnを、αをパラメータとしてXとVn/V
との関係で求めると、図6のようになり、αが小さいほ
ど初期電位分布が直線に近づき振動が小さくなることが
わかる。αを小さくするには、対地静電容量cを小さく
するか、直列静電容量kを大きくすれば良い。インター
リーブ巻線1は、このうち直列静電容量kを大きくする
ことで初期電位分布を改善した巻線である。
[Equation 1] 1x is the distance from the end of winding, and 1 is the total winding length. The initial potential distribution Vn is X and Vn / V with α as a parameter.
6 is obtained, and it can be seen that the smaller α is, the closer the initial potential distribution becomes to the straight line and the smaller the vibration. To reduce α, the ground capacitance c may be reduced or the series capacitance k may be increased. The interleaved winding 1 is a winding whose initial potential distribution is improved by increasing the series capacitance k among them.

【0005】このようなインターリーブ巻線1は、図5
に示すように二組の導体a,bを並列に巻回し、同図A
に示す箇所にて両者をロウ付け等により接続する方法で
製作されるようになっている。
Such an interleaved winding 1 is shown in FIG.
Two sets of conductors a and b are wound in parallel as shown in FIG.
It is designed to be manufactured by a method in which the both are connected by brazing or the like at the location indicated by.

【0006】このインターリーブ巻線1に対する冷却方
式としては、従来より、巻線全体を絶縁油中に浸漬し、
巻線周囲の絶縁油を自然対流させたり、強制循環させた
りする方式がある。また、別の方式として、最近では、
冷却媒体にSF6ガスを採用する場合もあるが、いずれ
にしても、巻線周囲の冷却媒体により冷却するようにし
ている。
As a cooling method for this interleaved winding 1, conventionally, the entire winding is immersed in insulating oil,
There are methods that allow natural convection of the insulating oil around the winding or forced circulation. In addition, as another method, recently,
In some cases, SF6 gas is used as the cooling medium, but in any case, the cooling medium around the winding is used for cooling.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の冷却方式では、巻線周囲に冷却用の冷媒流路を形成
せねばならず、これでは、巻線全体が大形化する問題が
あった。また、このような従来の冷却方式においては、
冷却媒体が通る経路が長く、巻線全体の温度差が大き
く、冷却効率が悪いという問題もあった。さらに、巻線
の熱劣化と温度勾配とをみた場合、熱劣化は、高温側の
温度に左右されるものであり、巻線の冷却設計には、こ
の温度勾配を考慮しなければならず、この点からも巻線
が大形化し、ひいてはこの巻線を用いる変圧器やリアク
トル等の機器を大形化させる原因ともなっていた。
However, in the above-mentioned conventional cooling method, a cooling medium flow path for cooling must be formed around the winding, which causes a problem that the entire winding becomes large. . Further, in such a conventional cooling system,
There is also a problem that the cooling medium has a long path, the temperature difference between the windings is large, and the cooling efficiency is poor. Furthermore, when looking at the heat deterioration and temperature gradient of the winding, the heat deterioration depends on the temperature on the high temperature side, and this temperature gradient must be taken into consideration in the cooling design of the winding. From this point as well, the size of the winding becomes large, which in turn causes the size of equipment such as transformers and reactors that use this winding.

【0008】本発明は上述の事情を考慮してなされたも
のであり、その目的は、巻線全体の小形化を図り得ると
共に、温度勾配も小さくできて冷却効率の向上および熱
劣化の低下も図ることができる静止誘導機器用巻線を提
供するにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to make it possible to reduce the size of the entire winding and to reduce the temperature gradient to improve the cooling efficiency and reduce the thermal deterioration. It is to provide a winding for a static induction device that can be achieved.

【0009】[0009]

【課題を解決するための手段】請求項1の発明の静止誘
導機器用巻線は、並列に巻回される導体のうちの少なく
とも一方を中空状に形成し、この中空導体の内部に冷却
媒体を封入してヒートパイプを構成したところに特徴を
有する。
According to another aspect of the present invention, there is provided a winding for a static induction device, wherein at least one of the conductors wound in parallel is formed in a hollow shape, and the cooling medium is provided inside the hollow conductor. It is characterized in that a heat pipe is configured by enclosing.

【0010】請求項2の発明の静止誘導機器用巻線は、
並列に巻回される導体のうちの少なくとも一方を中空状
に形成し、この中空導体に中空状の放熱体を電気絶縁材
製の中空状の連結体を介して接続し、これら中空導体お
よび放熱体の内部に冷却媒体を封入してヒートパイプを
構成したところに特徴を有する。
A winding for a static induction device according to a second aspect of the invention is
At least one of the conductors wound in parallel is formed in a hollow shape, and a hollow radiator is connected to this hollow conductor via a hollow connector made of an electrical insulating material. The feature is that a cooling medium is enclosed inside the body to form a heat pipe.

【0011】[0011]

【作用】請求項1の発明においては、巻線の冷却が、導
体そのものが構成するヒートパイプにより行われるか
ら、従来のような巻線周囲に冷却媒体を流通させるもの
とは異なり、小形化が図れる。またヒートパイプによ
り、熱運搬力が大きく、しかも熱運搬経路も短縮される
から、温度勾配が低くなり、また冷却性効率も良くな
る。
In the invention of claim 1, since the winding is cooled by the heat pipe constituted by the conductor itself, unlike the conventional one in which the cooling medium is circulated around the winding, miniaturization is achieved. Can be achieved. Further, since the heat pipe has a large heat carrying capacity and the heat carrying path is shortened, the temperature gradient is lowered and the cooling efficiency is improved.

【0012】請求項2の発明においては、上述と同様の
作用効果を得ることに加え、放熱体が電気絶縁されてい
ることから、巻線に用いられる電圧が高くて、放熱体の
絶縁が懸念されるような場合でも十分に使用できるもの
である。
According to the second aspect of the present invention, in addition to obtaining the same effect as the above, since the heat radiator is electrically insulated, the voltage used for the winding is high, and the heat radiator may be insulated. Even in such a case, it can be sufficiently used.

【0013】[0013]

【実施例】以下、本発明の第1の実施例につき図1ない
し図3を参照しながら説明する。図1および図3に示す
ように、第1の導体aは1a,2a,…から形成され、
第2の導体bは、6b,7b,…から形成されている。
なお、それぞれの数字は巻回順を示している。[1],
[2],[3],…は、それぞれ第1の導体aおよび第
2の導体bにインターリーブされた巻線群であり、全体
として、静止誘導機器用巻線であるインターリーブ巻線
1を構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIGS. 1 and 3, the first conductor a is formed of 1a, 2a, ...
The second conductor b is formed of 6b, 7b, ....
Each number indicates the winding order. [1],
[2], [3], ... Are winding groups interleaved with the first conductor a and the second conductor b, respectively, and constitute the interleaved winding 1 as a winding for a static induction device as a whole. is doing.

【0014】第2の導体bは、中空状に形成されてお
り、その内部には冷却媒体が封入されていて、ヒートパ
イプを構成している。この第2の導体bの各ロウ付け部
Aにおいて一方の接続端を延長して放熱部51を形成し
ており、この放熱部51にはフィン51aが設けられて
いる。そして、この第2の導体bはその巻回部分が受熱
部52となっている。
The second conductor b is formed in a hollow shape, and a cooling medium is enclosed inside the second conductor b to form a heat pipe. In each brazing part A of the second conductor b, one connection end is extended to form a heat dissipation part 51, and the heat dissipation part 51 is provided with a fin 51a. The wound portion of the second conductor b serves as the heat receiving portion 52.

【0015】この構成において、第1の導体aに発生し
た熱は、熱伝導により第2の導体bにおける受熱部52
へ伝達される。また第2の導体bにおける受熱部52自
体に発生した熱は、第1の導体aから伝達された熱と共
に、自身が構成するヒートパイプにより放熱部51へ運
搬される。この場合、熱発生部から放熱部51にいたる
熱の運搬経路は、従来の冷却方式に比して極めて短くて
済む。従って、巻線1全体の温度は均等化され、平均温
度と最高温度との差は小さくなり、また冷却効率も良く
なる。さらに、従来のような巻線周囲に冷却媒体を流通
させるものとは異なり、図3のB寸法としては、絶縁上
必要最小限の大きさで良く、これにより、巻線1の直列
容量の増加に寄与でき、電位分布をより一層改善できる
ものである。そして、これらがあいまって全体の小形化
を大いに図ることができる。
In this structure, the heat generated in the first conductor a is heat-conducted so that the heat receiving portion 52 in the second conductor b is generated.
Transmitted to. Further, the heat generated in the heat receiving portion 52 itself in the second conductor b is carried to the heat radiating portion 51 by the heat pipe configured by itself, together with the heat transmitted from the first conductor a. In this case, the heat transfer path from the heat generating section to the heat radiating section 51 can be extremely short as compared with the conventional cooling method. Therefore, the temperature of the entire winding 1 is equalized, the difference between the average temperature and the maximum temperature is reduced, and the cooling efficiency is improved. Further, unlike the conventional one in which the cooling medium is circulated around the winding, the dimension B in FIG. 3 may be the minimum required for insulation, which increases the series capacitance of the winding 1. The potential distribution can be further improved. Together, these can greatly reduce the overall size.

【0016】図4は本発明の第2の実施例を示してお
り、次の点が第1の実施例と異なる。すなわち、中空状
に形成された第2の導体bに対して、別体の中空状をな
す放熱体53を、電気絶縁材製の中空状をなす連結体5
4を介して接続した構成としている。
FIG. 4 shows a second embodiment of the present invention, which is different from the first embodiment in the following points. That is, for the second conductor b formed in the hollow shape, the separate heat radiator 53 in the hollow shape is connected to the hollow connection body 5 made of an electric insulating material.
It is configured to be connected via 4.

【0017】この実施例によれば、上述と同様の作用効
果を得ることに加え、放熱体53が電気絶縁されている
ことから、巻線1に用いられる電圧が高くて、放熱体5
3の絶縁が懸念されるような場合でも十分に使用できる
ものである。
According to this embodiment, in addition to obtaining the same effects as the above, since the radiator 53 is electrically insulated, the voltage used for the winding 1 is high and the radiator 5
It can be sufficiently used even in the case where the insulation of 3 is concerned.

【0018】なお、上記各実施例では第2の導体bを中
空状に形成したが、第1の導体aを中空状に形成してヒ
ートパイプ構成としても良く、あるいは両導体a,bと
も中空状に形成してヒートパイプ構成としても良い。
Although the second conductor b is formed in a hollow shape in each of the above embodiments, the first conductor a may be formed in a hollow shape to form a heat pipe, or both conductors a and b may be hollow. It may be formed into a heat pipe structure.

【0019】[0019]

【発明の効果】本発明は以上の説明から明らかなよう
に、次の効果を得ることができる。
As is apparent from the above description, the present invention can obtain the following effects.

【0020】請求項1の静止誘導機器用巻線によれば、
導体そのものがヒートパイプを構成するから、巻線全体
の小形化を図り得ると共に、温度勾配も小さくできて冷
却効率の向上および熱劣化の低下も図ることができる。
According to the winding for static induction equipment of claim 1,
Since the conductor itself constitutes the heat pipe, the size of the entire winding can be reduced, the temperature gradient can be reduced, and the cooling efficiency can be improved and the thermal deterioration can be reduced.

【0021】請求項2の静止誘導機器用巻線によれば、
中空導体に中空状の放熱体を電気絶縁材製の中空状の連
結体を介して接続した構成としているから、上述と同様
の作用効果を得ることに加え、巻線に用いられる電圧が
高くて、放熱体の絶縁が懸念されるような場合でも、十
分に使用できるものである。
According to the stationary induction device winding of claim 2,
Since the hollow radiator is connected to the hollow conductor via the hollow connector made of an electrical insulating material, in addition to the same effects as the above, the voltage used for the winding is high. Even when there is a concern about insulation of the heat radiator, it can be sufficiently used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す要部の概略構成図FIG. 1 is a schematic configuration diagram of a main part showing a first embodiment of the present invention.

【図2】部分的斜視図FIG. 2 is a partial perspective view.

【図3】巻線部分の構成図[Fig. 3] Configuration diagram of winding part

【図4】本発明の第2の実施例を示す図1相当図FIG. 4 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.

【図5】従来例を示す巻線の構成図FIG. 5 is a configuration diagram of a winding showing a conventional example

【図6】初期電位分布を示す図FIG. 6 is a diagram showing an initial potential distribution.

【符号の説明】[Explanation of symbols]

1はインターリーブ巻線(静止誘導機器用巻線)、51
は放熱部、52は受熱部、53は放熱体、54は連結
体、aは第1の導体、bは第2の導体を示す。
1 is an interleaved winding (winding for static induction equipment), 51
Is a heat radiating portion, 52 is a heat receiving portion, 53 is a heat radiating body, 54 is a connecting body, a is a first conductor, and b is a second conductor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 並列に巻回される導体のうちの少なくと
も一方を中空状に形成し、この中空導体の内部に冷却媒
体を封入してヒートパイプを構成したことを特徴とする
静止誘導機器用巻線。
1. A static induction device, wherein at least one of the conductors wound in parallel is formed in a hollow shape, and a cooling medium is enclosed in the hollow conductor to form a heat pipe. Winding.
【請求項2】 並列に巻回される導体のうちの少なくと
も一方を中空状に形成し、この中空導体に中空状の放熱
体を電気絶縁材製の中空状の連結体を介して接続し、こ
れら中空導体および放熱体の内部に冷却媒体を封入して
ヒートパイプを構成したことを特徴とする静止誘導機器
用巻線。
2. At least one of the conductors wound in parallel is formed in a hollow shape, and a hollow radiator is connected to the hollow conductor via a hollow connector made of an electrically insulating material, A winding for a static induction device, characterized in that a cooling medium is enclosed in the hollow conductor and the radiator to form a heat pipe.
JP20126792A 1992-07-28 1992-07-28 Winding for stationary induction apparatus Pending JPH0653053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20126792A JPH0653053A (en) 1992-07-28 1992-07-28 Winding for stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20126792A JPH0653053A (en) 1992-07-28 1992-07-28 Winding for stationary induction apparatus

Publications (1)

Publication Number Publication Date
JPH0653053A true JPH0653053A (en) 1994-02-25

Family

ID=16438123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20126792A Pending JPH0653053A (en) 1992-07-28 1992-07-28 Winding for stationary induction apparatus

Country Status (1)

Country Link
JP (1) JPH0653053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636140B2 (en) * 2000-12-08 2003-10-21 Sansha Electric Manufacturing Company, Limited High-frequency large current handling transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636140B2 (en) * 2000-12-08 2003-10-21 Sansha Electric Manufacturing Company, Limited High-frequency large current handling transformer

Similar Documents

Publication Publication Date Title
JP5038596B2 (en) AC winding with integrated cooling system and method of manufacturing the same
CA2390335C (en) Electrical machine with a winding
US20240055925A1 (en) Stator coil for high power density and efficiency electric machines
JPS6362138A (en) Deflection yoke for oscilloscope with heat radiation mechanism
JPH0653053A (en) Winding for stationary induction apparatus
GB2183110A (en) Electric lead device for superconducting electric apparatus
JPH0586053B2 (en)
JPH06119827A (en) Litz wire
US3287580A (en) Electrical machines
CA2150137C (en) Division of current between different strands of a superconducting winding
JPH0669048A (en) Transformer connecting-lead-wire device
JPS6179208A (en) Duct spacer for foil wound transformer
JPS62194602A (en) Cooling structure of winding in stationary induction apparatus
JP2001509963A (en) Cables and windings for electric winding
JP2001509960A (en) Horizontal air cooling in transformer
JPS58218845A (en) Armature coil for rotary electric machine
JPH06338425A (en) Transformer winding
JPH0723939Y2 (en) Coil with cooling passage
JPS6023856Y2 (en) concentric cable
JPH04229906A (en) Conductor
JPH0213449B2 (en)
JP2883071B1 (en) Superconducting field winding conductor
JPS6025886B2 (en) Blocking Coil
US4129849A (en) Fault current limiting resistor
JPS5947711A (en) Current lead of superconductive coil